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Combined analysis of the K+ K− interaction using near-threshold pp → ppK+ K− data
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The K+K− final state interaction was investigated based on both the K+K− invariant mass distributions
measured at excess energies of Q = 10 and 28 MeV and the near threshold excitation function for the
pp → ppK+K− reaction. The K+K− final state enhancement factor was parametrized using the effective
range expansion. The effective range of the K+K− interaction was estimated to be Re(bK+K− ) = −0.1 ±
0.4stat ± 0.3sys fm and Im(bK+K− ) = 1.2

+0.1stat+0.2sys
−0.2stat−0.0sys

fm, and the determined real and imaginary parts of the

K+K− scattering length amount to |Re(aK+K− )| = 8.0+6.0stat
−4.0stat

fm and Im(aK+K− ) = 0.0+20.0stat
−5.0stat

fm.
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I. INTRODUCTION

The strength of the K+K− interaction is a crucial quantity
regarding the formation of a hypothetical kaon–antikaon
bound state. Existence of such a state could explain the nature
of the a0(980) and f0(980) scalar mesons [1,2], whose masses
are very close to the sum of the K+ and K− masses.1 Among
many theoretical investigations [7–11] the K+K− interaction
was studied also experimentally in the pp → ppK+K−
reaction with COSY-11 and ANKE detectors operating at
the COSY synchrotron in Jülich, Germany [12–18]. The
experimental data collected systematically below [12–16]
and above [18] the φ meson threshold reveal a significant
enhancement in the shape of the excitation function near the
kinematical threshold, which may be due to the final state
interaction (FSI) in the ppK+K− system. The indication of the
influence of the pK− final state interaction was found in both
COSY-11 and ANKE data in the ratios of the differential cross
sections as a function of the pK and the ppK invariant masses,

RpK = dσ/dMpK−

dσ/dMpK+
, RppK = dσ/dMppK−

dσ/dMppK+
,

where a significant enhancement in the region of both the low
pK− invariant mass MpK− and the low ppK− invariant mass
MppK− is observed [15,19]. The phenomenological model
based on the factorization of the final state interaction into
interactions in the pp and pK− subsystems, neglecting the
K+K− potential, does not describe the whole experimental
excitation function for the pp → ppK+K− reaction,
underestimating the data very close to the kinematical
threshold [15,20]. This indicates that in the low-energy
region the influence of the K+K− final state interaction
may be significant [15,19,20]. Motivated by this observation
the COSY-11 Collaboration has recently estimated the
scattering length of the K+K− interaction based on the
pp → ppK+K− reaction measured at excess energies of
Q = 10 and 28 MeV [19]. As a result of the analysis the K+K−
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1Besides the standard interpretation as qq̄ mesons [3], these

resonances were also proposed to be qqq̄q̄ states [4], hybrid
qq̄/meson–meson systems [5], or even quarkless gluonic hadrons [6].

scattering length was determined based on the low-energy
proton-proton (Mpp) and K+K− (MKK ) invariant mass
distributions (so-called Goldhaber plot) shown in Fig. 1 [19].

In this article we combine the Goldhaber plot distribution
established by the COSY-11 group with the experimental
excitation function [12–15,18] near threshold and determine
the K+K− scattering length with better precision compared to
the previous results. We have also extracted the effective range
of the K+K− interaction.

II. DESCRIPTION OF THE FINAL STATE INTERACTION
IN THE ppK+ K− SYSTEM

As in the previous analysis [19] we use the factorization
ansatz proposed by the ANKE group with an additional term
describing the interaction in the K+K− system. We assume
that the overall enhancement factor originating from final state
interaction can be factorized into enhancements in the proton-
proton, the two pK−, and the K+K− subsystems:2

FFSI = Fpp(k1) ×Fp1K− (k2) ×Fp2K− (k3) ×FK+K− (k4), (1)

where kj stands for the relative momentum of particles in
the corresponding subsystem [19]. The proton-proton scat-
tering amplitude was taken into account using the following
parametrization:

Fpp = eiδpp(1S0) sin δpp(1S0)

Ck1
,

where C stands for the square root of the Coulomb penetration
factor [21]. The parameter δpp(1S0) denotes the phase shift
calculated according to the modified Cini-Fubini-Stanghellini
formula with the Wong-Noyes Coulomb correction [22–24].
Factors describing the enhancement originating from the
interaction in the pK− subsystems are parametrized using
the scattering length approximation

FpK− = 1

1 − ikapK−
.

2In this model we neglect the pK+ interaction since it is repulsive
and weak [15].
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FIG. 1. Experimental Goldhaber plots for the pp → ppK+K−

reaction. The solid lines of the triangles show the kinematically
allowed boundaries. Individual events are shown in (a) and (b)
as black points. The superimposed squares represent the same
distributions but binned into intervals of �M = 2.5 MeV/c2 (�M =
7 MeV/c2) widths for an excess energy of Q = 10 (28) MeV,
respectively. The area of the square is proportional to the number
of entries in a given interval. The figure was adapted from [19].

The pK− scattering length apK− was estimated both the-
oretically [25–30] and experimentally based mainly on the
kaonic hydrogen atom measurements [31,32]. As shown in
Ref. [33] different approaches result in a slightly different
apK− values. Therefore, in our analysis we have assumed the
pK− scattering length to be equal to the mean of all the
values from elaborations [25–32] summarized in Ref. [33]:
apK− = (−0.65 + 0.78i) fm.

The K+K− FSI was parametrized using the effective range
expansion,

FK+K− = 1
1

aK+K− + bK+K− k2
4

2 − ik4

,

where aK+K− and bK+K− are the scattering length and the
effective range of the K+K− interaction, respectively. We have
performed a fit to the experimental data treating aK+K− and
bK+K− as free parameters. Moreover, we have repeated the
analysis for every quoted apK− to check how their different
values change the result. This allowed us also to estimate the
systematic error due to the pK− scattering length used in the
estimation of aK+K− and bK+K− .

It is worth mentioning that there is a similar phenomenolog-
ical model of the K+K− final state interaction which takes into

account the elastic and charge-exchange interaction allowing
for the K0K0 ⇀↽ K+K− transitions. This FSI should generate
a significant cusp effect in the K+K− invariant mass spectrum
near the K0K0 threshold (details can be found in [34]).
Another contribution to this effect may be also generated by
the kaons rescattering to scalars, eg.: KK → f0(980) → KK
and KK → a0(980) → KK . However, the ANKE data can
be described well without introducing the cusp effect [34],
thus we neglect it in this analysis. We also cannot distinguish
between the isospin I = 0 and I = 1 states of the K+K−
system. However, as pointed out in [34], the production
with I = 0 is dominant in the pp → ppK+K− reaction
independent of the exact values of the scattering lengths.

In the fit we do not take into account influence of the
f0(980) and a0(980) production. There exist only very rough
experimental estimates of upper limits for production of these
resonances in the N -N collisions. In fact, up to now in these
reactions there has not been found any signal of these particles.
The theoretical estimations result in negligible cross sections
for the pp → f0pp → K+K−pp resonant contribution with
respect to the nonresonant one [35] (the upper limit of
the cross section for this reaction is estimated to be about
1 × 10−4 nb/MeV at Q = 5 MeV and 4 × 10−2 nb/MeV at
50 MeV [35]). Also the branching ratios of f0(980) and a0(980)
are very poorly known. However, according to the Particle Data
Group (PDG) a0(980) dominantly decays to ηπ0 and the ππ
channel is dominant for the f0(980) meson [36]. Thus, the f0

resonance contribution to the near-threshold pp → ppK+K−
reaction is expected to be negligible. Moreover, regarding
the a0(980) resonance, following Ref. [34] the K+K− pairs
are produced in proton-proton collisions mainly with isospin
I = 0. Thus, a0(980) would have to decay to K+K− through
isospin violation, which is an additional suppressing factor.
According to Ref. [35] for energies up to Q = 115 MeV
(DISTO measurement [18]) the production of resonant K+K−
pairs should not produce any significant enhancement in the
K+K− invariant mass.

III. DETERMINATION OF THE K+ K− SCATTERING
LENGTH AND EFFECTIVE RANGE

In order to estimate the strength of the K+K− interaction
the experimental Goldhaber plots, determined at excess en-
ergies of Q = 10 and 28 MeV, together with the total cross
sections measured near the threshold were compared to the
results of the Monte Carlo simulations treating the K+K−
scattering length aK+K− and effective range bK+K− as unknown
complex parameters. To determine aK+K− and bK+K− we have
constructed the following χ2 statistics:

χ2 (aK+K− , bK+K− , α)

=
8∑

i=1

(
σ

expt
i − ασm

i

)2(
�σ

expt
i

)2

+ 2
2∑

j=1

10∑
k=1

[
βjN

s
jk − Ne

jk + Ne
jkln

(
Ne

jk

βjN
s
jk

)]
, (2)

where the first term was defined following the Neyman’s χ2

statistics, and accounts for the excitation function near the
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threshold for the pp → ppK+K− reaction. σ
expt
i denotes the

ith experimental total cross section measured with uncertainty
�σ

expt
i and σm

i stands for the calculated total cross section
normalized with a factor α which is treated as an additional
parameter of the fit. σm

i was calculated for each excess energy
Q as a phase space integral over five independent invariant
masses [37]:

σm =
∫

π2 |M|2
8s

√−B
dM2

ppdM2
K+K−dM2

pK−dM2
ppK−dM2

ppK+ .

Here s denotes the square of the total energy of the system
determining the value of the excess energy, and B is a function
of the invariant masses with the exact form to be found in
Nyborg’s work [37]. The amplitude for the process |M|2
contains the FSI enhancement factor defined in Eq. (1) and it
depends on the parameters aK+K− and bK+K− . The second term
of Eq. (2) corresponds to the Poisson likelihood chi-square
value [38] describing the fit to the Goldhaber plots determined
at excess energies Q = 10 MeV (j = 1) and Q = 28 MeV
(j = 2) using COSY-11 data [19]. Ne

jk denotes the number
of events in the kth bin of the j th experimental Goldhaber
plot, and Ns

jk stands for the content of the same bin in the
simulated distributions. βj is a normalization factor which
is fixed by values of the fit parameters α and aK+K− . It is
defined for the j th excess energy as the ratio of the total
number of events expected from the calculated total cross
section σm

j (aK+K−) and the total luminosity Lj [14], to the
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FIG. 2. χ 2 − χ 2
min distribution as a function of (a) Re(bK+K− ),

(b) Im(bK+K− ), (c) Im(aK+K− ), and (d) |Re(aK+K− )|. χ 2
min denotes

the absolute minimum with respect to parameters α, Re(bK+K− ),
Im(bK+K− ), |Re(aK+K− )|, and Im(aK+K− ).

total number of simulated pp → ppK+K− events N
gen
j :

βj = Ljασm
j

N
gen
j

.

The χ2 distributions (after subtraction of the minimum value)
for FK+K− taken in the effective range expansion are presented
as a function of the real and imaginary parts of aK+K−

and bK+K− in Fig. 2. The best fit to the experimental data
corresponds to

Re(bK+K− ) = −0.1 ± 0.4stat ± 0.3sys fm,

Im(bK+K− ) = 1.2
+0.1stat+0.2sys

−0.2stat−0.0sys
fm,

(3)|Re(aK+K−)| = 8.0+6.0stat
−4.0stat

fm,

Im(aK+K− ) = 0.0+20.0stat
−5.0stat

fm,

with a χ2 per degree of freedom of χ2/ndof = 1.30. The
statistical uncertainties in this case were determined at the
70% confidence level taking into account that we have
varied five parameters [α, Im(aK+K− ), Re(aK+K− ), Im(bK+K− ),
Re(bK+K− )]. Here uncertainties correspond to the range of
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FIG. 3. (Color online) Excitation function for the pp →
ppK+K− reaction. Triangle and circles represent the DISTO and
ANKE measurements, respectively [15,18,40]. The squares are
results of the COSY-11 [12,13,19] measurements. The dashed curve
represents the energy dependence obtained assuming that the phase
space is homogeneously and isotropically populated, and there is
no interaction between particles in the final state. Calculations taking
into account the pp and pK− FSIs are presented as the dashed-dotted
curve. The dashed and dashed-dotted curves are normalized to
the DISTO data point at Q = 114 MeV. Solid curve corresponds
to the result obtained taking into account pp, pK , and K+K−

interactions parametrized with the effective range approximation.
These calculations were obtained using the scattering length aK+K−

and effective range bK+K− as obtained in this work. The latest data
point measured by the ANKE group was published recently [40], and
thus it was not taken into account in the fit.
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values for which the χ2 of the fit is equal to χ2 = χ2
min +

6.06 [39]. Systematic errors due to the uncertainties in the
assumed pK− scattering length were instead estimated as a
maximal difference between the obtained result and the K+K−
scattering length determined using different apK− values3

quoted in Refs. [30,33]. One can see that the fit is in principle
sensitive to both the scattering length and effective range;
however, with the available low statistics data the sensitivity
to the scattering length is very weak.

Results of the analysis with inclusion of the interaction in
the K+K− system described in this article are shown as the
solid curve in Fig. 3. One can see that the experimental data
are described quite well over the whole energy range.

IV. CONCLUSIONS

We have performed a combined analysis of both total and
differential cross section distributions for the pp → ppK+K−
reaction in view of the K+K− final state interaction. In the
analysis we have used a factorization proposed by the ANKE
group with an additional term describing interaction in the
K+K− system, without distinguishing between the isospin
I = 0 and I = 1 states. We have also neglected a possible
charge exchange interaction leading to a cusp effect in the

3Due to the fact that in the case of scattering length the systematic
uncertainties are much smaller than the statistical ones we neglect
them in the final result.

K+K− invariant mass spectrum, since taking it into account
would require much more precise data [34]. The K+K−
enhancement factor was parametrized using the effective range
expansion. Fit to experimental data is very weakly sensitive
to aK+K− , but allows us to estimate the effective range of the
K+K−–FSI.

All studies of the pp → ppK+K− reaction near threshold
[12–16] reveal that in the ppK+K− system the interaction
between protons and the K− meson is dominant, and aK+K−

is relatively small. It seems that this reaction is driven by the
(1405) production pp → K+(1405) → ppK+K− rather
than by the scalar mesons [34], which may, however, contribute
to the observed cusp effect by rescattering of kaons. Thus, for
precise determination of the kaon-antikaon scattering length
we will need higher statistics, which can be available at, e.g.,
the ANKE experiment at COSY [41], or less complicated final
states such as K+K−γ or K0K0γ , where only kaons interact
strongly. These final states can be studied for example via
the e+e− → K+K−γ or e+e− → K0K0γ reactions with the
KLOE-2 detector operating at the DA�NE φ factory [42].
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