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Transport of spin anisotropy without spin currents
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We revisit the transport of spin-degrees of freedom across an electrically and thermally biased tunnel junction
between two ferromagnets with noncollinear magnetizations. Besides the well-known charge current and spin
current we show that a nonzero spin-quadrupole current flows between the ferromagnets. This tensor-valued
current describes the nonequilibrium transport of spin anisotropy relating to both local and nonlocal multiparticle
spin correlations of the circuit. This quadratic spin anisotropy, quantified in terms of the spin-quadrupole moment,
is fundamentally a two-electron quantity. In spin valves with an embedded quantum dot such currents have been
shown to result in a quadrupole accumulation that affects the measurable quantum dot spin and charge dynamics.
The spin-valve model studied here allows fundamental questions about spin-quadrupole storage and transport
to be worked out in detail, while ignoring the detection by a quantum dot. The physical understanding of this
particular device is of importance for more complex devices where spin-quadrupole transport can be detected.
We demonstrate that, as far as storage and transport are concerned, the spin anisotropy is only partly determined
by the spin polarization. In fact, for a thermally biased spin valve the charge current and spin current may vanish,
while a pure exchange spin-quadrupole current remains, which appears as a fundamental consequence of Pauli’s
principle. We extend the real-time diagrammatic approach to efficiently calculate the average of multiparticle
spin observables, in particular the spin-quadrupole current. Although the paper addresses only leading-order and
spin-conserving tunneling, we formulate the technique for arbitrary order in an arbitrary, spin-dependent tunnel
coupling in a way that lends itself to extension to quantum-dot spin-valve structures.
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I. INTRODUCTION

Spintronics combines the concepts of electronic transport
and spin physics. One of the earliest examples in solid-state
physics was the tunnel magnetoresistance effect, discovered
by Julliere in 1975:1 The charge current through two tunnel-
coupled ferromagnets decreases when their magnetizations are
changed from a parallel to an antiparallel configuration. The
simple explanation of Julliere,1 based on the spin-dependence
of the density of states for spin-↑ and -↓, has been refined
and extended by later works. Slonczewski calculated the spin
current through the FM-I-FM junction,2 which can be detected
by a second tunnel junction.3 The spin current is responsible
for an exchange coupling between magnetizations of the
two ferromagnets.2,4 An important early application of spin
currents is spin injection from ferromagnets into nonmagnetic
systems (for a review, see Ref. 5).

Since then, the frontiers of spintronics have been pushed
more and more towards the nanoscale, in particular by
attaching macroscopic leads to small quantum dots. To name
only a few interesting effects in which the transport relies
heavily on the spin physics, we mention the Kondo effect,6,7

Pauli blockade,8 and various types of spin-blockade effects.9

The spintronic features mentioned for the mesoscopic systems
also have a counterpart in microscopic quantum dot physics.
For instance, spin injection into quantum dots and spin currents
have been measured.10 Moreover, for noncollinearly mag-
netized ferromagnets, the above-mentioned exchange effect
translates into a dipolar exchange field,11 which can even lift
the spin-valve effect.

Besides these analogies, there are, however, profound
differences when microscopic systems such as quantum dots
are involved. Due to the spatial confinement of electrons,
Coulomb electron-electron interaction becomes all important
and correlations between electrons play a prominent role.
Spin correlations are built up due to the exchange spin-
spin interaction, which results from the concerted action of
charging effects and the Pauli principle. This couples the
spin-dipole moments of the individual electrons to high-
spin states (S � 1). Such high-spin quantum systems have
nontrivial higher spin moments beyond the average spin, such
as the spin-quadrupole moment (SQM), which is usually
the dominant part. In the physical language of atomic and
molecular magnetism, the SQM characterizes the quadratic
spin anisotropy. It quantifies the preference of pairs of spins
that make up the large moment S � 1 to be aligned along
a specific axis irrespective of their orientation along this
axis (up, down). Spin-quadrupole moment is also relevant to
transport: For example, a spin anisotropy barrier can com-
pletely determine the signatures of the conductance through
molecule magnets12 and magnetic adatoms.13 However, in
these devices the spin anisotropy appears rather as a property
“fixed” to the atoms/molecule and not something that could
be moved around. This latter idea has been introduced by
recent publications,14–16 which point out that SQM, like
spin-dipole moment, can be injected and accumulated in a
high-spin quantum dot attached to ferromagnets. Thus, spin
anisotropy has turned out to be a true transport quantity in
some ways similar to spin-dipole moment. As a consequence,
the transport picture of spin degrees of freedom needs to be
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extended beyond that offered by charge and spin currents.
This is at the heart of this paper, which studies the storage and
transport of SQM in spintronic devices, merging concepts
of spintronics and electron-spin correlations (for example
present in single-molecule magnets). The aim of this paper
is to answer the following three fundamental questions raised
by the above-cited studies.

(i) How is SQM stored in macroscopic system, i.e.,
ferromagnets?

(ii) How is SQM transported macroscopically between
such reservoirs?

(iii) How can one define an SQM current operator and what
is the physical interpretation of its average?

The answers are by no means obvious since SQM, unlike
charge and spin, is a two-electron quantity. We therefore
resort to the simplest possible setting: the Julliere model
of two tunnel-coupled ferromagnets without an embedded
quantum dot. The idea is to take one step “back” relative
to the references14–17 and to learn as much as possible from
this simple spin-valve model about the concepts essential to
multispin transport.

We emphasize from the start that we thereby completely
ignore the complications of the measurable effects of SQM
currents, which seem to occur only when SQM can accumulate
in a quantum dot. In the tunnel-junction spin valve the charge
current as in Refs. 14–16 does not measure the spin current,
although it displays spin-dependent effects. Similarly, this
study shows that the charge current and spin current do
not measure the SQM current. Thus, our results in no way
invalidate results of previous studies of the charge current and
spin current; in this simple setup they simply coexist with
the SQM currents. As long as one is only interested in the
charge current, one can ignore SQM currents in this setup. We
therefore do not suggest any concrete “meters” of SQM effects
in this paper. These were addressed elsewhere,14–16 where, for
instance, in Ref. 16 the Kondo effect was shown to be sensitive
to the quadrupolar analog of the spin torque.

Still, the physical insights gained by this study provide a
sound foundation for the discussion of their counterparts in
more complex, interacting nanoscale devices, which allow for
SQM detection. For this reason, we also address how SQM
transport through the spin valve may be controlled by various
nonlinear driving parameters such as voltage, temperature
gradients, and magnetic parameters. Finally, we note that
all our results are obtained within a modern version of the
real-time transport formalism, which we have extended to deal
efficiently with multiparticle spin-degrees of freedom.

The paper is structured as follows. In Sec. II we formulate
the spin-valve model and discuss the physical situations to
which it applies. We define the one- and two-particle densities
of states that enter into the results. In Sec. III we show that
simple Stoner ferromagnets provide reservoirs of uniaxial spin
anisotropy in addition to spin polarization. We introduce a
spin-multipole network picture extending the idea of a charge
and spin transport network. For multielectron quantities, such
as spin anisotropy, this picture is radically different since they
describe local and nonlocal correlations. In Sec. IV we see how
this naturally suggests the general definition of spin quadrupole
current operators. In Sec. V the nonequilibrium averages of
these operators are presented for our spin-valve model. We

discuss the decomposition of the spin-quadrupole currents into
a dissipative part (spin-quadrupole injection/emission) and a
coherent part (spin-quadrupole torque), similar to the spin
dipole current. The appendixes contain—besides details—a
systematic account of some important technical developments
of the real-time transport theory that we employ.

II. SPIN-VALVE MODEL

We start with an overview of the main concepts and
ideas, which are central to our comprehensive analysis,
aimed at answering the three guiding questions posed in the
introduction. The key to understanding the first question, i.e.,
how SQM is stored, is to investigate the microscopic origin
of SQM by considering a system of two coupled spin- 1

2 ’s.
This provides a natural link to atomic and molecular physics,
which is discussed in Sec. II A. Note that we deal here with the
spin-quadrupole moment of a system consisting of electrons
and not with the electric nuclear quadrupole moment, which
has been investigated in great detail.18

We moreover introduce the Hamiltonian for the spin-valve
structure (see Sec. II B) consisting of two tunnel-coupled
ferromagnets, allowing for noncollinear magnetization di-
rections. The ferromagnets are described using a Stoner
model. Importantly, the spin-dependent one-particle density of
states is not sufficient to quantify spin-multipole properties of
ferromagnets. In Sec. II C, we introduce a two-particle density
of states [see Eq. (16)], which is required for the calculation
of the average SQM and its current (Secs. III A2 a and V).
It can be calculated only if the explicit spin-dependence of
the dispersion relation is available. For all concrete results
presented in this paper, we employ a single wide, flat-band
approximation, whose validity is discussed in Sec. II D.
Throughout the paper we set h̄ = e = c = kB = 1.

A. Spin-quadrupole moment: From atomic physics
to spintronics

To address the storage of SQM, we consider two electrons
occupying two different orbitals with the combined system
being in a spin-triplet state. The single-particle spin vector
operators of these electrons, s1

i and s2
i , add up the total

spin operator Si = s1
i + s2

i (i = x,y,z). From the operator
components of the latter, the SQM tensor operator Q =∑

ij Qij eiej can be constructed,

Qij = 1
2 {Si,Sj } − 1

3 S2δij , (1)

where i,j = x,y,z. In the triplet states |T +〉 = |↑↑〉 or
|T −〉 = |↓↓〉, the average spin dipole moment is nonzero:
〈T m|S|T m〉 = mez, for m = ±. The average SQM has
nonzero components as well (see Appendix A 3):

〈T ± |Q|T ±〉 = 1

3
ezez − 1

6

∑
l �=z

elel . (2)

Since the largest element of this tensor, given by the com-
ponent 〈T ± |Qzz|T ±〉, is positive, the spins are likely to be
aligned with the zth axes in state |T ±〉, irrespective of their
orientation. Thus, besides spin polarization, SQM is “stored”
in this two-electron system. One may object and ask whether
the SQM is not completely determined by the spin-dipole
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moment since the tensor (2) could be entirely expressed in
terms of 〈T ± |S|T ±〉. However, in a quantum system, even
without two-particle interactions, we have 〈SiSj 〉 �= 〈Si〉〈Sj 〉
due to exchange processes. As a result, a system may be
purely “quadrupolarized”; i.e., 〈Q〉 �= 0, while 〈S〉 = 0. An
example of this is the triplet state |T 0〉 = 1√

2
(|↑↓〉 + |↓↑〉), for

which the expectation values of all spin components vanish,
〈T 0|S|T 0〉 = 0, but

〈T 0|Q|T 0〉 = −2

3
ezez + 1

3

∑
l �=z

elel , (3)

indicating that this is a “planar” spin state, in contrast to the
axial spin state (2). In the context of quantum information, this
state is one of the triplet Bell states |Bz〉 = |T 0〉. The other
two Bell states |Bx〉 = 1√

2
(|↑↑〉 − |↓↓〉), |By〉 = 1√

2
(|↑↑〉 +

|↓↓〉) further illustrate that states of zero spin polarization
(〈Bk|S|Bk〉 = 0 for each k = x,y,z) can be distinguished by
their spin anisotropy: The latter is quantified by the average of
the spin-quadrupole tensor (see Appendix A 3), which reads

〈Bk|Q|Bk〉 = −2

3
ekek + 1

3

∑
l �=k

elel . (4)

Since the largest element of this tensor, 〈Bk|Qkk|Bk〉, is
negative in state |Bk〉, the spins lie in the plane perpendicular
to the kth axes without any definite orientation. Such states
appear as eigenstates of biaxial spin Hamiltonians of type
H = −DS2

z + E(S2
x − S2

y ), which are also well known in
molecular magnetism. In general, the average of Q in any
triplet superposition state is a symmetric tensor, whose
principal values lie in the interval [−2/3,+1/3]. In fact,
a triplet quantum state is completely specified by giving
the average of both the spin-dipole and the SQM: Formally, one
can show that an arbitrary mixed-state density operator in the
triplet subspace can be decomposed into a bases of spin dipole
and quadrupole operators.14,15 In this sense, the SQM is thus
a degree of freedom independent of the spin-dipole moment
in any system of more than at least two spins. Quadrupole
moments are not limited to the spin degree of freedom only.
One may define pseudospin dipole and -quadrupole operators
whenever one deals with a system of at least three levels.
Such systems arise, for instance, when combining spin and
orbital degrees of freedom. Such pseudoquadrupole moments
then express other types of correlations, which are inevitably
needed to fully characterize the state of such systems. In this
paper we are, however, concerned only with the SQM, which
is most relevant for spintronics.

The above ideas can be extended to one of the basic
circuit element of spintronics: a ferromagnetic many-electron
system (see Sec. III A2 a). The average of the macroscopic spin
operator Si = ∑

a sa
i , where sa

i is the ith component of the spin
of electron a, quantifies the magnetization of the ferromagnet.
Similar to the spin, the macroscopic SQM can also be decom-
posed into a sum of microscopic contributions coming from
electron pairs. By inserting Si = ∑

a sa
i into Eq. (1), we obtain

Qij =
∑
a<b

qab
ij , (5)

qab
ij = sa

i sb
j − 2

3
(sa · sb)δij . (6)

The average SQM thus quantifies spin correlations between
all possible electron pairs. It can be shown that Q captures
the triplet correlations between the spins (see Appendix A 3).
Other types of spin correlations become important if spin
singlet states are additionally considered. This does not only
concern spin-singlet correlations, but also correlations of
Dzyaloshinskii-Moriya type, related to antisymmetric tensors
quadratic in the spin, as found in Ref. 14. Furthermore,
observables expressed by higher powers in the spin operators
describe spin-multipole correlations of higher rank (e.g., spin
octupoles, etc.). Although all of these are of interest, we focus
in this paper only on two-electron spin-triplet correlations,
which are exclusively determined by the SQM and were
found in the simplest possible situation15 to be the dominant
spin-multipole moment coupling to the spin-dipole dynamics.

For a ferromagnet, we see later that the spin dipolarization
induces a spin-quadrupolarization similar to the simple exam-
ple of two-electron triplet states |T ±〉, see the discussion of
Eq. (2). This will become evident when we identify a classical
or direct contribution, which is completely determined by
the spin polarization. In addition, there is a quantum or
exchange contribution to spin anisotropy, which is independent
of spin. The latter reveals the two-electron nature of SQM
and comes as a consequence of the Pauli principle. We will
see that this pure quantum anisotropy can be understood
as a tensor-valued “Pauli-exclusion hole” in the triplet spin
correlations, accounting for correlations that are forbidden by
the Pauli principle (see Sec. III B4). This in particular makes
the SQM an independent degree of freedom that is “stored”
in a ferromagnet in addition to the charge and the spin-dipole
moment. The studies14,15 indicate that it is a quantity that must
be reckoned with in nanoscale spintronic systems with high
spin polarizations.

We now turn to the second, central question announced in
the Introduction: How can one transport SQM (see Secs. IV B
and V)? If we tunnel-couple two ferromagnets and apply a
finite voltage bias, it is well known that besides a charge
current a spin current will flow2 since electrons carry both
charge and spin as an intrinsic degree of freedom. However,
can there also be a flow of spin anisotropy? At first sight,
one may answer “no” because single electrons do not have an
intrinsic SQM. However, as an electron spin tunnels from one
ferromagnet to the other, it retains its correlations with other
electrons. By this, triplet correlations initially stored locally in
one of the ferromagnets turn into nonlocal triplet correlations
between electrons in different ferromagnets. This leads, even
by tunneling of single electrons, to a nonzero spin-anisotropy
current. The aspect of nonlocality of SQM is another essential
aspect of its two-particle nature. Even on a macroscopic level,
spin-anisotropy transport can therefore only be understood in a
network picture accounting for both local and nonlocal sources
of SQM. Such a spin-multipole network picture—radically
different from that for charge and spin—is developed here.
It illustrates that storage and transport of SQM cannot be
understood independently from each other.

These general considerations bring us to the third main
question of our paper, namely how to define the SQM current
operator (see Sec. IV B). It can then be identified with the
rate of change in SQM stored in these local and nonlocal
sources. To develop a further understanding of SQM transport,
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we need to calculate the average currents for the simple
spin valve. We discuss how to decompose the result into
various physically meaningful contributions. Besides a direct
and an exchange part we find in analogy to the spin-current
dissipative and coherent contributions. The interplay of these
contributions causes the SQM current to generate a biaxial
spin anisotropy for noncollinear ferromagnets. This transport
of spin anisotropy opens up the interesting possibility to
generate anisotropic magnetic systems starting with isotropic
ones, in a way similar to creating spin-polarized systems by
spin transport. To our knowledge, this has not been discussed
so far, even though the effects of “static” spin anisotropy on
transport have been studied extensively in atomic/molecular
magnetism12 and spintronics. Based on this it is expected
that spin-quadrupole currents play a role in many nanoscale
spintronics devices with significant quantum spin correlations.

In our comprehensive study of the dependence of the
SQM current on physical parameters we find a striking
result, highlighting the above-mentioned different nature of
SQM transport as compared to spin transport. We predict
the possibility of a pure spin-quadrupole current, i.e., a
quadrupole current not accompanied by charge current and
spin current. This SQM current is entirely due to quantum
exchange processes and is driven by a density gradient of
“Pauli exclusion holes” across the junction. A clear notion of
the Pauli exclusion holes will be defined in Sec. III B4. We
find that the spin-anisotropy flow direction can be controlled
by the direction of the thermal bias, a nontrivial result as a
deeper analysis of SQM storage will reveal. Transport of spin
correlations is thus possible and controllable without affecting
net spin polarization or charge distribution. This remarkable
conclusion illustrates most clearly that the SQM is really an
independent transport quantity that should be incorporated
into spintronics theories. It also indicates possible, promising
applications: Injection of such an SQM current may, for
instance, modify or even generate spin anisotropy in an
embedded system without changing its spin polarization. This
may perhaps allow for novel ways of performing operation in
multispin systems.

B. Spin-valve Hamiltonian

We start from a quite general model Hamiltonian,

H = HL
0 + HR

0 + HT , (7)

with the noninteracting Hamiltonians of subsystem r = L,R,

Hr
0 =

∑
nkσ

εr
nkσ c

†
rnkσ crnkσ , (8)

and the tunneling Hamiltonian with T LR
σσ ′ = (T RL

σ ′σ )∗:

HT =
∑

nn′kk′σσ ′
T LR

σσ ′ c
†
Lnkσ cRn′k′σ ′ + H.c. (9)

Here the field operators crnkσ act on the single-particle level
k of band n in subsystem r = L,R with spin σ = ↑, ↓. We
assume that the single-electron spin s for every orbital (n,k)
in the same ferromagnet can be quantized along a common
physical direction Ĵr (with |Ĵr | = 1), i.e.,

(̂Jr · s)|σ 〉r = σ |σ 〉r , (10)

with |σ 〉r = e−iθ r m̂r ·s|σ 〉ez
, where we rotate by the angle θr

between Ĵr and ez about the axis perpendicular to both these
vectors, defined by m̂r = ez × Ĵ

r
/|ez × Ĵr |. For simplicity, we

assume the tunneling amplitudes to be band (n) and energy (k)
independent; moreover, the spin is conserved by the tunneling,
[HT ,S] = 0. Nevertheless, the tunneling amplitudes in Eq. (9),

T LR
σσ ′ = t L〈σ |σ ′〉R, (11)

are, in general, spin-dependent because the field operators
cLnkσ and cRnkσ annihilate electrons with spins quantized
along noncollinear directions ĴL ∦ ĴR . The spin conservation
in the tunneling is reflected by a spin-independence of the
“bare” tunneling amplitude t . More on this can be found
in Appendix E, where we include spin-symmetry breaking
tunneling processes in our extension of the real-time transport
theory.

We model the two subsystems as reservoirs, each kept in
a thermal equilibrium state ρr = e−(Hr

0 −μrNr )/T r

/Zr , where
Zr = Tre−(Hr

0 −μrNr )/T r

is the grand-canonical partition func-
tion and Nr is the particle number operator of electrode r . Both
electrodes are have fixed electrochemical potentials μrand
temperatures T r , whose gradients drive the stationary state
currents of interest. Note that even if the tunneling is present,
each electrode is held in equilibrium at each instant of time.

C. Two-particle density of states

In Sec. III we calculate the expectation values of the
charge and the spin multipoles involving sums over the
mode index k. We now indicate which quantities parametrize
the spin information from the ferromagnetic electrodes. As
usual, we take the continuum limit and replace sums over k

by a frequency integral. For one-particle quantities such as
charge and spin, one can express the results in terms of the
spin-dependent one-particle density of states (1DOS),

νr
σ (ω) =

∑
n,k

δ
(
εr
nkσ − ω

)
(12)

= ν̄r (ω)[1 + σnr (ω)], (13)

where ν̄r (ω) is the spin-averaged DOS,

ν̄r (ω) = νr
↑(ω) + νr

↓(ω)

2
. (14)

All the spin dependence of the 1DOS is contained in the spin
polarization (of the 1DOS),

nr (ω) = νr
↑(ω) − νr

↓(ω)

νr
↑(ω) + νr

↓(ω)
. (15)

Importantly, we find that the 1DOS (13), although formulated
for a general one-particle energy spectrum εr

nkσ , is not
sufficient to quantify quantum transport of spin completely, in
particular the spin-spin correlations described by the SQM. We
will see that the latter requires an additional, spin-dependent
two-particle exchange DOS (2DOS):

νr
σσ ′(ω,ω′) =

∑
n,k

δ
(
εr
nkσ − ω

)
δ
(
εr
nkσ ′ − ω′). (16)

The physical meaning of the 2DOS can be understood
most easily by considering two identical copies of the same
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ferromagnet. The 2DOS is nonzero if there is a pair of states
for an electron with spin σ at energy ω in the first copy and
an electron of spin σ ′ at energy ω′ in the second copy, but
within the same k mode in the same band n. We emphasize
that the latter restriction requires additional modeling: One
cannot make independent approximations for the 1DOS and
the 2DOS since they are not completely independent of each
other. For example, the spin-diagonal components of the 2DOS
must satisfy the relation νr

σσ (ω,ω′) = δ(ω − ω′)νr
σ (ω). Yet,

the remaining components of the 2DOS, νσ σ̄ (ω,ω′), where
σ̄ = −σ denotes the opposite of σ , can not be constructed
from 1DOS. If the energies of electrons with spin σ and σ̄ are
related by a function εr

nkσ̄ = gr
nσ σ̄ (εr

nkσ ) (for example, if the
dispersion relation can be solved for k), then

νr
σσ ′(ω,ω′) = νr

σ (ω)δ
[
gr

nσσ ′(ω) − ω′], (17)

with gr
nσσ (ω) = ω trivially. Clearly, more than the 1DOS is

needed here. As a consequence, in general, one has to start
from the spin-dependent dispersion relation and calculate all
required components of the 1DOS and 2DOS consistently.
Transport of two-particle transport properties therefore probes
more of the electronic structure of the ferromagnets than the
one-particle currents of charge and spin.

D. Stoner model and flat-band approximation

The central results of this paper, Eqs. (89)–(91), are valid
for the general case of the above 1DOS and 2DOS. However,
since we focus on physically understanding spin-anisotropy
transport, rather than making material-specific predictions, we
keep all complications by band structure/dispersion relation
features to a minimum.

Stoner model/external magnetic field. As explained above,
we must specify the spin dependence of the dispersion relation
for a consistent treatment of the 1DOS and 2DOS. We model
this by a rigid (i.e., energy-independent) splitting of absolute
value J r

n between the spin-↑ and spin-↓ states,

εr
nkσ = εr

nk − σJ r
n /2, (18)

which may be different in each band n. This model can
be used to discuss several situations, sketched in Figs. 1(a)
and 1(b). In case (a) macroscopic ferromagnets are treated
within the Stoner model. In this case J r

n can differ depending
on the strength of the electron-electron interaction in each
band. In this case the restriction J r

n � T r must be imposed
to avoid the breakdown of ferromagnetism [which is not
modeled by Eq. (8)]. In case (b) we consider mesoscopic
magnetic islands, each in equilibrium with a reservoir. One
may now let the J r

n model an external magnetic field, which
may be different locally in each electrode; i.e., we identify
J r

n = Br . The main difference between cases (a) and (b) is
the relative importance of quantum exchange contributions
in two-particle spin quantities due to the smaller magnetic
moment of the reservoirs (see below). When considering
nanoscopic islands charging and nonequilibrium effects on
the transport will, of course, be important, which are neglected
here. The main motivation for considering case (b) is that it
provides an interesting comparison with results for quantum
dot spin valves where the latter effects are fully taken into
account.14,15 For readability we discuss the results throughout

FIG. 1. (Color online) Spin-valve setup: a tunnel junction be-
tween (a) macroscopic ferromagnets with Stoner fields Jr = J r Ĵr .
(b) Mesoscopic islands with local magnetic fields Br = J r Ĵr , each
in equilibrium with energy and particle reservoirs. A combination of
(a) and (b) is another possibility (not shown).

the paper in the language of case (a), ferromagnets with Stoner
splittings, unless explicitly stated otherwise.

Flat-band approximation. Second, we restrict ourselves to
a single flat band (sketched in Fig. 2) in each ferromagnet in the
limit of large bandwidth 2Dr = 2D. The latter limit assumes
that all other energy scales (T r,J r ,μr ) are much smaller than
the distance W of the band edge closest to all electrochemical
potentials, given by

W := min
r,r ′,σ,p=±

(
pD − σ

J r

2
− μr ′

)
, (19)

which is positive since we assume all μr to lie inside the
bands. We refer to this in the following shortly as the flat-
band approximation, keeping in mind that we actually refer

FIG. 2. (Color online) Spin-dependent density of states of a single
flat band for a nonmagnetic system (left) and a Stoner ferromagnet
(right). The Stoner splitting redistributes a fraction of J/4D of the
No particles from spin-down to the spin-up states relative to the
nonmagnetic case, as indicated by the + and −. We omit the electrode
and band index for simplicity.
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to a set of assumptions. For all frequencies ω < W , the spin-
dependent DOS is given by

νr
↑ = νr

↓ = No

2D
, (20)

where No is the total number of orbitals in each subsystem and

νr
σσ ′(ω,ω′) = νr

σ (ω)δ

(
ω + σ − σ ′

2
J − ω′

)
, (21)

where we used Eq. (18) to rewrite Eq. (17). One may criticize
the simplicity of this approximation in that it does not account
for spin polarization near the Fermi energy, but only for a
Stoner shift, which is noticeable only at the band edges. We
see in Sec. V A, however, that this already captures plenty of
important aspects in SQM transport.

Clearly, the results for the average particle number, spin,
SQM, and their currents have to be independent of the choice
of both the coordinate system and the spin-quantization axis
(spin Hilbert space basis); they may only depend on the
physical vectors Ĵr and the scalar parameters μr , T r , and J r

n

and t (below). A key technical result of the paper is that we
reformulate real-time diagrammatic transport theory such that
the calculation explicitly shows this covariance at every stage,
which also makes it much more efficient (see Appendix E).

Moreover, the usual modification that implements a spin-
dependent DOS as νσ = ν̄(1 + σn) with constant ν̄ and n is
valid only as long one deals with single-particle observables
such as the spin (even when accounting for many-body effects).
For these calculations, all results can usually be expressed
using the 1DOS. However, when dealing with two-particle
observables relying on the 2DOS, it is crucial to specify
the dispersion relation as we discussed in Sec. II C. The
above spin-dependent but constant DOS physically arises
from mixing of different types orbitals in a tight-binding
picture, resulting in more than one band. These additional
bands can often be ignored, but this is no longer true for
the 2DOS which is sensitive to these details. To make this
clear, we merely mention two possible valid alternative models
accounting consistently for a spin-polarization at the Fermi
energy: (i) a single curved band [see Fig. 3(a)] and (ii) two

FIG. 3. (Color online) (a) Spin- and energy-dependent density
of states for a one-band Stoner ferromagnet. (b) Spin-dependent,
constant density of states for a two-band Stoner ferromagnet with
different bandwidths 2Dn and Stoner splittings Jn for band n = 1,2.

bands with different bandwidths and a large Stoner splitting
so that different bands overlap at the Fermi energy [see
Fig. 3(b)]. Since our single-band model in the wide-band
approximation is already sufficient to illustrate essential effects
of spin-quadrupole storage and transport we do not pursue
these band-structure details further here.

III. SPIN-MULTIPOLE STORAGE

In this section, we show that a system of ferromagnets,
each kept at equilibrium, does not only store charge and spin
polarization, but also stores spin anisotropy, quantified by the
expectation value of the SQM operator (1).

In Sec. III A we will first investigate the simplest case of
a single ferromagnet at zero temperature. We discuss how the
average SQM tensor relates to fluctuations in a macrospin
picture and relate this to the microscopic triplet spin-spin
correlations. We identify an exchange contribution, which
accounts for a “hole” in the quantum two-particle correlations
of the spins due to the Pauli principle, giving rise to negative
or Pauli-forbidden anisotropy.

In Sec. III B we extend these considerations to finite
temperatures and multiple electrodes (without coupling them,
i.e., HT = 0), both of which introduce new aspects. The case
of two electrodes needs to be carefully addressed in order
to define an SQM current later on: We must understand
from where and to where SQM flows. It turns out that the
ferromagnetic electrodes cannot simply be identified with
the sources of SQM and we formalize our considerations
in a convenient general spin-multipole network theory in
Sec. III B2.

A. Single electrode at T = 0

We first calculate and analyze the average particle number,
spin-dipole moment, and SQM of an isolated electrode in the
simple limit of zero temperature in the approximation of a
Stoner-shifted flat band (see Sec. II D). In this section we
omit the electrode index r and band index n and denote by
〈 〉 = 〈ψ0| |ψ0〉 the T = 0 ground-state average.

1. Average charge and spin

We first review the average charge and spin-dipole moment
for later comparison of these one-particle quantities with the
SQM, a two-particle quantity. For zero temperature, all states
with energy εkσ � μ below the electrochemical potential μ are
occupied and all levels with εkσ > μ are empty (cf. Fig. 2).
Thus, the ground-state average of particle number operator,

N =
∑
k,σ

c
†
kσ ckσ , (22)

corresponds to the sum of the green areas below the electro-
chemical potential in Fig. 2: With νσ = ν̄ we find

〈N〉 =
∑

σ

ν̄
(
μ + D + σ

2
J
)

(23)

= No

(
1 + μ

D

)
. (24)
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Here No = 2Dν̄ is the number of orbitals in the bandwidth
2D. The particle number is independent of the Stoner splitting
J in this simple approximation.

The average of the spin operator,

S =
∑
k,σ

sσσ ′c
†
kσ ckσ ′ , (25)

measures the spin dipolarization of the system, where (si)σσ ′ =
(σi)σσ ′/2 and σi , i = x,y,z are the Pauli matrices. Choosing
the coordinate system such that ez = Ĵ, we obtain for T = 0:
〈Sx〉 = 〈Sy〉 = 0 and

〈Sz〉 = 1

2

∑
σ

σ ν̄
[
μ −

(
−D − σ

2
J
)]

= 1

2
Ns. (26)

This equals the difference of the number of spin-up and -down
electrons, i.e., the number of half-filled orbitals with polarized
spins,

Ns = ν̄J = J

2D
No, (27)

and corresponds to the difference of the areas under two DOS
curves below μ in Fig. 2.

2. Average SQM and spin anisotropy

The average SQM 〈Q〉 = ∑
ij 〈Qij 〉eiej is a real and

symmetric tensor, which can therefore always be diagonalized.
With the above choice of the coordinate system with ez = Ĵ,
〈Qij 〉 is already diagonal by symmetry with respect to rotations
about Ĵ. The average of the nonzero tensor operator component

Qzz = 2
3S2

z − 1
3

(
S2

x + S2
y

)
(28)

now measures the spin anisotropy with respect to the z axis in
the ground state: 〈Qzz〉 > 0 indicates that the spin is aligned
(but not necessarily oriented) with the easy z axis, while
〈Qzz〉 < 0 indicates an easy-plane configuration where the
spin preferably lies in the perpendicular xy plane. If 〈Qzz〉
vanishes, neither alignment longitudinal or transverse to the z

direction is favored. This is the case, e.g., for a spin-isotropic
state for which 〈S2

x 〉 = 〈S2
y 〉 = 〈S2

z 〉; however, it can also
be realized by states that are anisotropic in the xy plane,
for which 〈S2

x 〉 �= 〈S2
y 〉, while 〈S2

z 〉 = 1
2 (〈S2

x 〉 + 〈S2
y 〉). These

two situations are thus distinguished by the average of one
other nonzero SQM tensor components 〈Qxx〉 or 〈Qyy〉 (since∑

i〈Qii〉 = 0 these are not independent).
We now investigate to what extent the average spin

polarization in a Stoner ferromagnet implies a uniaxial
anisotropy. Classically, one expects spin polarization to always
imply some nonzero spin anisotropy, but the converse need
not be true, as our example in Sec. I shows. We now
calculate the average SQM in two ways, first focusing
an a collective macrospin picture, common in atomic and
molecular magnetism, and then disentangling it into its
microscopic contributions from electron pairs relevant to
spintronics.

a. Average macrospin SQM. The ground state of the
ferromagnet is a maximally polarized pure spin state, |ψ0〉 =
|S,m = S〉 (as sketched in Fig. 4).

FIG. 4. (Color online) Schematics of the occupation of the
orbitals for an electrode at zero temperature. Doubly occupied orbitals
form a zero spin state (Pauli principle) while all spins in the singly
occupied orbitals are parallel, maximizing the total spin (cf. text)

The value of the spin S is determined from the half-filled
orbitals with Ns polarized spins:

S ≈ 〈Sz〉 = 1
2Ns. (29)

Since |ψ0〉 is a maximal spin eigenstate there are no quantum
fluctuations in the first, longitudinal part of Eq. (28): 〈S2

z 〉 =
〈Sz〉2. The second, transverse contribution, however, can be
written as S2

x + S2
y = S−S+ − i[Sx,Sy] = S−S+ + Sz using

S± = Sx ± iSy . It has a nonvanishing part due to the quantum
spin commutation relations: Since S+|ψ0〉 = 0, 〈S2

x + S2
y〉 =

〈Sz〉. The T = 0 average Eq. (28) is found to be

〈Qzz〉 = 2
3

〈
S2

z

〉 − 1
3

〈
S2

x + S2
y

〉
(30)

= 2
3S2 − 1

3S. (31)

The spin anisotropy, quantified by the average SQM, thus has
competing contributions: Spin polarization induces anisotropy
in the z direction (∝S2), but transverse spin fluctuations tend
to suppress it (∝S). The quantum fluctuations of the spin
in the ground state “resist” perfect alignment of the spin,
despite the maximal spin alignment. In fact, Eq. (31) also
holds with Ns = 1, S = 1/2, in which case the longitudinal
term is completely canceled by the transverse fluctuations: A
spin- 1

2 is “so quantum” that it always has zero spin anisotropy
due to spin fluctuations, in fact, in any state. Since the filled
shells do not contribute to the value of S, this suggests that
〈Qzz〉 at T = 0 accounts for only triplet correlations between
the open-shell electrons with parallel spin. However, a full
understanding of the transverse fluctuations needs a further
refinement of that picture.

b. Microscopic SQM storage. Above we linked the zero-
temperature average SQM to the spin anisotropy stored in
a ferromagnet and related it to its average collective spin
and its transverse quantum fluctuations. We investigate now
how these quantum fluctuations tend to smear out the spin,
reducing the uniaxial anisotropy. For this, we decompose the
spin anisotropy into its microscopic contributions from all
particles: We start with the longitudinal contribution to Qzz in
Eq. (28) and express the total spin operator Sz = ∑

a sa
z as the
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sum of the single-electron spins:

S2
z =

∑
a

(
sa
z

)2 + 2
∑
a<b

sa
z sb

z (32)

=
∑
kσ

1
4c

†
kσ ckσ +

∑
kk′σσ ′

σσ ′

4
c
†
kσ c

†
k′σ ′ck′σ ′ckσ . (33)

Thus, S2
z has both a one- and a two-electron part. When

averaging, the first term gives
∑

σ
1
4Nσ , where Nσ = (D +

σJ )/2 is the number of orbitals occupied with spin σ . For the
two-particle part, we can first treat the electrons as if they were
classically distinguishable, yielding a contribution whenever
the states (k,σ ) and (k′,σ ′) are occupied. This allows us to
factorize the resulting expression (

∑
σ

σ
2 Nσ )(

∑
σ ′

σ ′
2 Nσ ′) =

1
4N2

s into the product of averages, i.e., 〈Sz〉2. We therefore
call this a direct (two-particle) contribution. However, if
(k,σ ) = (k′,σ ′), we have to be careful: Due to Pauli’s principle,
it is forbidden to annihilate electrons in the same state twice;
hence we have to exclude this possibility by a correction term
−∑

σ
σσ
4 Nσ = −No. We call this the exchange (two-particle)

contribution, a denotation that will become more clear in
Sec. III B3. This yields altogether〈

S2
z

〉 = 1
4

(
No + N2

s − No

) = 〈Sz〉2, (34)

confirming the result trivially obtained in the macrospin picture
(since |ψ0〉 is an eigenstate of Sz). The classical intuition is
correct only because of a nontrivial cancellation of a one-
particle and “quantum” Pauli exclusion term on a microscopic
level. The importance of this subtlety becomes clear later (cf.
Sec. III B4).

We proceed with decomposing the transverse fluctuations
into a one-particle term and a two-particle term,

S2
x + S2

y =
∑
i=x,y

[∑
a

(
sa
i

)2 + 2
∑
a<b

sa
i sb

i

]
(35)

=
∑
kσ

1
2c

†
kσ ckσ +

∑
kk′σσ ′

1 − σσ ′

4
c
†
kσ̄ c

†
k′σ̄ ′ck′σ ′ckσ , (36)

and averaging over the ground state yields a nonvanishing
one-particle term 1

2

∑
σ Nσ , describing transverse single-spin

fluctuations. For the two-particle part, the direct term vanishes
as the individual spins are flipped in the modes k and k′ so
that the ground state is not reproduced any more. This agrees
with the fact that the averages 〈Sx〉 = 〈Sy〉 = 0. However, we
must again treat the case k = k′ separately: When this mode is
doubly occupied and we have σ ′ = σ̄ , the sequence of the four
field operators together exchanges the spins, reproducing the
ground state. This gives a correction −N↓, which is again due
to Pauli’s principle: A configuration of two indistinguishable
spins and the same configuration with both spin exchanged
cannot be told apart. This two-electron exchange fluctuations
together with the single-spin fluctuations make up for the total
transverse fluctuations of the macrospin,〈

S2
x + S2

y

〉 = 1
2No − N↓ = 〈Sz〉. (37)

If we we next combine the longitudinal and the transverse term
to obtain 〈Qzz〉, we see that the one-particle contributions drop
out:

〈Qzz〉 = 1
6N2

s − (
1
6No − 1

3N↓
)
. (38)

As the SQM of a spin- 1
2 vanishes (cf. the end of Sec. III A2 a),

the SQM exclusively measures true two-spin correlations and
does not contain any single-spin information: The second
bracket in Eq. (38) is a pure two-spin exchange correction
that accounts for a kind of “hole” in the triplet correlations.
The notion of this “Pauli exclusion hole” will be explained
precisely in Sec. III B4. It physically arises from exchange
contributions in both 〈S2

z 〉 and 〈S2
x + S2

y〉.19 Equation (38) can
be expressed as

〈Qzz〉 = 1
3 × 1

2Ns(Ns − 1). (39)

Thus, in the present case, the SQM counts the number of
pairs of parallel spins in different half-filled orbitals. In
accordance with the macrospin picture, the doubly occupied
orbitals can be simply ignored. However, at finite temperatures,
the Fermi edge becomes unsharp and modes below the the
electrochemical potential μ also contribute to SQM. In contrast
to the macrospin picture, the present microscopic description
already included the entire Fermi sea into the description
and can therefore be extended to finite temperatures (see
Sec. III B4). For T > 0 we also start directly from Q in second-
quantized from, which provides a clear way to demonstrate
why SQM only senses spin-triplet correlations.

Importantly, these direct and exchange contributions to
Eq. (38) scale differently with the number of polarized spins,
Ns = J

2D
No. For a macroscopic ferromagnet, the exchange

contribution to the SQM can be be neglected due to the relative
unimportance of excluding a single orbital among many. In
this case, SQM is entirely induced by spin dipolarization. For
Ns → ∞ the SQM per pair of polarized spins has only a
finite direct contribution of 1/3 by Eq. (39), or alternatively,
per orbital (J/2D)2/3. For mesoscopic ferromagnetic systems
with Ns ∼ 10−100 polarized spins the exchange corrections
start to become relevant, and for magnetic molecular quantum
dots in magnetic field Ns ∼ 1−10 and both terms can even be
of comparable size. In both these cases, the exclusion principle
for a few quantum levels becomes relatively important.

B. Two electrodes at T > 0

We now extend the above analysis to two electrodes, which
are, moreover, at finite temperatures T L and T R . This brings
in two new aspects. First, in Sec. III B1, we find that for
finite temperatures the average SQM cannot be expressed
anymore in the average spin as for T = 0. The exchange-SQM
contribution is responsible for this difference, quantifying
pure quantum contributions to the anisotropy, as we see in
Sec. III B3. This contribution involves a two-particle exchange
DOS, which is evaluated and discussed in Sec. III B4. This new
quantity is used to explain the notion of a “Pauli exclusion
hole” in the triplet spin correlations, which are encoded in the
SQM. This provides the key to understanding how quantum
two-particle exchange processes allow for an SQM current in
the absence of spin-dipole current, the central result of the
paper in Sec. V C.

The second new aspect, the subdivision of the system into
smaller units, touches upon the seemingly naive question of
how to define an SQM current. Clearly, an SQM current cannot
quantify the “amount” of spin anisotropy that flows through
a tunnel barrier as single tunneling electrons have zero SQM:
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This idea only makes sense for a one-particle quantity such
as charge or spin. In contrast, SQM is a two-particle quantity,
i.e., built up by pairs of electrons. As the electrons of a pair
can stay at different sides of the tunnel junction, SQM is not
only stored locally in each ferromagnet, but also nonlocally
between the ferromagnets. The concept of storage of SQM
thus needs to include nonlocal sources of SQM in addition
to the local ones discussed so far. In Sec. III B2 we develop a
spin-multipole network theory to aid the physical intuition and
which will prove to be very helpful for the discussion of SQM
transport later on and which has a wider range of application
than the model studied in this paper.

1. Average charge and spin

In the following we calculate the average charge and
spin-dipole moment in a more technical way and in some more
detail. We illustrate how to rewrite the spin-dependent part
of expectation values most elegantly in terms of expressions
independent of the choice of the coordinate system and the
spin quantization axis. This serves as a good example of
the manipulations we present in Appendix E, where we
reformulate the real-time diagrammatic transport theory in an
explicitly covariant way. First, the one-particle operators (22)
for the charge and (25) for the spin (now including the reservoir
index r) are jointly described by the four-component operator

Rr
μ =

∑
k,σ,σ ′

(
rr
μ

)
σσ ′c

†
rkσ crkσ ′ . (40)

Here (rr
μ)σσ ′ = r〈σ |rμ|σ ′〉r denotes the matrix elements of the

single-particle operator rμ for spin states quantized along Ĵr .
Using r0 = 1 and ri = si ensures that R0 = N and Ri = Si

for i = 1,2,3. We from hereon distinguish whether the 0
component is included or not by using Greek or Latin indices,
respectively. Taking the average of Eq. (40) involves

〈c†rkσ cr ′k′σ ′ 〉 = f r
+
(
εr
kσ

)
δrr ′δkk′δσσ ′, (41)

with the Fermi function,

f r
+(ω) = 1

e(ω−μr )/T r + 1
. (42)

Recasting the sum over all k modes as an integral over all
energies by inserting the DOS [see Eq. (13)] yields〈

Rr
μ

〉 =
∑
σ,σ ′

(
rr
μ

)
σσ ′

∫
dωδσσ ′νσf r

+, (43)

where we suppressed the ω dependence for brevity. Using
Eq. (10), i.e., (Jr · s)|σ 〉r = σ |σ 〉r , we may rewrite

νr
σ (ω)δσσ ′ = ν̄r (ω)r〈σ |ňr (ω) · ř|σ ′〉r , (44)

introducing ř0 = 1/
√

2 and ř = √
2s and the four-component

vector ňr = √
2(1,̂Jrnr ). The spin-dependent part of Eq. (43)

can be recast as a trace in spin space:

〈Rr〉 =
∫

dων̄rf r
+Tr[r(ňr · ř)]. (45)

The trace is clearly covariant in the general sense, i.e., form-
invariant under changes of either the coordinate system and/or
quantization axis (it is not related to concepts from relativity;

vectors with four elements are just convenient). We obtain

〈Nr〉 =
∫

dω2ν̄r (ω)f r
+(ω), (46)

〈Sr〉 =
∫

dω2ν̄r (ω)sr (ω)̂Jr . (47)

Analogous to the average occupation number of a single level
at energy ω in Eq. (46), f r

+(ω), we denote

sr (ω) = f r
+(ω) 1

2nr (ω) (48)

in Eq. (47) as the average spin-polarization function of elec-
trons at frequency ω, where nr (ω) is the spin polarization (15).
Note that we only need to use spin- 1

2 operator algebra to
calculate the average in Eq. (45) in coordinate-free form and
the same can be done for all the less transport calculations; see
Appendix E.

2. Network picture: Nonlocality

Equations (46) and (47) show that each physical electrode
corresponds to a single source of charge and spin. We now
formalize the concept of particle and spin-dipole storage in
terms of a network theory, which at first sight may seem
superfluous. In fact, it will prove to be helpful to compare
this with the storage and transport of SQM.

The following considerations are formulated more com-
pactly and hold more generally for a composite system of any
number of subsystems labeled by an index r . Such a system
may comprise just two electrodes, each at equilibrium, as
discussed in this paper (then r = L,R), but it may also include,
e.g., strongly interacting quantum dots out of equilibrium as
discussed in Refs. 14–16 and in forthcoming works. We first
ask how the total charge and spin-dipole moment is distributed
over the subsystems. The answer is fairly intuitive for these
one-particle quantities: The total charge (spin) is the sum of
the charge (spin) stored in each electrode, i.e.,

Rtot
μ =

∑
r

Rr
μ. (49)

We can simply associate each subsystem shown in Fig. 5(a)
with a node of charge (spin) as depicted in Fig. 5(b). Note that
decomposition (49) is even possible if Rtot

μ is not conserved.
(We postpone the discussion of the links in the network until

FIG. 5. (Color online) (a) Physical setup of two ferromagnets
and network picture for (b) the spin-dipole moment, a one-particle
quantity (like the charge), and for (c) the SQM, a two-particle quantity.
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we defined current operators in Sec. IV, where we complete
the network theory.)

This simple correspondence breaks down for SQM. When
we ask how this two-particle quantity is distributed over
composite system, the answer is radically different. We start
from the total SQM of the system, written as

Qtot = Stot � Stot, (50)

abbreviating the symmetric, traceless dyadic product of two
vector operators a and b as

(a � b)ij = 1
2 (aibj + biaj ) − 1

3δij a · b. (51)

We decompose Qtot by inserting Stot = ∑
r Sr ,

Qtot =
∑
〈rr ′〉

Qrr ′
, (52)

where 〈rr ′〉 indicates that we sum only over all pairs

Qrr ′ = Qr ′r = grr ′
Sr � Sr ′

, (53)

and the factor grr = 1 and grr ′ = 2 (r �= r ′) accounts for
the double occurrence of each pair r,r ′ with r �= r ′ in the
expansion (50). Equation (53) is symmetric in r and r ′ since
Sr � Sr ′ = Sr ′ � Sr and we can write

Qrr ′ = 1
2grr ′

(Sr � Sr ′ + Sr ′ � Sr ). (54)

Note that Qrr ′
is a Hermitian operator and therefore an

observable because spin operators of different subsystems
commute: (Sr � Sr ′

)† = Sr ′ � Sr = Sr � Sr ′
.

We now develop a network picture for the SQM by associ-
ating to each pair of subsystems 〈rr ′〉 a single effective source
or node. For the two-terminal spin valve in Fig. 5(a) that we
study, three SQM nodes appear in the corresponding network
picture of Fig. 5(c). The total SQM is stored in two local nodes
(QLL, QRR) and in one nonlocal node (QLR = QRL). The
(non)local nodes describe spin-triplet correlations between
pairs of electrons of the same (different) subsystem(s). This
nonlocality of SQM storage is very important for the physical
understanding and definition of a SQM current operator. It
is the injection of SQM currents from these nonlocal nodes
that drive the measurable local SQM dynamics in embedded
quantum dots, as found in Ref. 15. For the spin-valve
considered here it now becomes clear how single-electron
tunneling can transport SQM. First, local correlations, e.g.,
in the 〈LL〉 node are turned into nonlocal correlations in the
〈LR〉 node. The transfer of SQM is then completed by another
single-electron tunneling event that relocalizes the pair, but
now in the right electrode, contributing then to the 〈RR〉 node.
This picture will be refined once we defined SQM current
operators in Sec. IV B.

3. Direct and exchange contribution to average SQM

We next inquire to which extent the stored SQM is
independent of the average spin-dipole moment, extending the
discussion of Sec. III A2 b. The average of the SQM operator
for node 〈rr ′〉 given by Eq. (53), can be decomposed it into
a direct and an exchange part using Wick’s theorem for the
averages of products of field operators (see Appendix A 3 for
details):

〈Qrr ′ 〉 = 〈Qrr ′ 〉dir + 〈Qrr ′ 〉ex. (55)

Direct SQM. The first possible direct contraction combines
field operators from the same spin operator in Eq. (30). It can
therefore be factorized into the expectation values of the spin
operators given by Eq. (47),

〈Qrr ′ 〉dir =
∑

kk′σσ ′
sr
σσ � sr ′

σ ′σ ′f
r
+
(
εr
kσ

)
f r ′

+
(
εr ′
k′σ ′

)
(56)

= 〈Sr〉 � 〈Sr ′ 〉 = qrr ′
dir Ĵr � Ĵr ′

, (57)

with

qrr ′
dir = |〈Sr〉| |〈Sr ′ 〉|. (58)

This direct SQM incorporates the cumulative effect of the
energy-resolved spin polarization sr (ω). It quantifies the
uncorrelated contribution of the quantum spins to the spin
anisotropy: As intuitively expected, an electrode with a favored
spin direction (polarization) possesses a favored spin align-
ment (anisotropy). For a macroscopic system in equilibrium,
the average SQM is dominated by the direct part, which is
completely determined by the average spin-dipole moment.

Exchange SQM. For meso- and nanoscopic systems the
last statement ceases to be true due to the neglect of Pauli’s
principle in the spin-spin correlations. In the second exchange
contraction field operators of different spin operators are
contracted, giving a term

〈Qrr ′ 〉ex = δrr ′ ∑
kσσ ′

sr
σσ ′ � sr ′

σ ′σ f r
+
(
εr
kσ

)
f r

+
(
εr
kσ ′

)
, (59)

which accounts for true correlations in the sense of Spear-
man’s rank correlation coefficient.20 This becomes clear when
rewriting Eq. (59) using Eq. (57):

〈Qrr ′ 〉ex = 〈(Sr − 〈Sr〉) � (Sr ′ − 〈Sr ′ 〉)〉. (60)

Note that Eq. (59) involves only one sum over k. Thus, the
exchange term indeed scales linearly with the system size in
contrast to the direct term [see Eq. (57)] and can be neglected
for macroscopic systems (cf. last paragraph in Sec. III A2 b).
Here it is interesting to consider our Hamiltonian as a model
for a mesoscopic ferromagnet or a metallic island in a strong
external magnetic field [Fig. 1(b)]. In this case the exchange
contribution may even become the dominant part in transport
when the spin current vanishes: Then the spin polarization 〈Sr〉
and therefore also 〈Qrr ′ 〉dir do not change, while 〈Qrr ′ 〉ex does.
When including a tunnel-coupling between the ferromagnets
the transport through the junction correlates spins of both
systems and nonlocal exchange-SQM currents can indeed
arise. For this reason, we keep the exchange term here and
study it in some more detail.

Tensorial structure. Equation (60) can be expressed as

〈Q〉ex = −δrr ′
qrr

ex Ĵr � Ĵr , (61)

with the positive quantity

qrr
ex = 1

4

∑
k

[
f r

+
(
εr
k↑

) − f r
+
(
εr
k↓

)]2
> 0 (62)

(see Appendix A 2). Clearly, only if εr
k↑ − εr

k↓ � T r for all k,
the exchange contribution vanishes, i.e., for the Stoner model
if J r � T r . However, if J r > T r , each spin-polarized orbital
k gives a negative correction to the direct spin anisotropy.
We refer to this as the Pauli exclusion hole, located in orbital

115435-10



TRANSPORT OF SPIN ANISOTROPY WITHOUT SPIN . . . PHYSICAL REVIEW B 88, 115435 (2013)

k with a “distribution function” [f (εk↑) − f (εk↓)]2. We give
a microscopic interpretation of this below in Sec. III B4. A
gradient of these Pauli exclusion holes across the junction
drives an exchange-SQM current, which may even flow in the
absence of a spin current; see Sec. V C.

We moreover note that the tensor 〈Q〉ex has the same
principal axes as 〈Q〉dir (the reason for this is discussed
in the following section). Thus, the local SQM 〈Qrr〉 ∝
Ĵr � Ĵr , has a diagonal representation in any coordinate system
that includes the Stoner field direction, e.g., ez = Ĵr , with
nonzero elements 〈Qrr

xx〉 = 〈Qrr
yy〉 = −〈Qrr

zz〉/2. This shows
that the local SQM sources are uniaxially anisotropic, and
different alignments in the plane perpendicular to Ĵr are not
preferred. Since the direct contribution exceeds the exchange
contributions, we find, as expected, 〈Qrr

zz〉 > 0, i.e., an easy-
axis anisotropy favoring the collinear orientation of the spins
into the z direction over any orientation in the xy plane,
〈Qrr

xx〉 = 〈Qrr
yy〉 < 0.

The nonlocal SQM 〈Qrr ′ 〉, r �= r ′, has three nondegener-
ate principal values: It describes biaxial anisotropy. It has
unique principal axes in which 〈Qrr

zz〉 > 〈Qrr
yy〉 > 〈Qrr

xx〉; i.e.,
directions perpendicular to the dominant easy axis (z) are
distinguished; see Appendix B.

4. Microscopic picture of SQM storage

The physical meaning of the exchange SQM becomes
transparent when revisiting the microscopic picture of SQM
storage. When calculating the direct SQM by Eq. (56) one pre-
tends to have two distinct ferromagnets r and r ′ and “counts”
triplet correlations by adding all cross-correlations between
electrons occupying these distinguishable ferromagnets. This
procedure gives the full result for the nonlocal SQM [cf.
Eq. (59)]: For r �= r ′

〈Qrr ′ 〉 = 〈Qrr ′ 〉dir. (63)

This is correct as we we treat the two ferromagnets as distin-
guishable objects by assumption (the total density operator is
a direct product).

The direct, local SQM (r = r ′) also correctly counts the
local spin anisotropy as long as it concerns correlations of
electrons from different modes k �= k′, which are also distin-
guishable (green lines in Fig. 6). However, this procedure fails
for electrons occupying the same mode k′ = k: A single mode
(irrespective of whether being singly or doubly occupied)
does not contribute to the total SQM (see Appendix A 3).
Thus, the local exchange SQM has to cancel the contribution
that the direct SQM (56) incorrectly ascribes to single modes
(indicated by the red line in Fig. 6).

For establishing an “uncounting” procedure to exclude
the single-mode SQM, one may again simply think of two
identical, but distinguishable copies of the same mode k and
calculate the direct SQM generated from all these modes
(see Fig. 6). In this picture, exchange SQM represents a
“spin-anisotropy hole” ascribed to each mode and therefore
shows a formal analogy to a one-particle quantity. This
analogy will reemerge when we consider the transport of SQM
in Sec. III B5. To emphasize this multiparticle exchange aspect,
we refer to this as a Pauli exclusion hole in the spin-triplet
correlations.

FIG. 6. (Color online) Microscopic contributions to the local
SQM 〈Qrr〉. Two copies of the same ferromagnet are considered
and green lines indicate correlations between pairs of distinguishable
electrons in different orbitals (counted by the direct SQM). The red
line indicates the correlations between indistinguishable electrons in
the same orbital that the direct SQM counts too much: According to
Pauli’s principle two electrons cannot form a triplet state in the same
orbital. The exchange-SQM contribution takes care of this and thus
represents a Pauli hole in the correlations, corresponding to the red
line. When considering only the first copy at finite temperature, the
macrospin picture discussed in Sec. III A2 a is recovered. For finite
temperature, the occupation probabilities are thermally smeared at
the Fermi edge.

As a consequence, local exchange SQM must have the
same tensorial structure as the direct SQM, but with opposite
magnitude, which is explicitly conveyed by the negative
sign in Eq. (61). Since qrr

dir > 0 [by Eq. (58)], it follows
also that qrr

ex > 0 must hold. This is confirmed explicitly by
Eq. (62), which shows that the exchange SQM senses the
spin alignment, a non-negative quantity that accumulates when
summing over all energies or k modes, respectively. This
prohibits cancellations of signed contributions as they occur in
the spin-dipole moment. This means that spin-dipole moment
may cancel whence SQMs do not. Equation (62) also shows
explicitly that exchange corrections become negligible at high
temperatures, i.e., if T r � εr

k↑ − εr
k↓ for all k, as expected.

5. Energy-resolved exchange-SQM storage

So far, it was helpful to discuss the microscopic picture
of SQM storage in terms of contributions from orbitals k.
However, to make progress in calculations we replace the
k sums with energy integrals. An energy-resolved picture of
SQM storage will therefore be important for understanding
the key features of SQM transport compared to charge and
spin; see Sec. V C. For the rest of this chapter, we discuss
only the local exchange SQM, i.e., r ′ = r , and therefore drop
the electrode index for brevity. Replacing the sum over k in
Eq. (62) with integrals over frequencies ω,ω′ and inserting the
two-particle density of states (16), we can recast the exchange
SQM into the form of Eq. (59) after carrying out the spin sum
(see Appendix A). The SQM exchange magnitude then reads
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as

qex =
∫

dων̄(ω)qex(ω). (64)

The average exchange spin quadrupolarization for electrons
at frequency ω is,

qex(ω) = f+(ω)a(ω), (65)

with the spin-anisotropy function

a(ω) =
∑

σ

aσ (ω), (66)

and

ν̄(ω)aσ (ω) =
∫

dω′f+(ω′)
∑
σ ′

σσ ′

4
νσσ ′(ω,ω′), (67)

which is valid for general dispersion relations. Note that the
integrand in Eq. (64) is not a positive function, in contrast
to each term in Eq. (62). For the discussion of the SQM
currents, it is important to understand the meaning of the
function qex(ω): It quantifies the cumulative exchange triplet
correlation for electrons occupying the same orbital. It is the
formal analog to the average spin-polarization function s(ω).
To link the above result further to the microscopic picture
developed in Sec. III B4 and to simplify the interpretation
of the exchange-SQM current in Sec. V A, we decomposed
the spin-anisotropy function a(ω) into its spin-dependent
contributions aσ (ω): They give the direct single-mode SQM,
provided that an electron with spin σ is present at frequency
ω in the first copy while summing over the contributions from
the second copy in Fig. 6 (cf. Appendix A 4). This reveals the
formal analogy between a(ω) and average spin-polarization
function in Eq. (48), given by n(ω)/2. The latter quantifies the
average spin at frequency ω, provided we have full occupation
at this frequency. However, in stark contrast to the latter, a(ω)
is not solely a band structure property as it depends on a
Fermi function due to its two-particle origin. Note that the
exchange SQM is entirely described by qex(ω) and that the
spin polarization s(ω) does not enter, in contrast to the direct
SQM. These two functions have very different temperature
and energy dependence, again making explicit that the SQM
is independent of the spin-polarization due to the presence of
exchange terms.

The functions qex(ω) and a(ω) are of key importance
for the results of this paper and we therefore explain their
basic physical meaning using the simple Stoner model εkσ =
εk − σJ/2 and the flat-band approximation (cf. Sec. II D).
Then the spin-anisotropy function a(ω) has the spin-resolved
contributions

aσ (ω) = 1
4 [f+(ω) − f+(ω + σJ )]. (68)

In Fig. 7 we plot these two contributions and their sum together
with the average spin quadrupolarization qex.

We first discuss the shape of aσ (ω) for σ = ↑, ↓ for
low temperature 4T/J < 1 translating the arguments of the
microscopic picture of Fig. 6 into energy space in Fig. 8. As
mentioned, the function aσ (ω) characterizes the single-orbital
SQM for a spin σ occupying a mode at energy ω and displays
four regimes (in the following ∼ means “up to thermal
smearing T ”). These are marked (a)–(d) in Fig. 7(a) and

FIG. 7. (Color online) Average local exchange quadrupolariza-
tion qex(ω) (blue), spin anisotropy a(ω) (red), and its two contributions
a↑(ω) > 0 (broken line) and a↓(ω) < 0 (broken line) as function of
(ω − μ)/J for two temperatures T/J = 0.1 in (a) and T/J = 0.5
in (b). As T approaches J from below, the weight of a↑(ω) (a↓(ω))
considerably shrinks (rises) and qex(ω) is strongly suppressed. See
also Sec. III B6.

correspond to the regimes in Fig. 8. We discuss them now
in detail.

(a) ω � μ + J ⇒ a↑(ω) = a↓(ω) = 0: There are no occu-
pied states at energy ω, so no exchange correction is needed.

(b) μ � ω � μ + J ⇒ a↓(ω) < 0, a↑(ω) = 0: If a spin-↑
is in the first copy, the corresponding mode in the second
copy has vanishing probability to be occupied with electrons
of any spin since both εk↑ = ω � μ and εk↓ = ω + J � μ.

FIG. 8. (Color online) Microscopic picture of the spin-
quadrupolarization function aσ (ω), σ = ↑, ↓ characterizing the
energy-resolved spin-anisotropy content of a ferromagnet (cf. Fig. 6);
see text.
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Thus, similar to regime (a), no exchange correction for spin-↑
electrons is needed and we obtain a↑(ω) = 0. In contrast, if a
spin-↓ is in the first copy, the corresponding mode in the second
copy is predominantly occupied with spin-↑ because εk↓ =
ω � μ, but εk↑ = ω − J � μ. This contributes negatively to
direct SQM, resulting in a↓(ω) < 0.

(c) μ − J � ω � μ ⇒ a↑(ω) > 0, a↓(ω) = 0: If in this
case a spin-↑ is in the first copy, the corresponding mode in
the second copy is also mostly occupied with spin-↑ since
εk↑ = ω � μ, but εk↓ = ω + J � μ. This gives a positive
correction to the direct SQM. In contrast, a↓(ω) = 0 as
εk↓ = ω and εk↑ = ω − J refers to a mostly doubly occupied
mode in the second copy, which has a vanishing direct-SQM
contribution [cf. case (d)].

(d) ω � μ − J ⇒ a↑(ω) = a↓(ω) = 0: The corresponding
orbital deep inside the Fermi sea is doubly occupied: f (εk↑) =
f (εk↓) = 1. By Eq. (62) the direct SQM contributions due to
both spin-↑ and spin-↓ electrons cancel each other.

Altogether, the anisotropy function a(ω) = ∑
σ aσ (ω) is

exactly antisymmetric with respect to the electrochemical
potential (see Fig. 7 and Appendix A 3)

a(μ + ω) = −a(μ − ω). (69)

As mentioned at the outset, the average exchange quadrupo-
larization qex(ω) = f+(ω)[a↑(ω) + a↓(ω)] has both positive
and negative contributions; however, qex > 0 as the integrated
qex(ω) in Eq. (64) is always positive by Eq. (62). At T = 0
only positive correlations at ω < μ count, and we recover the
result (37). For T > 0, thermally excited spins ↓ negatively
correlate with spins ↑ in the same orbital, thus reducing qex

(see Fig. 7). Eventually, at T � J this cancellation reduces
qex exactly to zero without ever becoming negative. We now
see explicitly that the exchange SQM only becomes thermally
suppressed for T � J .

The average exchange quadrupolarization makes explicit
that Pauli-forbidden triplet correlations are stored by electrons
in an energy window ∼2J with opposite signs above and
below the Fermi energy. Thus, the integrated exchange
quadrupolarization is thermally suppressed for T � J when
the occupation probability is nearly constant across the energy
scale J .

6. Parameter dependence of average exchange SQM

In the flat-band approximation (cf. Sec. II D), the inte-
gral (64) can be carried out, yielding (see Appendix A 4)

qex = ν̄T

2

[
J

2T
coth

(
J

2T

)
− 1

]
, (70)

which is positive since x coth(x) > 1, in agreement with the
above discussion. In the limit J/T → 0, qex vanishes as it
should (see above) and in the opposite limit of T/J → 0,
qex scales linearly with Ns , the number of free spins in the
ferromagnet [cf. Eq. (27)],

qex|T =0 = 1
4 ν̄J = 1

4Ns, (71)

in accordance with the T = 0 result (31) (Ref. 21). The
average one-particle spin-dipole moment 〈Sz〉T =0 = 1

2Ns thus
basically serves as a reference scale for two-particle qex

(when multiplied by h̄ = 1 in our units). The low T < J
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FIG. 9. (Color online) Magnitude of the local exchange SQM,
qex, normalized to 〈Sz〉 = Ns/2 as a function of temperature T/J for
ν̄ = No/2D, D = 25J , μ = 0.

behavior is most interesting because in the regime J < T the
results do not apply to a Stoner ferromagnet, for which the
self-consistent magnetization J would break down [our model
Fig. 1(a) assumes fixed J ]. However, considering our model
as a description of mesoscopic islands in an external magnetic
field of strength B = J [Fig. 1(b)], this range may also be
relevant. With this in mind we show in Fig. 9 the pronounced
temperature dependence of the exchange SQM (normalized
to the spin polarization) over the entire range for fixed J .
This should be contrasted with the average spin for which all
T dependence completely cancels out due to the constancy
of the assumed DOS. As already anticipated in Sec. II C, a
two-particle quantity, the SQM, probes more of the electronic
structure of the ferromagnets than the one-particle charge and
spin-dipole moment do.

In Fig. 10, we plot the dependence of the exchange
SQM (70) on the Stoner splitting J , illustrating that while |〈S〉|
scales linearly with J , 〈Q〉ex initially increases quadratically
and then approaches a linear asymptote:

qex = ν̄T

4

{
(J/T )2/6 J/T � 1,

(J/T ) − 2 J/T � 1.
(72)

FIG. 10. (Color online) Magnitude of the spin 〈Sz〉 ≈ Ns/2 =
NoJ/2D (green) [Eq. (26)] and the exchange SQM qex [Eq. (70)]
(blue) as a function of Stoner splitting J/T for ν̄ = No/(2D), D =
25T , μ = 0.
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IV. SPIN-MULTIPOLE CURRENT OPERATORS

We now turn to the third central question posed in
the introduction: the proper definition of the SQM current
operator. In the previous section, we answered the important
question from where and to where SQM can be transported in
terms of nodes in a spin-multipole network; cf. Sec. III B2. We
now investigate the links between the nodes in this network,
which correspond to the SQM current operators as noted at the
end of Sec. III B. Their definition and physical interpretation
requires some care because (i) like the spin, the total SQM
is not conserved in a device comprising Stoner ferromagnets
and (ii) unlike the spin, this two-particle quantity does not flow
directly between local nodes, but is buffered in nonlocal nodes.

To tackle point (i), we first revisit the one-particle charge-
and spin-currents operators. The spin-dipole current does not
have the intuitive definition similar to the charge current (total
outgoing current = rate of loss of charge) since the spin is
not conserved internally in the ferromagnets. Starting from
continuity equations in integral form, the spin currents rather
have to be defined as the change in spin induced by the
tunneling. In close analogy, we derive SQM current operators
obeying a continuity equation and current conservation laws.

Due to point (ii), we also consider SQM current operators,
accounting for the flow of SQM between local and nonlocal
nodes. These turn out to be of central physical importance and
reflect that on a microscopic level SQM is carried by pairs
of correlated spin dipoles. The flow of spin anisotropy in an
electronic system is thus inherently a two-particle process.
We see that, as a result, the layout of the physical device and
the network for SQM transport are different: The two-terminal
spin valve requires a serial three-node SQM network. For more
complex devices, even the connectivity is different.22

A. Charge and spin-dipole current

The physical quantities of interest are the rates of change
in local quantities in the physical subsystems of the circuit
due to transport processes. For one-particle quantities such
as charge and spin the physical subsystems are in one-to-one
correspondence with the nodes of the charge/spin network; cf.
Fig. 5. The time derivative operator Ṙr

μ(t) giving the rate of
change in the combined charge-spin one-particle operator Rr

μ

[cf. Eq. (40)], d
dt

〈Rr
μ(t)〉 = 〈Ṙr

μ(t)〉, is given by

Ṙr
μ(t) := i

[
H,Rr

μ

]
, (73)

exploiting the von-Neumann equation ρ̇(t) = −i[H,ρ(t)]
and the cyclic invariance of the trace tr(Rr

μρ̇(t)) =
tr(i[H,Rr

μ]ρ(t)). We next decompose the total system Hamilto-
nian H into the part describing the decoupled subsystems, H0,
and the tunneling HT = ∑

〈rs〉 Hrs
T with Hrs

T only accounting
for tunneling processes between a pair of nodes r and s. This
yields a continuity equation in integral form for operators,

Ṙr
μ(t) = Ṙr

μ(t)|0 +
∑
s �=r

I rs
Rμ

, (74)

which decomposes the total rate of change in the charge
(spin) operator in node r into two physically meaningful

FIG. 11. (Color online) Network picture for the spin with current
operators represented by links. The network picture for charge is
similar, but without external arrows pointing to the nodes (indicated
by Ṡr |0). The latter must be introduced due to the internal violation
of spin conservation in each spin node.

contributions: The first contribution to Eq. (74) is given by

Rr
μ

∣∣
0 = i

[
H0,R

r
μ

]
(75)

and accounts for the time-evolution due to internal processes
in node r . We depict this contribution in the network picture
in Fig. 11 by an external arrow attached to node r . The
second part I r

Rμ
= ∑

s �=r I rs
Rμ

= i[HT ,Rr
μ] quantifies the rate

of change induced by tunneling; i.e., this defines the current
of observable Rr

μ into node r . In the form of Eq. (74), it has
already decomposed into its various contributions emanating
from all other subsystems s:

I r
Rμ

=
∑
s �=r

I rs
Rμ

. (76)

Whenever the operator I rs
Rμ

�= 0, we depict this in the network
picture by an arrow linking the two nodes r and s. Note that
still the average current 〈I rs

Rμ
〉 that flows between the nodes

may vanish, e.g., for a some special set of parameters. So far,
our considerations are quite general and also apply to systems
including quantum dots.

In our model [Eqs. (7)–(9)], the particle number Rr
0 = Nr

is conserved internally in each electrode individually and,
therefore,

Nr |0 = [H0,N
r ] = 0, (77)

which is the 0 component of Eq. (75) and Ṅ = ∑
r I r

N . These
make up for the total change in charge. The spin Rr

i = Sr
i (i �=

0), however, is not conserved internally in the ferromagnets:

Ṡr = Ṡr |0 + Ir
S, (78)

where Ir
S is the operator for spin current into node r . Using

Eq. (8), one finds

Ṡr |0 =
∑

n

J r
n Ĵr × Sr

n �= 0 (79)

for Sr
n = ∑

kσσ ′ sr
σσ ′c

†
rnkσ crnkσ ′ being the contribution from

band n to the spin of electrode r . This describes a precession
of Sr

n about the Stoner field of electrode r .
To obtain an explicit starting point for the real-time

calculation of the average charge current and spin current (see
Appendix E), we use Eqs. (75) and (9) and recover the familiar
form of the charge- and spin-current operators,

I rs
Rμ

=
∑

nn′kk′σσ ′
(−irμT )rsσσ ′c

†
rnkσ csn′k′σ ′ − H.c., (80)

abbreviating the matrix product in spin -space (rμT )rsσσ ′ =∑
τ (rμ)στ T

rs
τσ ′ . The operator (80) describes the net current
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injected from node s into node r , accounting for tunneling
processes from node s to node r [the first contribution in
Eq. (80)] and the reverse process (the second). Only the sum
of both terms is a Hermitian operator and therefore a physical
observable. Since both processes contribute with an opposite
sign to the current (80), we obtain the antisymmetry relation
I rs
Rμ

= −I sr
Rμ

. This has an important physical consequence:
summing up all charge (spin) currents in the system yields
the zero operator: ∑

r

∑
s �=r

I rs
Rμ

= 0. (81)

This charge (spin) current conservation law expresses that
charge (spin) is conserved by tunneling, that is [HT ,Rtot

μ ] =
0. Since the total spin is not conserved under the full time
evolution (due to the internal evolution Ṡtot|0 �= 0), there is
no analog of Eq. (81) for the total time derivative Ṡr . We
emphasize furthermore that this conservation law holds on an
operator level and not only for expectation values.

B. Spin-quadrupole current

We now try to proceed analogously for the SQM network
in Fig. 5 of Sec. III B. Generally, we are interested in finding
the rate of change in the spin anisotropy stored in local nodes.

To this end, we need to consider the change in SQM, Q̇rr ′
, in

both the local nodes (r = r ′) and the nonlocal nodes (r �= r ′).
Taking the time derivative of Eq. (54) and using Eq. (74) we
obtain

Q̇rr ′ = Q̇rr ′ |0 +
∑

〈ss ′〉�=〈rr ′〉
Irr ′,ss ′

Q , (82)

where 〈ss ′〉 denotes the sum over pairs of indices ss ′ (i.e.,
ignoring their order). This is the continuity equation in integral
form for the change in SQM in node 〈rr ′〉. The first term is the
change in SQM due to the internal time evolution,

Q̇rr ′ |0 = grr ′

2
[Ṡr |0 � Sr ′ + Sr � Ṡr ′ |0 + (r ↔ r ′)], (83)

which involves the nonzero internal time evolution Ṡr |0 given
by Eq. (79). Like the spin, the SQM is thus not conserved in any
of the nodes in our model. The responsible Stoner fields also
effectively exert a “torque” on the SQM, thereby rotating the
principal axes of this tensor. Similar to the spin, we depict this
in the network picture (Fig. 12) by one-sided arrows pointing
at this node.

FIG. 12. (Color online) Network picture for SQM including the
links representing SQM current operators. Similar to spin, SQM is
not conserved internally in the nodes, giving rise to external SQM
currents.

The SQM current Irr ′
Q = ∑

〈ss ′〉�=〈rr ′〉 I
rr ′,ss ′
Q is given by the

Hermitian tensor operator

I rr ′
Q = grr ′

2

[
Ir

S � Sr ′ + Sr � Ir ′
S + (r ↔ r ′)

]
. (84)

This is a central result of the paper. Since the spin and the
spin current do, in general, not commute as operators on
Fock space,23 the individual terms in this expression are not
Hermitian and therefore not observables. The operator (84)
reflects that, in general, the average SQM current is not
simply the product of spin and spin current since 〈Ir

SiS
r ′
j 〉 �=

〈Ir
Si〉〈Sr ′

j 〉 due to quantum mechanical exchange correlations,
interactions, etc. Therefore, SQM is not determined by spin-
dipole moment: It requires a separate description in spintronics
transport theory. For the bilinear tunnel coupling (9), the
contribution to the net current from node 〈ss ′〉 into in node
〈rr ′〉 is

Irr ′,ss ′
Q = grr ′

2

[[
Irs

S � Sr ′
δr ′s ′ + Sr δrs � Ir ′s ′

S

] + (r ↔ r ′)
]
.

(85)

Notably, this SQM current is zero unless one of the indices
s,s ′ matches the indices r,r ′. This puts an important restriction
on the network connectivity: The local SQM nodes are linked
only to nonlocal nodes and not to other local nodes. Changes
of local spin-anisotropy,

Q̇rr = Q̇rr |0 + I rr
Q, (86)

which are due to transport thus occur only through changes in
nonlocal spin correlations:

Irr
Q =

∑
s �=r

(
Irs

S � Sr + Sr � Irs
S

)
, (87)

where Irs
S is the spin-current operator from node s into r .

All the considerations so far in this section were are general.
For the simple spin valve we consider in this paper the general
theory above implies that SQM cannot be directly transferred
from the local node 〈LL〉 to the local node 〈RR〉; it is rather
first “buffered” in the intermediate, nonlocal node 〈LR〉. This
restriction on the SQM network connectivity is related to
the real-space picture of SQM transport sketched in Fig. 13.
This picture unveils why SQM transport is possible even
in the single-electron transport limit (leading order in HT ),

FIG. 13. (Color online) Illustration of the microscopic picture
of SQM transport. (a) Consider two electrons in electrode L that
contribute to the SQM of the local node 〈LL〉. (b) By transferring one
of these electrons to subsystem R, the local spin-spin correlation is
lost but new nonlocal correlations are established, increasing the SQM
of node 〈LR〉. Thus, by emitting spin-polarized electrons nonlocal
correlations are set up in the circuit. (c) When the second electron
follows the first, local SQM correlations are created, but now in
subsystem R (node 〈RR〉). Note that this picture is meant only to
illustrate the nonlocality aspect of SQM, but incorrectly portrays the
spins as distinguishable objects.
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as discussed for spin valves with embedded spin-isotropic
quantum dots.14–16 In this case we have on the right-hand
side of Eq. (86) Q̇rr |0 = 0, where r now labels the quantum
dot embedded in this spin valve. Then SQM currents are
responsible for the change in the local QD spin anisotropy
of subsystem r , i.e., Q̇rr = Irr

Q, where Irr
Q of Eq. (87) was

already obtained in Ref. 15 for a spin valve with an embedded
quantum dot, however, without using the new network picture.
The calculations in Ref. 15 demonstrate that in such more
complicated devices the SQM current Irr

Q, averaged over
the nonequilibrium state, depends nontrivially on the average
accumulated charge and spin of the dot. The SQM current thus
couples to the measurable charge current and spin current and
should, in general, be considered for the description of spin
and charge dynamics.

Analogous to the charge current and spin current the SQM
current (85) is antisymmetric with respect to the node indices,
i.e., when the two pairs of subsystem indices rr ′ and ss ′

are interchanged: Irr ′,ss ′
Q = −I ss ′,rr ′

Q . (Note that the order of
indices denoting a pair does not matter; i.e., rr ′ = r ′r). As
a consequence, the SQM currents sum to the zero tensor
operator: ∑

〈rr ′〉
Irr ′

Q =
∑
〈rr ′〉

∑
〈ss ′〉�=〈rr ′〉

Irr ′,ss ′
Q = 0. (88)

Similar to spin, this SQM current conservation law expresses
the conservation of total circuit SQM (50) in the tunnel-
ing. This is a direct consequence of the total spin-dipole
conservation by tunneling: [HT ,Qtot] = Stot � [HT ,Stot] +
[HT ,Stot] � Stot = 0.

Finally, we note that the restriction on the network con-
nectivity found above derives from the particular form of
our tunneling Hamiltonian (9), which is bilinear in the field
operators. The network thus describes the connectivity on the
operator level. The topology of this network is different when
HT is, e.g., an effective exchange coupling that is quartic in
the fields. Since such a coupling is usually derived from the
bilinear tunneling model (9) studied here, we do not dwell on
this further.24

V. AVERAGE SPIN-MULTIPOLE CURRENTS

In this section we complete the discussion of the third main
question posed in the Introduction: We present explicit results
for the average spin-quadrupole current calculated to first order
in the tunnel coupling � of the two ferromagnets and compare it
to the average charge current and spin current. The calculations
of these are compactly presented in Appendix D, applying a
covariant reformulation of the real-time diagrammatic tech-
nique (for a systematic, self-contained technical presentation,
see Appendix E ). Covariance is used here in the sense that all
expressions are form-invariant under a change of the spatial
coordinate system and the spin quantization axis. An advantage
of this technique is that it can be extended to spin valves with
embedded quantum dots.22

In Sec. V A we discuss the results for a general multiband
dispersion relation εr

nkσ , applying the insights obtained from
the spin-multipole network theory developed in Secs. III B2
and IV and the microscopic picture explained in Sec. III B4.
We decompose the SQM current into physically meaningful

contributions: direct vs exchange (Pauli exclusion hole as-
pects) and dissipative vs coherent (quantum fluctuation as-
pects). An intimate connection between storage (see Sec. III)
and transport of charge, spin, and SQM is then estab-
lished by comparing their energy-resolved contributions (see
Sec. III B5).

In Sec. V B we specialize to the flat-band approximation (cf.
Sec. II D) to obtain tangible analytical and numerical results.
Even in this simple limit—where the dissipative spin current
vanishes due to the energy-independent DOS—the average
SQM current tensor has a nontrivial parameter dependence.
This concerns both its magnitude (principal values) and its
alignment (principal vectors), which are substantially control-
lable by magnetic and electric parameters for noncollinear
Stoner vectors.

In Sec. V C we demonstrate that a pure SQM current, i.e.,
not accompanied by a spin current, is, in principle, possible.
This spin-anisotropy transfer is entirely carried by Pauli
exclusion holes, giving rise to a nonvanishing exchange-SQM
current. For a temperature bias between ferromagnets with
collinear Stoner vectors, we even show that a pure SQM current
even persists in the absence of a charge current. Electrodes with
nontrivial spin structure can thus “talk” to each other in ways
not described by charge current and spin current.

A. Charge, spin, and SQM currents

The average charge, spin, and spin-quadrupole currents
associated with the left electrode read〈

IL
N

〉 = IL
N,0 + IL

N,F (̂JL · ĴR), (89)〈
IL

S

〉 = EL
S ĴL + AL

S ĴR + T L
S (̂JL × ĴR), (90)〈

ILL
Q

〉 = 2〈SL〉� 〈
IL

S

〉 − ĴL � [
EL

ex̂JL + AL
ex̂JR + T L

exĴL × ĴR
]
.

(91)

These were calculated in Appendix D to the first order in the
energy-resolved tunneling rate,

�(ω) = 2πt2ν̄L(ω)ν̄R(ω), (92)

where ν̄r (ω) is given by Eq. (14). Here � denotes the
symmetric, traceless tensor product (51). The charge current
coefficients are (we do not write the ω dependence unless
confusion may arise)

IN,0 =
∫

dω2�, (93)

IL
N,F =

∫
dω2�nLnR, (94)

where the spin-polarization function nr (ω) is given by Eq. (15).
The well-known bias function,

(ω) = f R
+ (ω) − f L

+ (ω), (95)

is only nonzero in the bias window, μL � ω � μR , up to
thermal smearing. The occurrence of the factor (ω) signals
that a term arises from dissipative processes in which the
energy of initial and final state have to be the same. The

115435-16



TRANSPORT OF SPIN ANISOTROPY WITHOUT SPIN . . . PHYSICAL REVIEW B 88, 115435 (2013)

spin-current coefficients are

EL
S =

∫
dω�nL, (96)

AL
S =

∫
dω�nR, (97)

T L
S =

∫
dω�

(
βL nR

ν̄L
+ βR nL

ν̄R

)
, (98)

the function βr (ω) incorporates the effect of the spin-
polarization of the DOS, nr (ω), through the principal value
integral,

βr (ω) = Re
∫

dω′

π

ν̄r (ω′)nr (ω′)f r
+(ω′)

ω − ω′ + i0
, (99)

integrating over all virtual-state energies ω′. Here and below
such functions, not limited by energy conservation as they
involve virtual intermediate states, appear in contributions
from coherent processes. Finally, the exchange-SQM emis-
sion, absorption, and torque coefficients,

EL
ex = 2

∫
dω�aL, (100)

AL
ex = 2

∫
dω�nRãL, (101)

T L
ex = 2

∫
dω�(βR − αRf L

+ )
aL

ν̄R
, (102)

depend on the local spin-anisotropy function aL [cf. (66)] and
an additional even spin-anisotropy function,

ãL(ω) =
∫

dω′f r
+(ω′)

∑
σ,σ ′

σ ′

4

νr
σσ ′(ω,ω′)
ν̄r (ω)

(103)

=
∑

σ

σar
σ (ω), (104)

where νr
σσ ′(ω,ω′) is the 2DOS (16). Finally, the torque

coefficient T L
Q involves an additional function similar to

Eq. (99) but without the distribution function f R
+ (ω) under

the principal value integral:

αR(ω) = Re
∫

dω′

π

nR(ω′)ν̄R(ω′)
ω − ω′ + i0

. (105)

The reader should note that the coefficients of Eqs. (100)–(102)
are defined such that a minus sign appears in Eq. (91), which
we introduced in agreement with the sign convention for
exchange-SQM in Eq. (61), that is, 〈QLL〉 = −qL

ex̂JL � ĴL.
Moreover, one obtains the expressions for 〈IRR

Q 〉
by formally substituting L ↔ R in Eq. (91), and
〈ILR

Q 〉 = −〈ILL
Q 〉 − 〈IRR

Q 〉 follows from the SQM current
conservation law (88) (see also below). One checks that
the results are invariant under scalar gauge transformations
(global energy shifts). Finally, we note that since positive
currents are defined as entering a node, positive (negative)
absorption coefficients correspond to injection (ejection) of
particles and vice versa for emission coefficients.

The SQM current Eq. (91) is the central result of this
paper. It depends explicitly (but not exclusively) on the spin
current (90). Therefore, its physical interpretation is aided by
first giving a pertinent review of the different contributions to
the charge current (89) and spin current (90), respectively.

1. Charge current

Equation (89) is a well-known and experimentally tested
result for the charge current, which accounts for single electron
tunneling processes between the left and right electrode. It
has only dissipative contributions [i.e., involving (ω)]: The
first part IN,0 in Eq. (89) only depends in the average DOS
ν̄r , whereas the second, spin-dependent correction depends
on the DOS spin polarizations nr through IL

N,F and on the
angle between the Stoner vectors through ĴL · ĴR = cos θ . The
reduction going from θ = 0 → π is the celebrated spin-valve
or tunnel magnetoresistance (TMR) effect.25

2. Spin current

The spin current (90) was obtained by Braun et al. 11 and
we review here its two types of contributions.

a. Dissipative spin emission ∼ĴL and absorption ∼ĴR . The
dissipative spin-dipole current [first two terms in Eq. (90),
containing (ω)] is analogous to the particle current: An
electron emitted from the left node transports a spin-dipole
moment ĴL/2 and the electrons absorbed from the right node
transport ĴR/2. The expression for particle current Eq. (93)
simply has to be supplemented by a factor nr (ω)Ĵr/2 to obtain
the terms for spin emission (96) and absorption (97).

b. Coherent spin torque ∼ĴL × ĴR . The coherent spin cur-
rent [last term in Eq. (90)] has no such analogy to the particle
current and corresponds to a spin torque. This corresponds
to spin flips induced by virtual fluctuations between the left
and the right electrode restricted by energy conservation only
in the final state, but not in the intermediate state. This is
reflected by its dependence on the principal value integral
βr (ω) [cf. discussion of Eq. (99)]: An electron with spin σ

occupying a level at energy ω in the left electrode can fluctuate
to all empty levels with energy ω′ in the right electrode with
an amplitude ∝1/(ω − ω′). While in the right electrode, the
electron spin ∝ĴL is not collinear to the Stoner field ∝ĴR in
the right electrode and precesses about it, explaining the factor
ĴL × ĴR in the coherent spin current (98). Note that a net spin
torque on the magnetization of the left electrode only occurs
if the 1DOS of both electrodes are spin polarized.

Finally, we note that at zero bias, the dissipative spin current
vanishes, EL

S = AL
S = 0, but the coherent spin current (torque

contribution) remains, T L
S �= 0: Noncollinear ferromagnets

keep interacting by virtual fluctuations, thereby exerting a
torque on each other.

3. SQM current

a. SQM current conservation. The most immediate property
of the SQM current expression (91) is its formal lack of
symmetry with respect to interchanging the electrodes L ↔ R.
This differs notably from charge current and spin current, for
which the original expression is reproduced with a minus
sign when interchanging L ↔ R. This distinction is related
to the striking characteristics of the SQM network picture
compared to the charge and spin network (see Sec. V A3):
The currents of the latter, 〈IL

Rμ
〉, describe the net flow into

the L node coming from from the R node (see Fig. 11).
Interchanging L and R yields then the opposite current from
R to the L node, reflecting the current conservation law (81):
〈IL

Rμ
〉 + 〈IR

Rμ
〉 = 0. In contrast, 〈ILL

Q 〉 describes the net flow of
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SQM from the local 〈LL〉 node to the nonlocal 〈LR〉 node (see
Fig. 12). If we interchange L ↔ R in Eq. (91), we obtain the
current 〈IRR

Q 〉 emanating from the 〈RR〉 node. Importantly,
〈ILL

Q 〉 + 〈IRR
Q 〉 = −〈ILR

Q 〉 �= 0 in accordance with the SQM
current conservation law (88). This again emphasizes the
relevance of the nonlocal node 〈LR〉, which “buffers” the SQM
currents from both local nodes.

b. Direct and exchange-SQM current. The SQM
current allows for two physically meaningful, different
decompositions. The first decomposition is given by Eq. (91),
which breaks up the SQM current into different two-particle
contributions, the first, direct, term Eq. (91) and the second,
exchange, term. This has no analog in the one-particle charge
current and spin current.

The direct current 〈ILL
Q 〉dir quantifies the tunneling-induced

change in the direct part of the average SQM (57), 〈QLL〉dir :=
〈SL〉 � 〈SL〉, which ignores the Pauli exclusion hole (cf.
Sec. III). Indeed, using Eq. (87), we reproduce the first term
in Eq. (91): 〈

ILL
Q

〉
dir := 〈Q̇LL − Q̇LL|0〉dir (106)

= 2〈SL〉 � 〈
IL

S

〉
. (107)

Similar to the average SQM, the direct average SQM current
is completely determined by a product of average spin-dipole
properties, here the spin 〈SL〉 and the spin current 〈IL

S 〉, given
by Eqs. (47) and (90), respectively. This equation substantiates
the classical picture of transport SQM or spin-anisotropy
sketched in Fig. 13: When single electrons move, the triplet
correlations between pairs of electron spins first delocalize and
then relocalize, resulting in a change of the local SQM, the part
described by 〈QLL〉dir.

The exchange-SQM current 〈ILL
Q 〉ex, the second term in

Eq. (91), accounts for the tunnel-induced change in 〈QLL〉ex,
i.e., a negative quantum anisotropy due to the Pauli-exclusion
holes in the triplet spin correlations. It cannot be expressed
in terms of the average spin current. The above classical
picture of SQM transport thus needs correction: By reducing
SQM transport to “spin times spin current” one overestimates
the anisotropy flow, by counting Pauli-forbidden, local triplet
correlations (those coming from the same orbital) and account-
ing for their transformation into nonlocal correlations when
one of the two electrons tunnels out. The SQM exchange
current compensates for this: It is an effective backflow of
nonlocal anisotropy into to the local nodes of the SQM network
(Fig. 12). We now reach a central conclusion of the paper:
Whenever the average spin current is made to vanish 〈IL

S 〉 = 0,
a nonzero SQM exchange current is generally present since
〈SL � IL

S 〉 �= 〈SL〉 � 〈IL
S 〉 due to the Pauli exclusion holes. In

Sec. V C we explicitly verify that the cancellations of the
single-particle contributions that cause the spin current to
cancel have no counterpart for the two-particle exchange-SQM
current. This indicates the possibility of pure SQM transport,
that is, without spin current.

The most prominent distinction between the direct and
exchange-SQM currents is that they differ by a relative factor
|〈SL〉|. To see this explicitly, we express the SQM current (91)
as a symmetric, traceless tensor product of the unit vector ĴL

with a linear combination of ĴL, ĴR and ĴL × ĴR by inserting

the explicit spin current (90):〈
ILL

Q
〉 = ĴL � [

EL
QĴL + AL

QĴR
] + T L

QĴL � (̂JL × ĴR). (108)

Each of the coefficients has a direct and exchange contribution,
respectively:

EL
Q = 2EL

S (〈SL〉 · ĴL) − EL
ex, (109)

AL
Q = 2AL

S (〈SL〉 · ĴL) − AL
ex, (110)

T L
Q = 2T L

S (〈SL〉 · ĴL) − T L
ex. (111)

Since all coefficients, Eqs. (96)–(98) and Eqs. (100)–(102),
appearing on the right-hand sides of Eqs. (109)–(111) are,
in general, of the same order, the ratio of the direct-SQM
current to the exchange SQM scales linearly with the average
spin |〈SL〉| ∼ Ns = (J/D)No as expected from our analysis
below Eq. (60) in Sec. III B2. Consequently, for a macroscopic
ferromagnet, the SQM current is dominated by its direct
part [Eq. (107)] and is thus induced by the spin current.
Furthermore, since the SQM current accounts for the change
in the correlations between the spin of a transported electron
with all other spins in the system, only the SQM current
per electron is expected to be a meaningful quantity in the
thermodynamic limit.26 As soon as one of the subsystems is
of meso- or nanoscopic dimensions the relative factor |〈SL〉|
is reduced (cf. Sec. III A2 b) and the exchange-SQM current
should be reckoned with. For a nanoscopic system, the full
SQM current was already studied in Ref. 15, while also
including the relevant charging and nonequilibrium effects,
which were neglected here. With this in mind, we in the
following always first discuss the direct part, dominating the
SQM current for macroscopic ferromagnets [Fig. 1(a)], and
then separately consider the exchange correction, relevant for
mesoscopic ferromagnets [Fig. 1(b)].

c. Dissipative and coherent SQM current. The second,
alternative decomposition of the SQM current is that into a
dissipative and coherent part, the first and second term of
Eq. (108), respectively, similar to the spin-dipole current. For
noncollinear ĴL and ĴR these terms are linearly independent
tensors and their coefficients have very different parameter de-
pendencies. The tensorial structure of the total SQM current is
determined by their nontrivial interplay. Its discussion requires
explicit results and is therefore postponed to Sec. V B3, where
we use the flat-band approximation.

The decomposition of the direct-SQM current follows
by Eq. (107) directly from the decomposition of the spin
current (90) into dissipative emission, dissipative absorption,
and coherent torque parts. Since the exchange-SQM current
is a correction to the direct current accounting for Pauli-
forbidden triplet correlations [cf. explanation below Eq. (107)],
it must have the same decomposition into emission, absorption
and torque part with coefficients given by Eqs. (109)–(111),
respectively.

Dissipative SQM emission ∼ ĴL � ĴL and absorption ∼
ĴL � ĴR . The SQM emission can be microscopically under-
stood as the delocalization of triplet spin correlations from
node 〈LL〉 to node 〈LR〉 (see Fig. 5). The SQM absorption
describes the converse relocalization of such correlations from
node 〈LR〉 to node 〈LL〉. This is reflected by the tensorial
structure of these contributions to the average SQM currents:
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They coincide with the average SQM stored in the node,
from where they are emitted (̂JL � ĴL ∼ 〈QLL〉) or absorbed
(̂JL � ĴR ∼ 〈QLR〉). Importantly, there is no SQM absorption
in 〈ILL

Q 〉 that originates from the 〈RR〉-node (̂JR � ĴR ∼
〈QRR〉) as expected from the connectivity in the SQM network
picture of Sec. IV B.

The relation between the storage and transport is also
reflected by the integrands of the exchange-SQM current
in Eqs. (100) and (101): These resemble the average local
spin quadrupolarization qL

ex(ω) = f L
+ (ω)aL(ω) in the expres-

sion (64) for 〈QLL〉ex. These can formally be obtained by
a replacement f L

+ (ω) → (ω), i.e., similar to the relation
between the average spin-dipole moment [see Eq. (47)] and the
dissipative spin current in Sec. V A2. However, the symmetry
of the function aL(ω) with respect to ω is very different
from that of nL(ω) appearing the spin-current emission
[Eqs. (96) and (97)]. This fact underlies a key result of the
paper in Sec. V C.

The microscopic picture of exchange-SQM storage can be
extended to capture a precise physical understanding of the
exchange-SQM current as follows: As explained in Sec. III B4,
the Pauli exclusion holes can be “counted” as single-mode
cross correlations between two identical copies of the same
ferromagnet (cf. Fig. 8). For the exchange-SQM current, we
have to imagine that the electron in the first copy undergoes a
tunneling process [representing to the spin current in Eq. (87)],
and the second copy is left unchanged [representing the spin
in Eq. (87)].27 For the dissipative exchange-SQM emission,
this becomes directly clear from the expression (100): The
Fermi function in (ω) refers to the electron tunneling at
energy ω in the first copy and the local anisotropy function
aL contains the single-mode correlation of that electron with
the average (unchanged) second copy. This term therefore
describes the flow of Pauli exclusion holes arising from the spin
emission ∼ĴL. The exchange coefficient (101) corresponding
to the spin absorption ∼ĴR , the the first factor nR relates
to the absorbed spin from the right electrode and the second
factor ãL represents the correlations of that absorbed spin
with the local spins in the left electrode. Notably, the spin-
dependent contributions aL

σ to aL = ∑
σ aL

σ are added in
ãL = ∑

σ σaL
σ > 0 such that they always count as positive.

Here the sign of how to count the Pauli-forbidden anisotropy
is related to the sign of nR: If nR > 0, mostly spin-↑ is
absorbed and the missing anisotropy generated by this is
positive, while for nR < 0 mostly spin-↓ is absorbed and the
missing anisotropy is negative as explained in Sec. III B4.

Coherent SQM torque ∼ ĴL � (ĴL × ĴR). The coherent
contribution to the SQM current basically originates from the
spin torque. This follows by considering the direct contribution
that derives from the spin current; cf. Eq. (107). It accounts
for the change of the correlation between of the spin of
an electron fixed in the left electrode with the spin of an
electron that virtually fluctuates into the right electrode (spin-
flip scattering). Since during this fluctuation the latter spin
precesses about the Stoner field, a net conversion of local into
nonlocal correlations results, i.e., there is an associated SQM
current. The exchange-SQM torque coefficient T L

ex excludes
the single-mode correlations: In the microscopic picture only
the electron in the first copy undergoes a virtual fluctuation
[indicated by βR and αR in Eq. (102)], while the second copy

is left unchanged [indicated by aL in Eq. (102)].28 This is the
effect of the spin torque on the local Pauli exclusion holes.

B. Parameter dependence

Having discussed the general structure and physical mean-
ing of the main results (89)–(91), we now simplify them as far
as possible by making the flat-band approximation. Although
this is a crude approximation, it reveals a general key feature
of the exchange SQM, namely its sensitivity to the spin align-
ment, a non-negative quantity that accumulates when summing
over energies/k modes. This prohibits cancellations in the
exchange-SQM current as they occur due to signed contri-
butions in the charge and spin-dipole current. (cf. Sec. III B4).
As noted in Sec. II D the 2DOS appearing in the exchange
expressions requires modeling of the electrodes that goes
beyond the 1DOS. However, in the flat-band approximation we
only need Eq. (A44). We furthermore apply the bias voltage
symmetrically to the ferromagnets, μL = +V/2 and μR =
−V/2 while considering arbitrary noncollinear Stoner vectors
ĴL and ĴR . We assume all further parameters to be symmetric:
J r = J , T r = T , Dr = D, and νr

σ = νσ for σ = ↑, ↓ (except
for a temperature gradient discussed in Sec. V C). In this ap-
proximation the densities of states are fixed by the bandwidths,
νσ = 1/2D, and the tunneling rate is set by the spin-conserving
tunnel amplitude t : � = 2π (t/2D)2; cf. Eq. (11). Together
with the leading order approximation in � this limits the
applicability of the results to the regime � � T ,J � W [cf.
Eq. (19)]. The central equations (89)–(91) now simplify to〈

IL
N

〉 = IL
N,0, (112)〈

IL
S

〉 = T L
S (̂JL × ĴR), (113)〈

ILL
Q

〉 = 2(〈SL〉 · ĴL )̂JL � 〈
IL

S

〉 − ĴL � [
EL

QĴL + T L
Q (̂JL × ĴR)

]
(114)

= −EL
ex̂JL � ĴL + [

2(〈SL〉 · ĴL)T L
S − T L

ex

]̂
JL

� (̂JL × ĴR). (115)

In this approximation the DOS (13) is not spin-polarized in
the bias window: nr (ω) = 0 for μL � ω � μR . Therefore, the
charge current Eq. (112) reduces to its nonmagnetic part; i.e.,
there is no spin-valve effect. By the same token, the dissipative
part of the spin current (113) vanishes due to the cancellation
of particle and hole contributions. Thus, only the coherent
spin torque part remains, whose coefficient we now estimate
as follows: Inserting Eq. (99) into Eq. (98), we obtain

T L
S = 2t2Re

∫
dω

∫
dω′ ∏

r

(ν̄r (ω)nr (ω))

× f R
+ (ω′) − f L

+ (ω)

ω − ω′ + i0
. (116)

For our DOS approximation, we have
ν̄L(ω)nL(ω)ν̄R(ω′)nR(ω′) = sgn(ωω′)/(4D)2 if |ω| − D �
J/2 and |ω′| − D � J/2 and zero otherwise. At these
energies the Fermi functions are 0 or 1 and if their
difference in Eq. (116) is nonzero, we can approximate
1/|ω − ω′| ≈ 1/(2D), yielding

T L
S ≈ − �

4π

J 2

D
. (117)
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where � = 2π |t |2/(2D)2. The resulting spin current is equiv-
alent to a spin torque exerted by an magnetic field BR ≈
ν̄RJ |t |2/DĴR on the spin on SL [insert Eq. (26) for |SL| into
Eq. (113)]. Finally, in the SQM current (114) and (115) the
absorption coefficient AL

Q—and with it, the even anisotropy
function ãL—drops out in this approximation because of the
vanishing of the spin polarization, nr (ω) = 0, in the bias
window.

1. Dissipative SQM flow direction

We first discuss the direction of the dissipative spin-
anisotropy emission, 〈ILL

Q 〉 = −2EL
QĴL � ĴL, which entirely

arises from the exchange term in Eq. (114) (the direct part
vanishes in absence of dissipative spin current). Remarkably,
the emission always results in a loss of local exchange

spin-anisotropy 〈QLL〉ex = −qLL
ex Ĵ

L � ĴL irrespective of the
voltage bias direction, because EL

Q is always negative (unless
zero). By interchanging the left and right electrode indices
in all expressions, we observe that the spin anisotropy of the
〈RR〉 node decreases as well. We conclude from the SQM
current conservation law that nonlocal spin-triplet correlations
are built up irrespective of the bias direction. This is in
accordance with the physical intuition of SQM transport that
we have developed using our network picture: The tunneling
of electrons across the junction delocalizes spin-triplet cor-
relations. However, such a pure delocalization is special to a
voltage-biased tunnel junction. When we discuss the situation
of thermal bias later, we see that an effective transfer of spin
anisotropy between the local nodes is still possible.

These results can also be clearly understood in terms of the
microscopic picture of SQM storage introduced in Sec. III B5.
To see this, we first note that the exchange-SQM emis-
sion (100) is obtained from the average [see Eqs. (64) and (65)]
by replacing the Fermi function f L

+ with the bias function . If
μL > μR , electrons leave the left electrode, which is indicated
by (ω) > 0 at energies μR � ω � μL. This destroys the
positive local exchange-SQM content at this energy [given
by aL(ω) > 0, see also Fig. 7]. Conversely, for the opposite
bias μL < μR , we find (ω) < 0 for μL � ω � μR since the
tunneling electrons enter the left electrode. Electrons at these
frequencies provide negative exchange SQM [as aL(ω) < 0].
In both cases, this results in a negative change in qL

ex.

2. Scalar parameter dependence

We next discuss the dependence of the direct and exchange-
SQM current on the scalar parameters J , V = μL − μR , and
T . For the direct-SQM current,〈

ILL
Q

〉
dir = 2(〈SL〉 · ĴL)T L

S ĴL � (̂JL × ĴR); (118)

this is simple because T L
S is nearly independent of V and T

and the magnitude of 〈ILL
Q 〉dir increases as J 3 [use Eqs. (117)

and (26)], as shown in Fig. 14.
The exchange-SQM current, in contrast, shows a stronger

dependence on the scalar parameters. To see this, we first
roughly estimate how its emission and torque coefficients scale
with V and J for low temperatures T � V,J . For T = 0 the
integrand of Eq. (100) is the product of the anisotropy function
aL(ω), which has a support of width 2J , and the bias function

0 1 2 3 4 5 6 7
J/t

0.0

0.5

1.0

1.5
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2.5
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Q
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ir
/(

N
o
·Γ

t)
|
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FIG. 14. (Color online) Dependence of ILL
Q,dir = 2〈SL〉 · ĴLT L

S on
the Stoner splitting J/t , where No is the fixed number of orbital states
of the left subsystem and J = 5t , D = 25t , T = t/2.

(ω) with a support of width V , and the smaller one of these
energy scales limits the SQM emission,

EL
ex ≈ −�

2
min(|V |,|J |), (119)

where � = 2π |t |2/(2D)2. In contrast, the SQM torque (102)
scales in the same way as the spin torque,

T L
ex ≈ −�

π

J 2

D
, (120)

where we also set T = 0 and proceeded analogous to the
estimation of the spin torque [cf. Eq. (117)]. The additional
suppression factor J/D in Eq. (120) relative to Eq. (119) for
V < J reflects that the SQM torque originates from coherent
virtual fluctuations to states near the band edges where the spin
polarization is nonzero in an energy window proportional to
the Stoner splitting J . This gives rise to two regimes, in which
the coherent exchange term (120) is larger (smaller) than the
dissipative exchange term (119) for V ≶ V ∗, where EL

ex ∼ T L
ex

occurs for29

V ∗ = J 2

πD
. (121)

a. Stoner-field dependence. In Fig. 15 we show a numerical
calculation of the precise shapes (100) and (102) of the
exchange emission coefficient EL

ex and the torque coefficient
T L

ex, confirming the estimates (119) and (120): They show that
the torque increases quadratically and the emission saturates
to a constant on the scale of the bias V [which is smaller than
the value predicted by Eq. (119) due to finite temperature].

b. Bias dependence. Figure 16 shows the same crossover,
but now as a function of the bias V for fixed J and T . The
torque is constant and given approximately by Eq. (120) and
the emission saturates at the value set by Eq. (119) when V

approaches the scale of J . This voltage dependence allows
for magnetic and electric control over the orientation of the
exchange-SQM current tensor, discussed in the next Sec. V B3.
The saturation at V ∼ J is an interesting, new feature of the
dissipative exchange-SQM current, not present in the charge
or spin current. It provides access to the Stoner shift of the
DOS (cf. Fig. 7), even without spin-polarization of the DOS in
the bias window. Similar to the spin current a finite coherent
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FIG. 15. (Color online) Dependence of the magnitude of SQM
emission |EL

ex|/�t (blue) and torque |T L
ex|/�t (green) on the Stoner

splitting J/t for T = 0 (dark colors) and T = 0.5t (light colors). The
residual parameters are V = t , D = 25t . For T = 0, the crossover
occurs at J ∼ J ∗ = √

πDV ≈ 9t . The initial nonlinearity of the
SQM emission coefficient for the finite temperature (preceded by
a linear regime) and the smaller saturation value compared to the
T = 0 case are due to the thermal smearing.

SQM term remains at zero bias, even though the dissipative
SQM current vanishes.

c. Temperature dependence. In Fig. 17 we show the
temperature dependence of the exchange-SQM emission and
torque coefficients, keeping V and J fixed. Both coefficients
decrease monotonously with temperature, but with very
different characteristic dependencies on T . The reason is
that the emission integral (100) incorporates Fermi functions,
which have a much stronger exponential dependence with T −1,
whereas torque integral (102) comprises the renormalization
function βR , which depends much more weakly, namely
algebraically, on T −1. Moreover, Fig. 17 shows that exchange-

FIG. 16. (Color online) Dependence of the magnitude of SQM
emission |EL

ex|/�t (blue) and torque |T L
ex |/�t (green) on the bias

voltage V/t for T = 0 (dark colors) and T = 0.5t (light colors).
The residual parameters are J = 5t , D = 25t . For both temperatures,
the torque is constant at |T L

ex |/�t ≈ 0.15 according to estima-
tion (120). The small deviation of this value and the saturation level
of |EL

ex|/�t for finite temperature compared to T = 0 is due to the
thermal smearing. Therefore, the rough estimate V ∗ ≈ J 2/πD ≈
1/3 for the crossing point at EL

ex = T L
ex is exactly fulfilled only for

T = 0.

FIG. 17. (Color online) Dependence of the magnitude of ex-
change SQM emission |EL

ex|/�t (blue) and torque |T L
ex |/�t (green)

on temperature T/t for V = t , J = 5t , D = 25t .

SQM emission is strongly suppressed when T approaches
the voltage V (<J ) when the bias function  = f R

+ − f L
+ is

largely broadened over an energy range of ∼4T ∼ J (for
the parameters of Fig. 17), so that positive and negative
contributions of the spin-anisotropy function aL cancel each
other. This is similar to the discussion of the exchange-SQM
storage in Sec. III B5.

3. Angle dependence

The exchange-SQM current, in contrast to the direct part,
has a nontrivial dependence on the angle between the two
Stoner vectors ĴL and ĴR due to the interplay of its dissipative
and coherent contributions (see Sec. V B3). This requires a
more extensive analysis since we are dealing with a tensor-
valued current. There are two relevant questions relating to
the orientation of the SQM tensors. The first question is
whether the orientation of the local SQM 〈QLL〉 is changed
by the injected SQM current 〈ILL

Q 〉. One can show that if
these tensors commute, [〈ILL

Q 〉,〈QLL〉] = 0, then the SQM
current corresponds only to a change in the principal values
of the local SQM without changing its principal axes (see
Appendix C). Now Eq. (91) shows that for noncollinear ĴL

and ĴR the average SQM current 〈ILL
Q 〉 is a superposition of

three linearly independent, symmetric, and traceless tensors,
ĴL � ĴL [emission (100)], ĴL � ĴR [absorption (101)], and
ĴL � (ĴL × ĴR) [torque (102)]. The latter two tensors do not
commute with 〈QLL〉 ∝ ĴL � ĴL for noncollinear ĴL and ĴR

and vanish only for collinear ĴL and ĴR . This holds for both the
direct and the exchange contributions. Therefore, the injected
average SQM current 〈ILL

Q 〉 will tend to change the principal
axes of the average local SQM 〈QLL〉, besides changing its
principal values.

The second question is whether the direct and exchange-
SQM currents tend to induce the same rotation of the principal
axis of the SQM, which is equivalent to these tensors commut-
ing, [〈ILL

Q 〉dir,〈ILL
Q 〉ex] = 0. To show that this is not the case,

we now first explicitly find the (different) principal axes and
values of 〈ILL

Q 〉dir and 〈ILL
Q 〉ex. This furthermore allows us to

plot and discuss these average SQM currents in a clear way.
a. Principal axes and values. The following analysis holds

for any dispersion εr
nkσ . We first diagonalize the full average

SQM current tensor Eq. (91) and then show how the direct and
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exchange part can be obtained from the result, respectively.
Since the former is a real and symmetric tensor it can always
be diagonalized: 〈

ILL
Q

〉 =
∑

λ=±,0

Iλv̂λv̂λ. (122)

Here the v̂λ denote the orthonormal principal axes (the hat
indicating normalization) and the Iλ denote principal SQM
currents, which quantify the magnitude of the SQM current.
(We dropped the superscripts “LL” on Iλ and v̂λ for brevity.)
In Appendix B we show that for noncollinear Stoner vectors
[cos(θ ) = ĴL · ĴR �= ±1] the principal SQM currents are

I0 = − 1
3Dθ, (123)

I± = 1
6Dθ ± 1

2Sθ , (124)

which add up to 0 as they should (traceless tensor). The un-
normalized principal axes read

v0 = ĴL × (
AL

QĴR + T L
QĴL × ĴR

)
, (125)

v± = (Dθ ± Sθ )̂JL + AL
QĴR + T L

QĴL × ĴR. (126)

In Eqs. (123)–(126), we used the abbreviations

Dθ := (
EL

Q + AL
Q cos θ

)
, (127)

Sθ :=
√

D2
θ + [(

T L
Q

)2 + (
AL

Q
)2]

sin2 θ. (128)

The principal SQM currents obey the inequalities

I− � I0 � I+, (129)

since Sθ � Dθ . For collinear Stoner vectors (θ = 0,π ), two
principal values are degenerate,

I+ =
(

p

6
+ 1

2

) ∣∣EL
Q + AL

Q
∣∣ , (130)

I− =
(

p

6
− 1

2

) ∣∣EL
Q + AL

Q
∣∣ , (131)

I0 = p

3

∣∣EL
Q + AL

Q
∣∣ , (132)

with p = sgn(D0), v̂+ = ĴL, and any two vectors in the plane
perpendicular to ĴL are principal axes of the SQM current. We
thus see that, in general, the principal SQM currents take three
different values; i.e., a biaxial spin anisotropy is transported
whenever the Stoner vectors are noncollinear. We emphasize
that by itself the average spin-current vector provides no
information about the noncollinearity of the spin valve.
The SQM current tensor, in contrast, does: The transported
anisotropy only becomes uniaxial for collinear Stoner vectors
(θ = 0,π ), in which case ĴL is the hard axis.30 The possibility
of injecting biaxial anisotropy into molecular-scale systems is
of interest since this type of anisotropy it is associated with
interesting quantum-spin tunneling effects.31

We obtain the diagonal form of the direct and exchange
SQM individually by replacing the coefficients Eqs. (109)–
(111) in the above formulas by EL

Q → EL
dir = (SL · ĴL)EL

S

and EL
Q → −EL

ex, respectively, etc. Since these two sets of
coefficients are, in general, different functions of the various
parameters, we conclude that the direct and exchange-SQM
tensors have different principal axes and do not commute,

[〈ILL
Q 〉dir,〈ILL

Q 〉ex] �= 0. They therefore tend to induce the
different rotations of the principal axis of the local SQM. As a
result the total principal SQM currents are not the sum of the
direct and exchange principal SQM currents.

b. Flat-band approximation. So far the considerations
were general. We now investigate the magnetic tuning of
the exchange-SQM orientation by the Stoner vectors. For the
flat-band approximation, Eq. (112)–(114), the principal SQM
currents and the principal axes are symmetric with respect to
θ = π/2, i.e.,

Iλ

(
π

2
− α

)
= Iλ

(π

2
+ α

)
, (133)

v̂λ

(
π

2
− α

)
= v̂λ

(π

2
+ α

)
. (134)

This is due to the vanishing SQM absorption coefficient,
AL

Q, in this limit. In Fig. 18 we plot both the direct and the
exchange principal SQM currents as a function of the angle
θ ∈ [0,π/2]. We observe that both I dir

0 and I ex
0 are constant.

In both cases, the repulsion of both I
dir/ex
± is caused by the

respective torque coefficient [see Eq. (127)], which increases
with J and decreases with D [cf. Eq. (117)–(120)].

FIG. 18. (Color online) Angle dependence of the principal SQM
currents (a) I dir

λ /(t · Ns) and (b) I ex
λ /t (red, I0; green, I−; blue, I+). The

principal direct-SQM currents depend only on the nonzero spin torque
I dir
λ = λ2|SL||T L

S sin θ | (λ = 0,±), whence the principal exchange-
SQM currents depend both the nonzero exchange-SQM emission and
torque. Parameters: J = 5T , D = 25t,V = T = t , � = 2π/2500.
Note that the inequalities Eq. (129) and

∑
λ I dir

λ = ∑
λ I ex

λ = 0 are
fulfilled.
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FIG. 19. (Color online) Angle dependence of the exchange-SQM
tensor 〈ILL

Q 〉ex. Each point corresponds to a principal vector I ex
+ v̂ex

+ /t

(blue) and I ex
− v̂ex

− /t (green) of 〈ILL
Q 〉ex for increasing angle θ in steps

of π/36 from 0 to π/2. Each pair of vectors I ex
± v̂ex

± /t for one angle
defines the semiaxes of an ellipse, drawn for the extremal values
θ = 0 and θ = π/2. The axes of this ellipse indicate the principal
axes of 〈ILL

Q 〉ex and and the diameter 2|I±/t | gives the principal
SQM currents. The arrows of the semiaxes indicate the sign of the
principal SQM current: It is positive (negative) if the arrow points
away from (towards) the origin. The full tensor can be visualized
by including the principal vector I ex

0 v̂ex
0 /t ∝ ey (pointing into the

plane), completing the ellipse to an ellipsoid. ĴR is rotated from ĴL

(θ = 0) out of the plane when θ increases. The residual parameters
are D = 25T , J = 5T , V = T = t , � = 2π/2500.

To analyze the angle dependence of the principal axes
v̂λ, we construct a right-handed coordinate system from
the noncollinear, nonorthogonal Stoner vectors: Let ez = ĴL,
ex = ĴL × ĴR/ sin θ , ey = ez × ex . In Fig. 19 we show the
trajectories of the exchange principal axes as we rotate ĴR =
− sin θey + cos θez through θ ∈ [0,π/2]. Then both v̂dir

0 =
v̂ex

0 = ey are a fixed directions in this coordinate system, i.e.,
independent of the angle θ . The other principal axes v̂dir/ex

± lie
in the xz plane perpendicular to v̂dir/ex

0 and are different for the
direct and exchange contribution.

The direct SQM current consists only of a torque con-
tribution and therefore its principal axes are independent of
θ in the above coordinate system fixed by ĴL and ĴR . With
AL

dir = EL
dir = 0 and T L

dir = 2(SL · ĴL)T L
S , Eqs. (125) and (126)

give v̂dir
± = (±ez − ex)/

√
2 for θ �= 0,π (when the direct SQM

current is nonzero). In contrast, the exchange-SQM current
shows a nontrivial competition of the torque and emission
contributions: In Fig. 19 we plot the trajectories of its principal
axes in the plane perpendicular to v̂ex

0 = ey as θ is increased
to from 0 to π/2.

We emphasize that already in this simple model of flat-band
ferromagnets the spin-anisotropy flow has nontrivial tensorial
structure: In general, the principal axes of the exchange-SQM
tensor are neither collinear to ĴL, ĴR nor collinear to ĴL × ĴR .
Only for nearly collinear configurations (θ ≈ 0,π ), when the
torque contribution is negligible, do we have such a simple
result: v̂ex

+ ≈ ex = ĴL and v̂ex
− ≈ ez = ĴL × ĴR/ sin(θ ).

FIG. 20. (Color online) Voltage dependence of the exchange-
SQM tensor. For an explanation see Fig. 19, where each point
corresponds to a a different voltage V/t , increasing in steps of 1/10
from 0 to 1.5. The remaining parameters are θ = π/4, D = 25T ,
J L = J R = 5t , T = t , � = 2π/2500.

A further striking property of the exchange principal axes
is that they cannot only be tuned magnetically by the Stoner
vectors but also to a large extent electrically (see Fig. 20). As
discussed in Sec. V B2 there is a crossover, shown in Fig. 16,
from a torque-dominated (low bias) to an emission-dominated
exchange SQM (large bias). As a result, increasing the voltage
results in a change of the principal axes of the SQM current,
an effect that is comparable to that resulting from tuning the
angle θ between the magnetizations in Fig. 19.

The voltage scale at which the direct and exchange-
SQM current compete, i.e., |EL

ex| ∼ |T L
dir| = 2|SL|T L

S , can be
estimated32 using |SL| ∼ JNo/D ∼ Ns [cf. Eq. (27)] to

V ∼ (J 2/D)Ns. (135)

Since by Eq. (119) EL
ex has a voltage dependence only for V �

J , the electric tunability is feasible only when the crossover
scale (135) �J : This is the case when the number of polarized
spin Ns � D/J ; i.e., the number of orbitals is limited to
No � (D/J )2, which can still be a fairly large number. This is a
first indication that for mesoscopic ferromagnets this electrical
tunability of the SQM orientation may be possible and may
be an interesting topic for future analysis. We emphasize
the crudeness of our model here and the importance of
investigating charging and nonequilibrium effects; see Ref. 22.

C. Transport of spin anisotropy without spin current

Finally, we explore the possibility of a pure spin-anisotropy
current, i.e., a nonvanishing SQM current in the absence of a
spin current, which was anticipated in Sec. V A3.

1. Conditions for zero charge current and spin current

We first discuss the conditions for a vanishing spin current
for a general band structure εr

nkσ . We expect zero spin current
only for collinear magnetizations. If the magnetizations
are noncollinear, the spin current has three noncollinear
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contributions [cf. Eq. (90)] and demanding that all these vanish
requires EL

S = AL
S = T L

S = 0. This might be possible, but only
for special band structures and parameter values (T r,μr ), but
this is beyond the scope of this paper. For collinear magne-
tizations, the spin torque automatically vanishes and the spin
current reads 〈IS〉 = ∫

dω�(nLĴL + nR ĴR) with ĴL||̂JR . A
generic situation with canceling spin current is then given
for antiparallel magnetized (̂JL = −̂JR) ferromagnets with
identical spin polarization of the 1DOS in the bias window, that
is, nL(ω) = nR(ω), so that the bracket in the above integrand
is zero. This defines a parameter regime for which 〈IS〉 = 0,
as one may still apply any voltage or temperature bias. Again,
there might be exotic material combinations, for which the spin
current even vanishes for ĴL = +̂JR . For our crude flat-band
approximation (cf. Sec. II D), the dissipative spin current is
zero in any case, so that collinearity Ĵ = ĴL = ±̂JR of the
Stoner vectors is already sufficient for canceling spin current.

We can even go one step further and envisage a situation for
which the charge current vanishes as well: Note that it still has
a nonmagnetic contribution (93) ∝∫

dω (� is constant in the
bias window and we consider T r � D). For pure voltage bias
μL �= μR , but T L = T R , the bias function (ω) is symmetric
and positive and we will always have a charge current.
However, for a pure temperature bias, T L �= T R and μL = μR ,
the bias function  = f R

+ − f L
+ is antisymmetric and the

charge current contributions above and below the common
electrochemical potential cancel. For example, if T R < T L

the left “hot” electrode has a larger (smaller) occupation
probability for electrons with energy ω > μ (ω < μ) than the
right cold electrode. Consequently, the particle current flowing
from left to right for electrons with energy ω > μ exactly
cancels the charge current for electrons flowing from the right
to the left at energies ω < μ. Integrated over all frequencies
this gives the zero net-charge current.

2. Pure quadrupole current

Strikingly, in contrast to charge current and spin current,
the SQM current remains nonzero for a pure thermal bias. It
comes entirely from the exchange emission part:

〈
ILL

Q
〉 = −2�

∫
dωaLĴ � Ĵ �= 0, (136)

where � can be pulled out of the integral since the DOS is
constant at energies ω for which aL(ω) �= 0. Since the spin-
anisotropy function aL(ω), Eq. (66), is antisymmetric as well
with respect to the common electrochemical potential μ, we
integrate an overall symmetric function and 〈ILL

Q 〉 is nonzero.
This is a central result of the paper. In Fig. 21 we plot the total
SQM current for a thermal bias with collinear Stoner vectors as
function of the temperature difference, as given by Eq. (136).
In Fig. 22 we plot the dependence on the Stoner field JL.

The linear response33 in the temperature bias ratio τR =
(T R − T L)/T R � 1 varied for fixed T L gives for the SQM
current magnitude, defined here by 〈ILL

Q 〉 = −ILL
Q Ĵ � Ĵ,

ILL
Q = �

2
(T L − T R) × T L

T R

[
1 −

(
JL/2T L

sinh(JL/2T L)

)2]
.

(137)
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FIG. 21. (Color online) |ILL
Q |/t [from Eq. (136)] with 〈ILL

Q 〉 =
−ILL

Q Ĵ � Ĵ as a function of the temperature bias ratio τR = (T R −
T L)/T R for T L = t , J = 5t , D = 25t , and � = 2π/2500.

For fixed different temperatures, the magnitude of the SQM
current increases monotonously as a function of the Stoner
splitting as shown in Fig. 22. It eventually saturates for JL ≈
10T L at the asymptotic value of ILL

Q ≈ (�/2)τRT L.
A crude understanding of the above results is the following.

Since the magnitude of the local exchange SQM decreases
with temperature [Pauli exclusion effects get washed out
thermally; cf. Fig. 9 and Eq. (70)], the thermal gradient induces
a “gradient in the correlations,” resulting in the SQM flow of
Pauli exclusion holes from the colder to the hotter reservoir,
roughly speaking.

We emphasize, however, that this should not be interpreted
as a direct transfer of spin correlations between the two
local SQM nodes since they first have to be converted into
nonlocal spin correlations: In the language of our network
picture, these are first buffered in the nonlocal intermediate
node. This becomes clearer in view of the SQM conservation
law (88), which reads of our device (cf. Fig. 12) after averaging
〈ILR

Q 〉 = −〈ILL
Q 〉 − 〈IRR

Q 〉. Interchanging the role of the left
and right electrode in Eq. (137), we see that the change in the

0 1 2 3 4 5
JL/t

−2

0

2

4

6

|I
L

L
Q

/Γ
t|

×10−2

FIG. 22. (Color online) Same as Fig. 21, but now showing |ILL
Q |/t

as a function of Stoner splitting J L/t for fixed thermal bias τR =
(T R − T L)/T R = −0.5, −0.1,0.1,0.5 (from topmost to bottommost
curve). The antisymmetry of the linear result Eq. (137), ILL

Q (τR) ≈
ILL
Q (−τR), breaks down in the nonlinear regime, as shown in Fig. 22

for τR = ±0.5.
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local spin anisotropy of the 〈LL〉 and 〈RR〉 node have opposite
sign. Taking only the O(T ) contribution, we may replace T L

and T R , respectively, by the average temperature in the second
line of Eq. (137): We then find that there is no net creation of
nonlocal spin correlations only to first order in in the thermal
bias T , i.e., 〈ILR

Q 〉 = O(T 2).
A more rigorous explanation of the thermally driven SQM

current is based on a microscopic point of view (cf. Secs. III B4
and III B5). These considerations may be useful for proposals
for more complicated device setups that would allow for the
detection a pure SQM current (an issue that is not covered
here). The exchange SQM in Eq. (136) is quantified by the
anisotropy function aL(ω) [cf. Eq. (66) and Fig. 7], which
describes the Pauli exclusion hole to which an electron at
energy ω contributes. The microscopic reason why aL(ω)
changes sign was explained in detail in Sec. III B5: Basically,
for ω < μ (ω > μ) a given electron at energy ω most likely
sees a parallel (antiparallel) spin at energy ω + J (ω − J ).
Electrons with opposite energies relative to μ thus contribute
with an opposite sign to the Pauli exclusion hole. Since the
thermal bias transports electrons above and below the Fermi
edge into opposite directions, the contributions to the local
average SQM 〈QLL〉 thus add up, explaining why Eq. (136)
is finite. Notably, the thermal bias drives this flow of spin
correlations between the ferromagnets without any other one-
particle quantity being net transported. For example, the charge
of each electron is independent of its energy and, therefore,
the contributions above and below the Fermi energy cancel.

Importantly, in this case the direction of the spin-anisotropy
flow can be controlled by the sign of the temperature gradient:
For T L < T R , the SQM current magnitude ILL

Q is negative;
i.e., local planar spin-triplet correlations are net delocalized
by the tunneling. The left local node therefore loses Pauli
exclusion holes. This can be understood following arguments
similar to that of the purely voltage-biased tunnel junction
(see Sec. V B1). However, in stark contrast to pure voltage
bias, the current magnitude ILL

Q becomes positive if T R < T L.
This physically means that net local planar spin correlations
are created by tunneling. The reason is that electrons are
injected into the left electrode below the Fermi energy. As
these electrons obey Pauli’s principle, they are forced to
form new Pauli-exclusion holes. Furthermore, the electrons
are extracted only above the Fermi energy and they carry
away positive (axial) spin correlations (leaving a negative
contribution behind). For the contrasting situation of a pure
voltage bias, the energy-resolved flow direction has to be
opposite: Electrons are only net injected (extracted) at energies
larger (lower) then the Fermi energy.

As a conclusion, the possibility to control the spin-
anisotropy flow direction by the thermal bias applied to the
tunnel junction is a nontrivial result of this paper. This fact and
the prediction of a pure SQM current demonstrate most clearly
that triplet-spin correlations form an independent degree of
freedom, which is not only stored in a system of ferromagnets,
but can also be transported between them.

VI. SUMMARY AND OUTLOOK

In this paper we investigated fundamental questions about
the spin anisotropy, as quantified by the SQM, which arise

when it is considered as a transport quantity. In the physical
language of atomic and molecular magnetism, the SQM
characterizes the quadratic spin anisotropy, which is usually
its dominant part. It quantifies the preference of spins to be
aligned along a specific axis irrespective of their orientation
along it (up, down). We addressed three central questions
related to the quantum transport of spin-anisotropy: (i) How
can SQM be stored in and (ii) transported between two
ferromagnets in a spintronic circuit and (iii) how can one define
an SQM current tensor operator and derive SQM continuity
equations and SQM-current conservation laws; how does the
nonequilibrium steady-state average of the SQM current relate
to the spin current?

Our work was motivated by studies14–16 that indicated that
the physical picture of the transport of spin degrees of freedom
through magnetic nanostructures needs to be extended. A
refinement of this picture, resulting from this paper, is as
follows. Electrons are charged particles with an intrinsic spin-
dipole moment and vanishing higher spin moments. Therefore,
the motion of an isolated electron is associated with a charge
and spin currents only. However, in a multielectron system
the electron becomes correlated with other electrons. Moving
this electron therefore implies a change of correlations. In
particular, the transfer of spin-triplet correlations between
different subsystems is quantified by the spin-quadrupole
current. This complements the results of prior studies,14–16

which demonstrated that these tensor-valued currents lead to an
accumulation of SQM. The latter couples to the accumulation
of spin and charge and their measurable currents. In this paper
we ignored the complications of this accumulation, as well as
interaction and nonequilibrium effects that appear in nanoscale
spintronic devices. We exclusively focused on the description
of transport of SQM between macro- and mesoscopic circuit
elements.

Answering question (i), we found that macroscopic fer-
romagnets, the basic elements of spintronic devices, store a
macroscopic SQM, which is generated by their internal Stoner
field. This direct spin anisotropy is of easy-axis type and scales
quadratically with the number of half-filled, spin-polarized
orbitals Ns . This follows the classical intuition that orientation
of spins also implies their alignment. However, for mesoscopic
systems, an additional quantum exchange contribution to the
SQM becomes relevant,16 which scales linearly with Ns .
It quantifies the effect of Pauli-exclusion holes that exist
in the triplet two-particle spin correlations, expressing the
simple fact that electrons in the same orbital do not form a
triplet spin state. This Pauli-forbidden spin anisotropy is of
the easy-plane type, countering therefore the direct easy-axis
anisotropy.

Importantly, the effect of the Pauli exclusion holes is
cumulative; i.e., their contributions always add up and cannot
cancel each other. This is in stark contrast to the average
spin-dipole moment, for which contributions from electrons
with opposite spin orientation can cancel each other. This
shows that the average SQM is a degree of freedom in-
dependent of one-particle quantities such as average charge
and spin.

To answer question (ii) we developed a spin-multipole
transport theory with an associated network picture. For
spin-dipole moment, each ferromagnet is represented by a
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node of the network storing spin-dipole moment. However,
due to its two-particle nature in electronic systems, SQM
is also stored as nonlocal correlations between spins from
different spin-polarized subsystems. The network picture of
SQM therefore incorporates also nonlocal SQM nodes. As
a consequence, the SQM network differs from the physical
layout of the system of ferromagnets, both in the number of
nodes and in their connectivity. For the two-terminal spin valve
that we studied in this paper, this network thus consists of three
SQM nodes. This network theory applies also to spin valves
with embedded quantum dots.22

Based on this microscopic picture, we inferred the proper
definition of the spin-quadrupole current tensor operators,
answering question (iii). By a continuity equation, the SQM
currents generate the change of the local anisotropy due
to quantum transport processes. They furthermore obey a
current conservation law expressing the conservation of SQM
in the tunneling. For the two-terminal spin valve it reads
ILL
Q + IRR

Q + ILR
Q = 0.

Finally, we found by explicit calculation that the nonequi-
librium steady-state average of all these these SQM currents
is nonzero, even for this elementary spintronic setup, and
analyzed these in detail. Similar to the average SQM, these
average SQM currents have a decomposition into classical
and quantum two-particle contributions, similar to the average
SQM itself. The direct-SQM current is implied by a nonzero
average spin and spin current. It reflects the classical intuition
that “orientation implies alignment.” In addition to this, we
found a quantum exchange-SQM current, which is profoundly
different from spin currents.

In analogy to the spin, we also distinguished dissipative
and coherent contributions to the SQM: The spin precession
responsible for the spin-torque term in the spin current—lifting
the spin out of the plane of the Stoner vectors—has a
counterpart in the SQM current. These spin-torque SQM terms
similarly result from coherent fluctuations by virtual tunneling
into a ferromagnet (i.e., spin-dependent scattering) which
probe the spin dependence of the entire band structure. This
effect is also responsible for the exchange field34 in quantum
dot spin valves. The different bias-voltage dependence of the
dissipative and coherent terms allows for electric control of
both the magnitude and the orientation of the spin-anisotropy
current tensor.

Furthermore, for noncollinear ferromagnets, the spin-
anisotropy current was found to be a biaxial tensor. Its three
distinct principal values and axes reflect the lowered symmetry
of a noncollinear setup, which is not revealed by the spin
current, which is just a vector. We showed that this dependence
on the Stoner vectors allows for substantial magnetic tuning
of the SQM current tensor orientation. The possibility of
injecting biaxial anisotropy into, e.g., molecular magnets is
of interest since the intrinsic, spin-orbit generated anisotropy
of this type is associated with quantum-spin tunneling
effects.31

The striking central result of this paper, as announced by
its title, is a pure SQM current whenever the spin current
vanishes by net cancellation of one-particle contributions.
This spin-anisotropy flow is driven by a gradient of Pauli
exclusion holes in the triplet spin-spin correlations, that
is, a true quantum two-particle current. We illustrated this

general result for a temperature-biased junction connecting
two antiparallel ferromagnets with a flat-band DOS. In this
case, a pure SQM current generates a uniaxial, easy plane
anisotropy, i.e., a negative anisotropy that counteracts an
easy axis anisotropy. It may be of interest to inject such a
SQM current into a single-molecule magnet considered as a
memory cell in order to temporarily switch off its easy-axis
anisotropy barrier in order to put it into “writing” mode.
This also relates to the recently studied tunnel-induced renor-
malization of the intrinsic anisotropy of molecular magnets
in contact with spin-polarized electrodes.16,35,36 One may
even envisage the utilization of SQM as a resource, as an
alternative to conventional spintronics, i.e., utilize the storage,
transport, manipulation, and readout of spin anisotropy without
transporting or affecting spin polarization. The possibility of
pure SQM currents pointed out in this paper indicates that
this is, in principle, conceivable and warrants further study.
Altogether, the above indicates that the theory of a generalized
“spin-multipoletronics,” is a real possibility, if not a necessity
when spintronics moves to the nanoscale.
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APPENDIX A: STORAGE OF SPIN-QUADRUPOLE
MOMENT

In this appendix we give the calculation of the local average
SQM stored in a ferromagnet; cf. Sec. III B3. We present
three derivations, each of which unveils different physical
and technical aspects used in the main part. The first, most
straightforward approach is given in Appendix A 1. It shows
how the Pauli exclusion hole arises in Eq. (A6), which provides
the key to the physical interpretation of exchange SQM.
Second, we give a technically more sophisticated derivation
in Appendix A 2 , which will be helpful to understand all
steps of our transport calculations. It expresses the Pauli
exclusion hole in a coordinate-free form in Eq. (A17). Third,
we present in Appendix A 3 a derivation that makes explicit
the spin-triplet content of the correlations by vector coupling
of the spins of electron pairs. Finally, we discuss the spin-
anisotropy function and derive a closed expression for the
exchange SQM in the flat-band approximation (cf. Sec. II D).
Throughout the appendix we focus on understanding the
exchange contributions to the SQM, which we showed in
the absence of tunneling to appear only locally for (r = r ′);
cf. Sec. III B3. We therefore only consider one electrode r

with one band n and subsequently drop these indices in all
expressions below, e.g., crnkσ → ckσ , when convenient.

1. Exchange SQM and the Pauli principle

We furthermore take a coordinate system for which ez = Ĵ
and quantize the spin along this vector. The calculation of
the average local SQM starts from the operator Eq. (53)
in the main text. We insert the second-quantized form (40)
of the spin operator and anticommute c

†
k1σ

′
1

twice to the
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left:

Q =
∑

{kiσ
′
i σi }

sσ ′
2σ2 � sσ ′

1σ1c
†
k2σ

′
2
ck2σ2c

†
k1σ

′
1
ck1σ1 (A1)

=
∑

{kiσ
′
i σi }

sσ ′
2σ2 � sσ ′

1σ1c
†
k1σ

′
1
c
†
k2σ

′
2
ck2σ2ck1σ1 . (A2)

This generates a term δk2k1δσ2σ
′
1
c
†
k2σ

′
2
ck1σ1 , which we omitted

because it vanishes after performing the sum over the spin
indices by virtue of s � s = 0: for all σ ′

2,σ1∑
σ2σ

′
1

sσ ′
2σ2 � sσ ′

1σ1δσ2σ
′
1
= 〈σ ′

2|s � s|σ1〉 = 0. (A3)

Computing the average of Eq. (A2) using Wick’s theorem
〈c†k′σ ′ckσ 〉 = δkk′δσσ ′f+(εkσ ) in the standard way with f+(ω)
denoting the Fermi function,〈

c
†
k1σ

′
1
c
†
k2σ

′
2
ck2σ2ck1σ1

〉 = 〈
c
†
k1σ

′
1
ck1σ1

〉 〈
c
†
k2σ

′
2
ck2σ2

〉
− 〈

c
†
k1σ

′
1
ck2σ2

〉 〈
c
†
k2σ

′
2
ck1σ1

〉
, (A4)

yields a direct part and an exchange part:

〈Q〉 =
∑

k2k1σ2σ1

f+
(
εk2σ2

)
f+

(
εk1σ1

)
× (

sσ1σ2 � sσ2σ1 − δk2k1 sσ2σ2 � sσ1σ1

)
(A5)

= 1
4

∑
k2k1

(
1 − δk2k1

)
×

∑
σ2σ1

σ1σ2f+
(
εk2σ2

)
f+

(
εk1σ1

)
ez � ez. (A6)

Here we used the result

sσ1σ1 � sσ2σ2 = sσ1σ2 � sσ2σ1 = σ1σ2

4
ez � ez. (A7)

Clearly, sσ1σ1 � sσ2σ2 = σ1σ2
1
4 ez � ez, whereas for σ1 = −σ2

we have sσ1σ2 � sσ2σ1 = 1
2 (ex − iσ1ey) � 1

2 (ex + iσ1ey) =
1
4 (ex � ex + ey � ey) = − 1

4 ez � ez. The last step follows from∑
i ei � ei = 0, which is just the traceless, symmetric part of

the unit tensor by the coordinate-space completeness relation∑
i eiei = I .
With the two-particle operator (A2) in the standard second-

quantized form [see also Eq. (A21) below] the contributions
to the average 〈Q〉 can be discussed as scattering processes,
treating Q as if it were an interaction (although it is tensor
valued). In Fig. 23 we represent the contributions to the average
SQM (A5) by Feynman diagrams for scattering processes

FIG. 23. Feynman diagrams for calculating the (a) direct and (b)
exchange contribution the the average SQM.

between an initial pair of states (1,2) to a final to pair of
states (1′,2′).

The momenta in the final states are the same as for the
initial states, ki = k′

i , since the SQM operator does not act
on the orbital part of the wave function [cf. Eq. (A22)]. Two
different scattering processes are permitted: The first one is a
direct scattering, for which the electron in initial state i ends up
in state i ′, restricting the spin indices to σi = σ ′

i (while already
ki = k′

i). These direct scattering contributions, multiplied with
their tensor-valued amplitudes sσ1σ2 � sσ2σ1 in Eq. (A5) add up
to the direct SQM. This contribution to the spin anisotropy
is thus generated by two electrons (labeled by their states 1
and 2) as if they were distinguishable, i.e., by treating the
two-particle scattering classically.

The second type of scattering process, in which the
particles are exchanged, accounts for the fact that electrons are
indistinguishable. This is possible only if the momenta are the
same, k1 = k2, and, furthermore, the spins are exchanged, σ ′

1 =
σ2 and σ ′

2 = σ1. This exchange contribution to the average
SQM entirely cancels the direct contribution for equal k1 = k2,
correcting for the treatment of electrons as distinguishable
particles. In other words, the exchange SQM accounts for
Pauli “holes” in the triplet spin-spin correlation tensor. The
Pauli principle thus counters the direct classical contribution
to the spin anisotropy.

Indistinguishability becomes important if we consider pairs
of electrons from the same k mode. Due to Pauli’s principle,
their wave function must have a symmetric orbital part
and an antisymmetric spin part; that is, they form a spin
singlet with zero SQM (i.e., triplet correlations are forbidden).
This is analogous to the direct and exchange contributions
to the average Coulomb interaction with respect to Slater
determinants (e.g., in Hartree-Fock theory). In that case,
nearby electrons with parallel spins repel each other due to
the exchange potential. We mention that, as expected from
this analogy, thermal fluctuations suppress the effect of the
Pauli principle on SQM as well; cf. Eq. (A34) below.

2. Spin-trace technique

We now reformulate the above calculation in a way that is
used in the transport calculations (cf. Appendix E 4): The result
[Eq. (A17)] then assumes the coordinate-free form presented
in Sec. III B3,

〈Qrr〉ex =
∑

kσσ ′ττ ′

(
sr
σσ ′ � sr

ττ ′
)
δστ ′δσ ′τ f

r
+
(
εr
kσ

)
f r

−
(
εr
kσ ′

)
.

(A8)

Here we reintroduced the electrode index. To recast this
into covariant expression, we first introduce the two-particle
density of states (16),

νr
σσ ′(ω,ω′) =

∑
k

δ
(
ω − εr

kσ

)
δ
(
ω′ − εr

kσ ′
)
, (A9)

and rewrite Eq. (A8) in terms of frequency integrals,

〈Qrr〉ex =
∑

kσσ ′ττ ′

∫
dωdω′(sr

σσ ′ � sr
ττ ′

)
× δστ ′δσ ′τ ν

r
σσ ′(ω,ω′)f r

+(ω)f r
−(ω′). (A10)
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The 2DOS νr
σσ ′(ω) can be expressed as a matrix element in

spin space by

νr
σσ ′(ω,ω′)δστ ′δσ ′τ

= 2
∑
μ1,μ2

r〈τ ′|řμ1 |σ 〉rAr
μ1μ2

(ω,ω′)r〈σ ′|řμ2 |τ 〉r . (A11)

Here we used the four-component operator ř with ř0 =
1/

√
2 and ři = √

2si for i = x,y,z. The four-dimensional
matrix Ar

μ1μ2
incorporates all relevant 2DOS information.

It decomposes into a scalar, two vectors, and a tensor in
coordinate space:

Ar
00 = 1

4

∑
σσ ′

νr
σσ ′(ω,ω′), (A12)

Ar
i0 = 1

4

∑
σσ ′

σνr
σσ ′(ω,ω′)Ĵ r

i , (A13)

Ar
0j = 1

4

∑
σσ ′

σ ′νr
σσ ′(ω,ω′)Ĵ r

j , (A14)

Ar
ij = 1

4

∑
σσ ′

σσ ′νr
σσ ′(ω,ω′)Ĵ r

i Ĵ r
j . (A15)

Inserting Eq. (A11) into Eq. (A10) and recasting the sum over
the spin indices as a trace in spin space yields

〈Qrr〉ex =
∫

dωdω′f r
+(ω)f r

−(ω′)

× 2
∑
μ1μ2

Ar
μ1μ2

(ω,ω′)Tr
[
řμ1 s � řμ2 s

]
(A16)

=
∫

dωdω′ 1
4

∑
σσ ′

σσ ′νr
σσ ′(ω,ω′)

×f r
+(ω)f r

−(ω′ )̂Jr � Ĵr . (A17)

This recovers the results [Eqs. (64)–(67)] obtained in the
main text from Eq. (A6). The explicit calculation in the
last step is now reduced to using spin- 1

2 operator algebra
sisj = 1

4δij1 + 1
2

∑
k iεijksk and s � s = 0, i.e., without using

matrix elements. These steps are analogous to the evaluation
of the diagrammatic expressions for the SQM current in
Appendix D 4.

3. SQM and triplet spin correlations

Finally, we express the SQM tensor operator Q in the
second-quantized form. This allows one to perform a vector
coupling of the pairs of the involved spins, thereby making
explicit that only triplet correlations are “measured” by 〈Q〉,
something that did not become clear in the above calculations.
This is merely important for the physical understanding, but
seems to bring no advantage for calculations. The many-body
quadrupole operator is a sum over quadrupole operators of
pairs of particles, the latter labeled by a,b = 1,2,3, . . .,

Q =
∑
a<b

Qab, (A18)

with Cartesian components i,j = x,y,z:

Qab
ij = 2

(
1

2

(
sa
i sb

j + sa
j sb

i

) − 1

3
δij

∑
k

sa
k sb

k

)
. (A19)

Here we inserted the total spin operator S = ∑
a sa into

Eq. (1) and used the result Qaa = 0 (“a single electron has
no anisotropy”; cf. Sec. II A). The SQM from pair 〈ab〉 can
also be expressed by coupling the two spins to Sab = sa + sb,

Qab
ij = 1

2

(
Sab

i Sab
j + Sab

j Sab
i

) − 1
3δij (Sab)2, (A20)

using sa
i sa

j = 1
4δij + i 1

2

∑
k εijks

a
k . Note the factor 2 in

Eq. (A19). The general second quantization prescription
immediately gives

Q =
∑
{kiσi }

1
2 〈k′

2σ
′
2k

′
1σ

′
1|Q12|k2σ2k1σ1〉

× c
†
k′

1σ
′
1
c
†
k′

2σ
′
2
ck2σ2ck1σ1 . (A21)

We now make explicit use the particular property of the matrix
elements of the pair SQM Q12. First, we note that Q12 acts
only on the spin of the electrons,

〈k′
2σ

′
2k

′
1σ

′
1|Q12|k2σ2k1σ1〉

= δk′
2k2δk′

1k1〈σ ′
2σ

′
1|Q12|σ2σ1〉. (A22)

If we inserted this into Eq. (A21) we would recover Eq. (A2).
Instead of this, we now introduce a singlet-triplet basis for
each pair of considered spins σ1 and σ2 above:

|S〉 = 1√
2

∑
σ

σ |σ σ̄ 〉, (A23)

|T 0〉 = 1√
2

∑
σ

|σ σ̄ 〉, (A24)

|T m〉 = |mm〉, m = ±, (A25)

where σ̄ = −σ . The crucial point is that Q12 only has matrix
elements in the triplet sector. This follows from the fact
that Q12 is symmetric under exchange of the spins; i.e.,
[P,Q12] = 0, where P is the exchange operator of particle
1 and 2. Therefore, Q12 is block diagonal with respect
to the eigenspaces of P , which are here the singlet and
triplet states satisfying P |S〉 = −|S〉 and P |T m〉 = +|T m〉.
Thus, 〈S|Q12|T m〉 = 〈T m|Q12|S〉 = 0. Moreover, the diag-
onal singlet block is zero, 〈S|Q12|S〉 = 0 by Eq. (A20), with
a = 1, b = 2, and Q12|S〉 = 0, completing the proof. As a
result,

〈σ ′
2σ

′
1|Q12|σ2σ1〉

=
∑
mm′

〈σ ′
2σ

′
1|T m〉〈T m|Q12|T m′〉〈T m′|σ2σ1〉. (A26)

Inserting Eq. (A26) into Eq. (A21), we obtain the central result
of the appendix,

Q =
∑
mm′

1

2
〈T m′|Q12|T m〉

∑
{ki }

E
m′†
k2k1

Em
k2k1

, (A27)
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with two-particle operators that explicitly generate only triplet
pairs:

Em
k2k1

=
∑
σ2σ1

〈T m|σ2σ1〉ck2σ2ck1σ1 (A28)

=
{

ck2mck1m, m = ±1,
1√
2

∑
σ ck2σ ck1σ̄ , m = 0.

(A29)

Considered as an interaction, Q thus only scatters triplet
correlated pairs of electrons. Due to the restrictions on the
spins in these operators Em

k2k1
, the averages are〈

E
m′†
k2k1

Em
k2k1

〉
= δmm′ ×

{
f

(
εk2m

)
f

(
εk1m

)(
1 − δk2k1

)
, m = ±1,

1
2

∑
σ f

(
εk2σ

)
f

(
εk1σ̄

)(
1 − δk2k1

)
, m = 0,

(A30)

with the tensor-valued matrix elements 〈T + |Q12|T +〉 =
〈T − |Q12|T −〉 = −〈T 0|Q12|T 0〉/2 = 1

2 ez � ez given by
Eqs. (2) and (3) in the main text. These relations follow
from the fact that Q12 is traceless in the Hilbert space,∑

m=0,±1〈T m|Q12|T m〉 = 0 and that the m = ± states have
the identical spin anisotropy. We recover Eq. (A6):

〈Q〉 = 1
4 ez � ez

∑
k2k1

(
1 − δk2k1

)
×

[∑
m=±

f+
(
εk2m

)
f+

(
εk1m

) −
∑
σ=±

f+
(
εk2σ

)
f+

(
εk1σ̄

)]
.

(A31)

This derivation, however, shows explicitly that the m =
±1 terms contribute the same, uniaxial anisotropy tensor
〈T ± |Q12|T ±〉, whereas the m = 0 term contributes an easy-
plane anisotropy tensor 〈T 0|Q12|T 0〉 = −2〈T + |Q12|T +〉.
Moreover, the Pauli-exclusion hole factor 1 − δk2k1 is immedi-
ately explicit. Thus, 〈Q〉 can be calculated by first accounting
for triplet correlations between spins of pairs of electrons in
all possible orbitals, including the same orbital,

〈Q〉dir = 1

4

∑
k2k1σ2σ1

σ2f
(
εk2σ2

)
σ1f

(
εk1σ1

)
ez � ez

= 〈S〉 � 〈S〉, (A32)

giving Eq. (57), and then subsequently canceling the latter
violation of the Pauli principle by the exchange term,

〈Q〉ex = −qexez � ez, (A33)

with the positive exchange magnitude,

qex = 1

4

∑
k

[f+(εk↑) − f+(εk↓)]2. (A34)

We obtain Eq. (62) from the main text. Finally, we show that
the two-particle DOS νσσ ′ can be decomposed explicitly into
triplet DOS components: Converting the sums in Eq. (A34) to
integrals we obtain

qex =
∫

dωdω′f+(ω)f+(ω′)
∑
σσ ′

σσ ′νσσ ′(ω,ω′). (A35)

The only relevant combination of the 2DOS in the above
expression can be recast as∑

σσ ′
σσ ′νσσ ′ = νT + + νT − −

√
2νT 0, (A36)

with the triplet exchange 2DOS function (m = ±)

νT m(ω,ω′) := νmm(ω,ω′), (A37)

νT 0(ω,ω′) := 1√
2

∑
σ

νσ σ̄ (ω,ω′). (A38)

This gives a precise decomposition into triplet spin correlations
that contribute to 〈Q〉ex.

4. Spin-anisotropy function

Finally, we further substantiate the physical interpretation
of the anisotropy function, which plays a key role in the main
text. The basic idea of “quadrupolarization” of two triplet-
correlated electrons is simply to “count” whether the spins
are parallel (↑↑ or ↓↓, counted as +) or antiparallel (↑↓ or
↓↑, counted as −). In both cases their individual orientations,
i.e., their dipolarization ↑ or ↓, is ignored. Equation (A35)
precisely expresses this notion for the exchange SQM. It is
instructive to start from the k-sum representation (A34) and to
write it as

qex =
∑
kσ

f+(εkσ )akσ . (A39)

Here, given that an electron with spin σ occupies orbital k, we
“count” by

akσ =
∑
σ ′

σσ ′

4
f (εkσ ′), (A40)

the average quadrupolarization contribution from electrons in
that same orbital k: Parallel spin σ ′ = σ gives +f+(εkσ );
antiparallel σ ′ = σ̄ gives −f (εkσ̄ ).37 Converting the sum to
an integral, we obtain Eq. (64) of the main text:

qex =
∫

dωf+(ω)ν̄(ω)a(ω). (A41)

The anisotropy function a(ω) = ∑
σ aσ (ω) has two contribu-

tions:

ν̄(ω)aσ (ω) :=
∑

k

akσ δ(ω − εkσ ). (A42)

The quantity ν̄(ω)aσ (ω) is the exchange quadrupolarization of
a spin σ electron at energy ω. One should note that the function
akσ , defined by Eq. (A40), does not only depend on the energy
εkσ , but also on the energy εkσ̄ . Since εkσ̄ is not necessarily
an implicit function of εkσ for arbitrary band structures, one
can, in general, reformulate Eq. (A42) only in terms of the
2DOS (16),

ν̄(ω)aσ (ω) =
∫

dω′f+(ω′)
∑
σ ′

σσ ′

4
νσσ ′(ω,ω′), (A43)

resulting in Eq. (67) of the main text.
However, for the Stoner model, which we discuss from

hereon, the simple relation εkσ̄ = εkσ − σJ/2 can be exploited
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to express akσ as a function of εkσ only. We therefore obtain
the simpler result,

ν̄(ω)aσ (ω) = νσ (ω)[f+(ω) − f+(ω + σJ )], (A44)

which only depends on the 1DOS νσ . This unfortunately hides
the underlying two-particle nature of the exchange SQM, but
aids the interpretation of the total spin-anisotropy function:
Equation (A44) shows that the contribution a↑(ω) from up-
spins is positive and comes from the range of energies μ − J <

ω < μ, whereas the contribution a↓(ω) from down-spins is
negative and comes from energies μ < ω < μ + J (both up
to thermal smearing). Adding both contributions yields for the
full spin-anisotropy function after some manipulations,

a(ω) = 1
4 [2f+(ω) − f+(ω + J ) − f+(ω − J )]

+ 1
4n(ω)[f+(ω + J ) − f+(ω − J )]. (A45)

Here it should be noted that n(ω) is not independent of J

but is a function of it through Eqs. (13), (15), and (18).38 The
combinations of Fermi functions are nonzero only for energies
|ω − J | � T .

It was pointed out in Sec. V C for a purely thermally
biased tunnel junction that the finite SQM current that remains
whenever the spin current vanishes arises entirely from the
exchange SQM, i.e., from the antisymmetric part of the
spin-anisotropy function a(ω) relative to μ. Generally, when
assuming a weakly energy-dependent average DOS ν̄(ω) in the
range |ω − J | � T , the first term Eq. (A45) always gives rise
to such a term. The second term, in which the spin-polarization
n(ω) is multiplied by a symmetric function relative to μ, can
cancel this function only if n(ω) is strongly antisymmetric [i.e.,
n(ω) = ±1 for ω ≷ 0, up to thermal smearing]. If we further
specialize to the approximation of a flat band symmetric about
μ (cf. Sec. II D), this second term is exactly zero because the
spin polarization vanishes in the window [ω − J,ω + J ] up
to thermal smearing. Only the first line of Eq. (A45) remains
and gives a thermally induced pure SQM current as discussed
in Sec. V C: Substituting x = (ω − μ)/T , Eq. (A41) can be
rewritten as

qex = ν̄T

4

∫
dxf (x)[2f (x) − f (x − j ) − f (x + j )],

(A46)

where f (x) = [ex + 1]−1 and j = J/T . As a(ω) is nonzero
in an energy window 2J centered at μ, which is far away from
the band edges, we can replace the 1DOS with its constant
value ν̄ and extend the limits integration to ±∞. Using the
identity f (x) = 1 − f (−x) and the result∫

dxf (x)f [−(x − y)] =
{

1, y = 0,

yb(y), else, (A47)

where b(x) = [ex − 1]−1 is the Bose function, and taking the
limit y → 0, we obtain Eq. (70) of the main text:

qex = ν̄

4
[−2 + jb(j ) + (−j )b(−j )] (A48)

= ν̄

2

[
j

2
coth

(
j

2

)
− 1

]
. (A49)

APPENDIX B: SYMMETRIC AND TRACELESS TENSORS

In this appendix, we collect some relevant results on
symmetric, traceless tensors. We first show how a particular
type of such tensors, constructed from two real vectors a and
b,

A = a � b = 1
2 (ab + ba) − 1

3 (a · b) I, (B1)

can be diagonalized using dyadic calculus,39 i.e., without in-
troducing a coordinate system. The tensor A can be expressed
in terms of its principal values λμ and normalized vectors v̂μ

that define the principal axes as

A =
∑

μ=0,±
λμv̂μv̂T

μ. (B2)

The results [Eqs. (123)–(132)] of the main text can then
be obtained from Eq. (115) by setting a = ĴL and b =
ELĴL + ALĴR + T L(ĴL × ĴR). To diagonalize (B1), we have
to distinguish two cases.

Case (i) a ∦ b: eigenvalues

λμ = − 1
3 (a · b) + 1

2δμ,± [(a · b) + μab] , (B3)

where μ = 0,±, and normalized eigenvectors

v̂0 = 1

|a × b| (a × b) , (B4)

v̂± = 1

2ab [ab ± (a · b)]
[ab ± ba] (B5)

with a = |a|,b = |b|.
Case (ii) a ‖ b, i.e., b = αa: eigenvalues for μ = 0,±

λμ = (
δμ,+ − 1

3

)
αa2, (B6)

and v̂+ = a/a and v̂0, v̂− are any two orthonormal vectors that
span the plane perpendicular to v̂+.

To prove case (i), we first note that one principal axis is
obviously v0 = a × b �= 0:

A · v0 = [
1
2 (ab + ba) − 1

3 (a · b) I
] · (a × b) (B7)

= − 1
3 (a · v) v0 = λ0v0. (B8)

In order to derive the the remaining principal values, we need
to set up the characteristic equation

0 = det(A − λI) (B9)

= det(A) − λspm(A) + λ2tr(A) − λ3, (B10)

where the coefficients are given by the trace, the sum of
principal minors, and the determinant of A, respectively:

tr(A) =
∑

i

Aii , (B11)

spm(A) = 1

2
tr(A×

×A), (B12)

det(A) = 1

6
(A×

×A) : A. (B13)

Here we used the shorthand notations
(A×

×A)i1i2 = ∑
j1,j2,k1,k2

εi1j1k1Aj1j2Ak1k2εj2k2i2 and
B : A = ∑

i,j BijAij . Equations (B11)–(B13) are the
(only) three rotational invariants, i.e., they are invariant under
transformations A → R · A · RT , where R is a rotation
matrix: R · RT = RT · R = I . Inserting Eq. (B1) we
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obtain

tr(A) = (a · b), (B14)

spm(A) = − 1
3 (a · b)2 − 1

4 (a × b)2, (B15)

det(A) = 2
27 (a · b)3 + 1

12 (a · b)(a × b)2. (B16)

Inserting these into Eq. (B10), one finds that λ0, given by (B3)
with μ = 0, is indeed a principal value of A. By polynomial
division we obtain a quadratic equation for the remaining
principal values λ±, which is solved by Eq. (B3) with μ = ±.
The general solution of (A − λ±I) · v± = 0 is given by39

v± = c · [(A − λ±I)××(A − λ±I)] (B17)

= − 1
2 c · [(a × b)(a × b)

+ (2q±(a · b) − q2
±)I − q±(ab + ba)], (B18)

where q± = (a · b) ± |a||b|. Here c is a vector such that v± �= 0
and either c = a or c = b fulfills this condition, yielding the
result (B5) after normalization.

For case (ii) we have A = a � αa = α(aa − a2I/3). Since
a × b = 0, the above results cannot be applied. The vector a
obviously defines a principal axis since A · a = + 2

3αa2a, and
for any vector a⊥ in the plane perpendicular to a we have
A · a⊥ = − 1

3αa2. This confirms the principal values (B6),
completing the proof.

APPENDIX C: ROTATION OF THE SQM
BY SQM CURRENTS

In this appendix we show that a SQM tensor Q is rotated if it
does not commute with the SQM current tensor IQ as pointed
out in Sec. V B3. More formally, [Q,IQ]− = 0 implies that
both tensors have collinear principal axes. We outline the
analogous situation for the spin vector: It is geometrically
clear that the spin S does not rotate, that is, S = S(t)e3 in some
time-independent basis if and only if the spin current vector
IS = Ṡ is collinear to S at all times.

We now outline a proof of this statement, which can be ex-
tended to the SQM. Assume S does not rotate; then S = S(t)e3

in some time independent basis ei . Then Ṡ = Ṡ(t)e3 = IS.
Thus, IS · S = ±|S||IS|e3 · e3 = ±|S||IS|. Conversely, assume
S · IS = ±|S||IS|, i.e., S = S(t)e3(t) and IS = IS(t)e3(t), but
for some time-dependent e3(t). One can derive a contradiction
from the latter assumption. First, we have Ṡ = Ṡ(t)e3(t) +
S(t)ė3(t) = IS = IS(t)e3(t). By assumption, the normalization
is preserved; that is, d

dt
(e3 · e3) = 2e3 · ė3 = 0. Thus, if ė3 ⊥

e3, we have Ṡ(t) = IS(t) and either S(t) = 0 (which implies
a trivial spin) or ė3 = 0, contradicting our assumption. This
completes the proof.

We now prove a similar statement for the SQM tensor Q
and its current IQ = Q̇,

Q has fixed principal axes ⇔ [Q,IQ]− = 0. (C1)

Assume Q = ∑
i Qi(t)eieT

i has a time-independent basis,
i.e., only the principal values Qi(t) change but the principal
axes ei do not rotate. Thus, Q̇ = ∑

i Q̇i(t)eieT
i = IQ =∑

ij Iij (t)eieT
j , implying Iij (t) = δij Q̇i(t) and consequently

[Q,IQ]− = 0. Now assume the converse, i.e., IQ and Q
commute. Since both are real, symmetric tensors, they can be

diagonalized and since they commute they have com-
mon principal axes: Q = ∑

i Qi(t)ei(t)eT
i (t) and IQ =∑

i Ii(t)ei(t)eT
i (t). We next derive a contradiction from

the assumption ėi(t) �= 0. We first find Q̇ = ∑
i[Q̇ieieT

i +
Qi(ėieT

i + ei ėT
i )] = IQ and note that ėieT

i is independent of
ekeT

k for all k because ėi ⊥ ek . Thus, we have Ii = Q̇i and
either Qi = 0 for all i or ėieT

i + ei ėT
i = 0, which would imply

ėi = 0. Thus, ei is time independent and the proof is complete.

APPENDIX D: CHARGE, SPIN, AND SPIN-QUADRUPOLE
CURRENT IN O(�)

In this section, we apply the general diagrammatic tech-
nique developed in Appendix E, accounting only for contri-
butions up to first order in the tunneling rate � assuming
spin-conserving tunneling. For the charge current and spin
current, the construction as described in Appendix E 7 gives
two contributing diagrams, depicted in Fig. 24(a).

In first order, there is only one irreducible contraction
possible. Furthermore, the H.c. indices η are fixed by the
observable vertex. However, there are two possibilities to
choose the charge indices χ for the tunneling double vertex.
The total sign of the diagram equals χ since we have (i) a factor
−1 due to one crossing, (ii) a factor χ̄ due to the early and
late vertices, and (iii) a factor + since there are no intermediate
vertices. This results in

〈
IL
Rμ

〉 = 2Im

[ ∫
dω1dω1′

1

i0 − ω1′ + ω1

×
∑

ρ1ρ1′ τ1τ1′

∑
χ

χ
(
FL

χ

)
ρ1

(ω1)
(
FR

χ̄

)
ρ1′ (ω1′)

(
ťτ1 ťτ2

)
× tr

(
řρ ′

1
řτ2 řρ1rμřτ1

)]
, (D1)

where (Fi)ρi
= ν̄ri (ωi)f

ri

χ̄i
(ωi)

√
2[δρi ,0 + (1 − δρi ,0)nr Ĵ r

ρi
].

Note that rμ is associated with the current vertex and
therefore has no “check.” For our case, the tunneling is
spin-independent so that ťτ = √

2tδτ,0. We use furthermore
ř0 = r0/

√
2 = 1/

√
2, ři = √

2ri = √
2si for i = 1,2,3 and

tr
(
řρ1′ řρ1 řμ

)
= 1√

2
δμ0δρ1ρ1′ + 1√

2
δ̄μ,0

(
δρ10δρ1′μ + δρ1′ 0δρ1μ + iερ1′ ρ1μ

)
.

(D2)

FIG. 24. (Color online) Diagrams representing O(�) contribu-
tions to (a) charge current and spin current, (b) direct SQM current,
and (c) exchange-SQM current.
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We obtain the charge current (89) given in the main text,〈
IL
N

〉 = 2Im

{∫
11′

1

π
�LR

11′ (−11′ )
(
1 + nL

1 · nR
1′
)

×
[
P

1

ω1 − ω1′
− iπδ(ω1 − ω1′)

]}
= 2

∫
11′

�11
(
1 + nL

1 · nR
1

)
, (D3)

and for the spin current we obtain Eq. (90) of the main text,〈
IL
Si

〉 = 2Im

{∫
11′

�LR
11′ (−11′ )

×
[
P

1

ω1 − ω1′
− iπδ(ω1 − ω1′)

]
× 1

2

[
nL

1 + nR
1′ + i

(−nL
1 × nR

1′
)]}

(D4)

=
∫

1
�1

[
1

(
nL

1 + nR
1

) + nL
1

ν̄R
1

× βR
1 + βL

1 × nR
1

ν̄L
1

]
.

(D5)

Here we introduced the short-hand notations �1 = �LR
11 , nr

1 =
nr (ω1) and furthermore

�LR
11′ = �RL

1′1 = 2π |t |2ν̄L(ω1)ν̄R(ω1′), (D6)

11′ = f R
+ (ω1′) − f L

+ (ω1), (D7)

βr (ε) = −
∫

dωP
f r

+(ω)ν̄r (ω)nr (ω)

ω − ε
. (D8)

Here P ( 1
z
) = Re( 1

z+i0 ) denotes the principal value.
The calculation of the SQM current in O(�) for spin-

independent tunneling proceeds in a similar way. However,
due to its two-particle nature, there are two pairs of diagrams
with different contraction topologies, which make up the direct
[Fig. 24(b)] and the exchange contribution [Fig. 24(c)] to the
SQM current, respectively. Each pair differs with respect to
charge indices.

On the level of diagrams, one immediately sees that
the expressions involving the spin operator and the spin
current operator factorize for the direct contribution since
the contraction labeled with 2′ in Fig. 24(b) does not cross
any other lines. This corresponds to the product of the
expectation value of two operators. Therefore, without any
further calculation, we obtain〈

ILL
Q

〉
dir = 2

〈
IL

S

〉 � 〈SL
〉
, (D9)

where 〈IL
S 〉 is the previously calculated spin current (D5). The

evaluation of the exchange contribution is more complicated
because the 2′ contraction does cross other lines. Applying the
diagram rules from Appendix E 8, we obtain〈

ILL
Q

〉
ex = 2 · 2

∑
χ

χ̄ Im
∫

dω1dω1′dω2′

×
2t2f L

− (ω2′)f L
χ (ω1)

(
FR

χ̄

)
ρ1′ (ω1′)

i0 + ω1 − ω1′

×AL
μν tr

(
řμs � řνsřρ1′

)
, (D10)

where the 2DOS (16) enters through the matrix AL
μν given by

Eqs. (A12)–(A15). The first factor 2 comes from Hermitian
conjugation symmetry; the second factor of 2 is due to the
product rule when applying the derivative to the SQM operator,
which is quadratic in spin [cf. Eq. (85)]; and the third one in
the second line is associated with the SQM current vertex (see
Appendix E 8). The sign factor is obtained as follows: The
number of crossings is even and the intermediate spin vertex
has ηe = +, giving no sign, but from the early and late vertex,
we obtain a sign factor χ̄ . It remains to calculate the spin
trace by employing the anticommutation relations of spin- 1

2
operator algebra and the identity s � s = 0 [cf. Eq. (51)]:〈

ILL
Q

〉
ex = 2

∫
1,2′

f L
+ (ω2′)�LR

1 1

×
[(

AL
12′

)
0i

ν̄L
1

nR
1 ei � ĴR +

(
AL

12′
)
ij

ν̄L
1

ei � ej

]

+ 2
∫

1,1′,2′
f L

+ (ω2′)�LR
11′ 11′P

1

ω1 − ω1′

×
[(

AL
12′

)
ij

ν̄L
1

nR
1′ei � (ej × ĴR)

]
(D11)

= −2
∫

1
�LR

1 1
[
ãL

1 nR
1 ĴL � ĴR + aL

1 ĴL � ĴL
]

− 2
∫

1,1′
�LR

11′ 11′P
1

ω1 − ω1′

× [
aL

1 nR
1′ ĴL � (ĴL × ĴR)

]
. (D12)

Restoring all indices explicitly, we obtain Eq. (91), the main
result of the paper. Moreover, we identified the spin-anisotropy
functions (104) and (66):

aL(ω) =
∫

dω′f L
+ (ω′)

∑
σσ ′

σσ ′

4

νL
σσ ′(ω,ω′)
ν̄L(ω)

, (D13)

ãL(ω) =
∫

dω′f L
+ (ω′)

∑
σσ ′

σ ′

4

νL
σσ ′(ω,ω′)
ν̄L(ω)

. (D14)

APPENDIX E: COVARIANT REAL TIME
DIAGRAMMATICS

In this appendix, we give a self-contained derivation of
the technique used for calculating the charge, spin-dipole and
SQM currents. Using this technique the actual calculation
becomes very compact and is presented in Appendix D. The
interest in presenting the derivation here lies in three factors.
(i) The real-time technique is more general and can be applied
to more complex systems containing strongly interacting
localized systems. Therefore, it is not often applied to nonin-
teracting systems since other approaches are available in that
case. However, for the calculation of multiparticle averages,
its practical rules of calculation prove to be very convenient.
Therefore, it is of interest to point out how the technique
simplifies when applied to noninteracting problems. (ii) We
reformulate the real-time technique here such that one can
deal more efficiently with any nontrivial spin dependencies.
In a forthcoming work we show that this generalizes to the
more complex cases.22 (iii) Finally, it is also of great help to
have these simpler calculations, formulated in the same way,
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for comparison to the more complex ones (for which other
approaches do not work anymore).22

After reviewing the compact Liouville space notation40–42

in Appendix E 1, we indicate how the general real-time
approach simplifies and show that the calculation of operator
expectation values in the long-time limit and to any order
in the tunnel-coupling � = 2πνLνR|t |2 amounts to evalu-
ation of irreducible diagrams in a perturbation expansion
(Appendix E 3). The central technical achievement of this
paper is a covariant formulation of these diagram rules for
the charge, spin-dipole, and SQM current: The expressions
they produce are manifestly invariant under the change of
the coordinate system and of the spin-quantization axis (cf.
Secs. III B1 and III B). They are thus coordinate-free both in
real space and in Hilbert/Liouville space. This reformulation
is crucial to keep the calculation of the nonequilibrium steady-
state average of the SQM tractable. The required steps are

(1) separation of spin and energy dependence in the
diagrammatic expressions, recasting the spin part as traces
over Pauli operators (Appendix E 4);

(2) collection of all sign factors (Appendix E 5);
(3) halving the number of diagrams by exploiting their

complex conjugation symmetry (Appendix E 6);
(4) identification of observable-specific diagram rules for

charge, spin-dipole (Appendix E 7); and finally
(5) spin-quadrupole current (Appendix E 8).
To our knowledge, steps (1), (3) and (5) have not been

conveniently integrated into the real-time diagrammatic tech-
nique so far. We note that the technique formulated is more
general than the problem of interest in two ways: It applies to
(i) arbitrary orders of the tunnel coupling and (ii) models with
spin-dependent tunnel amplitudes.

1. Compact notation in Liouville space

The calculation is formulated entirely in Liouville space,
the space of linear operators acting on a Hilbert space of
a quantum mechanical system. The linear transformations
of operators, the elements of Liouville space, are called
superoperators. Although our notation follows Ref. 40 and
recent developments reported in Ref. 42, we have made
some further convenient modifications which warrant some
discussion.

Similar to any usual operator, any superoperator can be
expressed in terms of field superoperators, which we define
following42

J1· = (−χ1η1)N
{

cr1η1n1k1σ1 · , χ1η1 = −,

·cr1η1n1k1σ1 , χ1η1 = +.
(E1)

Here the “·” denotes the operator argument of the superopera-
tor, and N · = [N,·] is the particle number superoperator. The
subscript “1” is an abbreviation for all indices,

1 = (χ1,η1,r1,n1,k1,σ1). (E2)

Here η1 is the Hermitian conjugation index, which determines
whether the field operator is a creation operator (cη1=− = c†) or
an annihilation operator (cη1=+ = c) of an electron in electrode
r1 in band n1 in mode k1 with spin σ1. This notation uses the
charge index χ1, which distinguishes whether physically the
total superparticle number is increased (χ1 = +) or decreased

(χ1 = −) by the action of J1 [note η1 does not have such
physical meaning: an annihilation (creation) operator acting
from the right increases (decreases) the superparticle number].
We prefer this physically more meaningful charge index χ

instead of the commonly used Keldysh index p = −χη.
The time evolution of the density operator in Appendix E 3

is generated by the Liouvillian superoperator L = L0 + LT

describing the internal evolutions, L0· = [H0,·], and the one
due to tunneling, LT = [HT ,·]. Using Eq. (E1), we obtain

L0 = δχ1,+ε1J1J1̄, (E3)

with ε1 = ε
r1
n1k1σ1

and

LT = T11′J1J1′ , (E4)

where

T11′ = χ̄1′δη1η̄1′ δχ1χ̄1′ δr1Lδr1′R
[
T LR

σ1σ1′
]η1′

. (E5)

Here we extended the use the Hermitian-conjugation index η as
superscript to indicate complex conjugation, i.e., [T LR

σ1σ1′ ]
+ :=

T LR
σ1σ1′ and [T LR

σ1σ1′ ]
− := T LR∗

σ1σ1′ . In Eqs. (E3) and (E4) we
implicitly sum over all indices contained Eq. (E2).

Our main interest is to deal efficiently with the dependence
of expressions on the choice of the spin-quantization axis.
However, for noncollinear spin-polarized systems, there exists
no specific choice for the spin-quantization axis that simplifies
the calculations considerably. The best strategy is therefore to
completely remove a reference to the spin quantization axis
in all expressions. We start with the tunneling Liouvillian, for
which we allow for any type of symmetry-breaking tunneling
processes, for example, due to a magnetic impurity in the
barrier. The most general tunneling amplitudes reads

T LR
σσ ′ = L〈σ |ť · ř|σ ′〉R, (E6)

where ř · ť = ∑3
μ=0 řμťμ. Here ř is a four-component vector

of operators ř0 = 1/
√

2 and ři = √
2si for i = x,y,z forming

a basis for the Liouville space formed by operators acting
on the spin- 1

2 Hilbert space. The basis is orthonormal with
respect to the scalar product (A,B) = tr(A†B). The tunneling
is completely specified by a four-component vector ť: If LT

is spin-conserving, as assumed in the main part of the paper,
the spatial components of ťμ = δμ,0

√
2t must be zero [and

Eq. (E6) reduces to Eq. (11) of Sec. II]. Spin-nonconserving
tunneling processes are thus introduced by any further nonzero
components ťi = ti/

√
2 for i = x,y,z. Note that the spin-

dependence through the bra and ket in Eq. (E6) merely reflects
the choice of (different, arbitrary) quantization axes for the
field operators in the reservoirs connected by the tunneling:
Clearly it should cancel out of the final answer. Written in the
form (E6), the tunneling Liouvillian is explicitly covariant:
Changing either of these quantization axes merely changes the
meaning of the dummy indices σ,σ ′. There is also no explicit
dependence on the coordinate system either, since ť · ř is a
coordinate-free expression.

2. Wick’s theorem for superoperators

For the perturbative calculation of expectation values in Ap-
pendix E 3, we use Wick’s theorem for the field superoperators
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as defined in Eq. (E1), which reads as43

〈Jn · · · J1〉 = tr(Jn · · · J1ρ0) =
∑
contr.

(−1)NP

∏
i<j

γji, (E7)

with the grand canonical distribution

ρ0 =
∏

r

1

Zr
e−(Hr

0 −μNr )/T r

, (E8)

the partition function Zr = trr (e−(Hr
0 −μNr )/T r

), and the con-
traction function

γ11′ = (−χ1′η1′)δ11̄′ |excl.χf1′ . (E9)

Here f1 = f [χ̄1(εr1
k1σ1

− μr1 )/T r1 ] with the Fermi function
f (x) = 1/(ex + 1). In Eq. (E9), δ11̄′ |excl.χ denotes a Kronecker
symbol for all indices 1 and 1̄′ except for the charge indices χ .
In agreement with physical intuition, the charge index χ1′ at
the beginning of the process determines the type of distribution
function appearing: χ1′ = +(−) corresponds to a particle
(hole).44 In Eq. (E7), we sum as usual over all possible pair
contractions and NP is the signature of the permutation that
is needed to disentangle all pairs of contracted superoperators
while keeping the order of the contracted operators within a
pair. The easy form of Eq. (E7) relies on the fact that the field
superoperators obey anticommutation relations,

[J1,J1′ ]+ = (−χ1η1)δ11̄′ , (E10)

with δ11̄′ = δr1r1′ δk1k1′ δn1n1′ δσ1σ1′ δχ1χ1̄′ δη1η1̄′ with the conjugate
multi-index:

1̄ = (−χ1,−η1,r1,n1,k1,σ1). (E11)

The inclusion of the fermion-parity superoperator (−χ1η1)N

in Eq. (E1) is crucial for the validity of Eq. (E10) from which
Eq. (E7) basically follows, as pointed out by Saptsov et al.42

3. Perturbative calculation of expectation values

The expectation value of an observable A is given by

〈A〉(t) = Tr(Aρ tot(t)), (E12)

where ρ tot(t) = e−iL(t−t0)ρ0 is the time-dependent density op-
erator of the total system and L = L0 + LT is the Liouvillian.
We are interested in the long-time limit of Eq. (E12), which
by virtue of the final value theorem,

A := lim
t→∞ tr(Aρ(t)) = (−i) lim

z→i0
z〈A〉(z), (E13)

follows from the Laplace transform 〈A〉(z) = ∫ ∞
t0

dteizt 〈A〉(t)
of 〈A〉(t) with Im(z) > 0. We obtain

〈A〉(z) = Tr

(
A

i

z − L0 − LT

ρ0

)
. (E14)

The trace can be evaluated if we rewrite the resolvent
(z − L0 − LT )−1 in terms of a power series in LT , apply
Wick’s theorem, collect diagrams irreducibly contracted to
the A operator into a self-energy kernel �irr

A (z), and re-sum the
series

〈A〉(z) = �irr
A (z). (E15)

To compare this simple result to the usual situation considered
in the real-time approach, we assume for a moment that the

leads are tunnel-coupled to an interacting system with a few
degrees of freedom. Since only the noninteracting leads can
be integrated out by applying Wick’s theorem, the objective is
to derive an exact effective theory for the reduced density
operator of the system ρ = Trresρ

tot. By merely replacing
Tr(A . . .) → Trres(. . .), one may take the same steps as above
to express the Laplace transform of the reduced density matrix
as

ρ(z) = Trres

(
i

z − L0 − LT

ρ0

)
(E16)

= i

z − L − �(z)
ρ(t0), (E17)

where �(z) is the (reducible) self-energy. Equation (E16)
is used as a starting point for a diagrammatic perturbation
theory in the coupling LT . In our case, we have simply
no “reduced system”, i.e., L = �(z) = 0 and ρ(z) = i/z for
ρ(t0) = Trresρ

tot(t0) = 1 when we take the trace over leads.
Most of the steps that follow up can be generalized to

the case where there is a nontrivial system coupled to the
reservoirs,22 making the following analysis of interest.

The left action of A, considered as a superoperator, can be
expressed in terms of field superoperators, i.e.,

A· = Aa1,...,ama1′ ,...,am′ Ja1 · · · Jam
Ja1′ · · · Jam′ , (E18)

where we assume rai
= L and rai′ = R, which can always

be achieved by a rearrangement of the field superoperators
by virtue of the anticommutation relation (E10). Using LT =
T11′J1J1′ and L0J1 = J1(L0 − x1) with x1 = η1ε1, we can shift
all field superoperators to the left. Since ρ0 is an eigenstate of
the internal Liouvillian, that is, L0ρ0 = 0, we can pull ρ0 also
to the left, setting all L0 to zero in the resolvents and finally
apply Wick’s theorem Eq. (E7). We obtain for the nth-order
contribution to the Laplace transform:

�irr
A (z)|n =

∑
contr.,{k}

Aa1,...,am′ Tnn′ · · · T11′

×
n∏

k=1

1

z + Xk

(−1)Np

∏
i<j

γji . (E19)

The sum includes all possible pair contractions and all indices
{k} = {a1, . . . .,am′ ,n,n′, . . . .,1,1′}. The frequencies in the
propagators read

Xi =
∑
j�i

(ηjεj + ηj ′εj ′ ). (E20)

We represent the expressions contributing to Eq. (E19)
by diagrams as follows: Each tunneling amplitude Tii ′ is
associated with a double vertex (two dots) on a line. The
line represents the free propagation of the system, directed
from right (earlier times) to left (later times), so that the order
of the vertices naturally corresponds to the order of the field
operators in the expression Eq. (E19). The leftmost element
is a 2m vertex with 2m dots, which represents the m particle
observable A. As usual,40 contractions are depicted by lines
above the propagator line connecting two associated dots i and
j . Furthermore, the electrode indices of the dots are fixed: All
i indices belong to r = L (solid dots in Fig. 25), whence all i ′
indices belong to r = R (open dots in Fig. 25).
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FIG. 25. (Color online) Examples for Liouville space diagrams:
(a) two contracted tunneling Liouvillians, (b) Hermitian conjugation
indices expressed by directions of arrows, (c) reading off the
propagator for a certain segment (for the segment indicated by the
vertical dashed line, we obtain X2 = ω1 − ω2). Charge indices χ are
denoted by + or − below the propagator line, the factors ηω appearing
in Eq. (E20) are shown for the sake of completeness.

The factor Xi of the ith propagator segment can be readily
read off from the diagrams as illustrated in Fig. 25: First, all
energies associated with contractions that connect dots that lie
on the same side of this segment do not contribute to Xi [cf.
Fig. 25(c), blue contractions]. For “later” dots this is clear as
they are always excluded in the sum of definition (E20). For
“earlier” dots the respective energy occurs twice in the sum
with opposite sign ηi [enforced to the contraction (E9)]. Thus,
only the contraction lines that intersect a vertical line drawn at
the ith propagator segment contribute to Xi [red contractions
in Fig. 25(c)]. To determine Xi completely, we need to know
the H.c. indices ηi , which we depict by arrows attached to the
contraction lines: If a vertex has ηi = +(−), the arrow points
towards (away from) this vertex [see Fig. 25(b)].

Finally, we indicate the charge index χ = ± of every
dot in the diagram by a sign below the propagator line [see
Fig. 25(c)]. Note that charge indices χ of a double vertex must
be opposite by Eq. (E5). Our diagrams therefore represent the
algebraic expression associated with both a fixed contraction
structure and fixed (η,χ ) indices. The latter is a distinction
to the Liouville space diagrams used, e.g, in Ref. 40: Here
distinct combinations of (η,χ ) represent distinct diagrams.
Hence, the nth-order contribution 〈A〉n to the expectation value
of A is represented by a set of diagrams covering all allowed
combinations contractions and all combinations for (η,χ )’s.

For the ensuing discussion, we first ignore any sign factors
in 〈A〉n(z), for example, due to the contraction functions. This
discussion and the question of which diagrams are allowed are
most conveniently postponed to the very end of our derivations.

4. Energy-spin separation

We now arrive at the crucial part of the derivation of
covariant diagram rules: the separation of the spin-dependent
and energy-dependent parts in �irr

A (i0) and recasting the former
as a trace in spin space similar to Appendix A 2. For the sake
of simplicity, we first replace the observable vertex with a
tunneling vertex and discuss modifications afterwards.

In Eq. (E19), we have three different spin-dependent
factors: (i) the energies εi = ε

ri

nikiσi
, (ii) the contractions γij ∝

δσiσj
, and (iii) the tunneling amplitudes tσσ ′ .

(i) + (ii) Any pair of contracted indices, say i and j occur
in Eq. (E19) with a sum of the form∑

ni ,ki

δσiσj
g
(
ε

ri

nikiσi

)
, (E21)

where g is some function of ε
ri

nikiσi
= ε

rj

nj kj σj
. We can get rid

of the spin dependence of the energies by introducing the
spin-dependent DOS, proceeding analogous to the derivation
of Eq. (45). Equation (E21) then equals∫

dωiν̄
ri (ωi)g(ωi)

[
ri
〈σj |ř · ňri (ωi)|σi〉ri

]η̄i
. (E22)

The scalar product now involves a new 4-vector with ň(ω) =√
2(1,nr (ω)Ĵr ). Furthermore, we artificially introduced the

complex conjugation by η̄ even though the matrix elements
r〈σ |ř · ňr (ω)|σ ′〉r are real. This will become advantageous for
later manipulations. We therefore simply replace εi with ωi in
Eq. (E19) and the sum over the index i now abbreviates also
an integration over ωi instead of a summation over ni,ki .

(iii) The spin-dependence of the tunneling amplitudes can
be rewritten as a matrix element in spin space, too:[

T LR
σσ ′

]η′ = [L〈σ |ť · ř|σ ′〉R]η
′
. (E23)

We next separate the frequency-dependent parts (propagators,
Fermi functions, ť and ň vectors) and the spin-dependent
matrix elements, which leads to

A|n =
∑

{κ,ρ,ωi }
(signs)(prop.)

[
· · · ťκi

· · · (Fi)ρi

π
· · ·

]
×

∑
{σ }

( · · · (řκi

)ηi′
σiσi′

· · · (řρi

)η̄k′
σkσk′ · · ·

)
. (E24)

The sum over the κi’s and ρi’s indicates the scalar products
of the respective 4-vectors with the matrix elements (řμ)σiσi′ of
the charge-spin operator řμ. For simplicity, we do not indicate
here the quantization axis for the basis states used to express
these matrix elements since we see below that this choice drops
out. We moreover introduced the abbreviation

(Fi)ρi
= ν̄ri (ωi)ň

ri

ρi
(ωi)f

ri

χ̄i
(ωi). (E25)

Interestingly, the sum over the spin indices factorizes into sums
over the spin indices of vertices that are connected in the dia-
grams in a loop (when formally considering contraction lines
to be connected at each double vertex [cf. Fig. 25(c)], which
consists of a single loop). The contribution of each loop can
be evaluated independently as follows: We start at an arbitrary
dot and follow the directed contraction line. For every loop
element we encounter (vertex, contraction), we put charge-spin
operators in a sequence from the right to the left into a trace. For
example, starting at the dot labeled 1′ in Fig. 25(c), we obtain
the expression tr(řκ1′ řρ1 řκ3′ řρ3′ řκ4′ řρ2 řκ2′ řρ1′ ). Thus, Eq. (E24)
becomes

A|n ∼ (signs)
∫

{ωi }
(propagators)

×
∏
loops

tr[· · · (ť · ř) · · · (Fi · ř) · · · ], (E26)

where we moved the frequency-dependent 4-vectors t and Fi

into the spin traces and restored the scalar products.
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The rest of this section is dedicated to prove this simple rule.
We therefore start from the sequence of matrix elements řσσ ′ ,
obtained by writing them down from the right to the left in the
order in which we encounter them when following a directed
loop. We have to prove that pairs of the same spin indices are
next to each other when we change all Hermitian conjugation
indices of the matrix elements in to in Eq. (E24) to + (except
for the left- and rightmost one), so that the expression can be
recast as a trace. We suppress the μ indices for convenience
and we let σprec denote a spin index of the preceding element
we have already run through and σsucc refers to a spin index of
the succeeding loop element. We have to insert the following
factors.

(i) For each contraction, put a factor ř
η̄early
σlateσearly where ηearly

is the H.c. index of the earlier vertex involved. We first note
that the H.c. index ηi of the vertex i at which we start to follow
a contraction line has always ηi = − (the arrow points away
from the vertex). We have to distinguish two cases: (ia) If we
start at the early vertex (e.g., contraction 1′ in Fig. 11), we have
ηearly = − and thus ř

η̄early
σlateσearly = ř+

σsuccσprec
; in case (ib) we start at

the late vertex [e.g., contraction 1 in Fig. 25(c)], so ηearly = +
and thus ř

η̄early
σlateσearly = ř−

σprecσsucc
= ř+

σsuccσprec
, using the Hermiticity

of the Pauli matrices.
(ii) For each double vertex, we put a factor ř

ηearly
σlateσearly . Again,

there are two cases: (a) If ηearly = +, we arrive at the earlier
vertex, so we have ř

ηearly
σlateσearly = ř+

σsuccσprec
[e.g., later double

vertex in Fig. 25(c)]; (b) if ηearly = − [e.g., earlier vertex
in Fig. 25(c)], we arrive at the later vertex, so we have
ř

ηearly
σleftσright = ř−

σprecσsucc
= ř+

σsuccσprec
. These considerations prove the

simple rule ∑
{σi ,σi′ }

ř+
σnσn′ · · · ř+

σ1σ1′ ř
+
σ1′σn

= tr(ř · · · ř). (E27)

Here we used that the matrix elements of adjacent Pauli
operators are taken for spin states with respect to the same
quantization axis; i.e., we can combine

∑
σ1′ ř

+
σ1σ1′ ř

+
σ1′σn

=
r1〈σ1|r̂|σ1′ 〉r ′

1 r ′
1
〈σ1′ |r̂|σn〉rn

= r1〈σ1|r̂ r̂|σn〉rn
and so on.

5. Sign factors

Having tackled the most tedious part, the spin and energy
dependence, it remains to collect all sign factors of an
expression from its representing diagram, yielding

signs = (−1)#cr.
∏

early+late
vertices

χe

∏
intermediate

vertices

ηe. (E28)

Here #cr. is the number of crossing contractions lines and
“e” always refers to the earlier vertex of each double vertex.
The meaning of early/intermediate/late vertices is depicted in
Fig. 26 and explained in the proof of Eq. (E28).

To prove Eq. (E28), we first note that there are three origins
for signs: (i) an overall permutation factor (−1)Np from Wick’s
theorem (E7), (ii) a factor (−χearlyηearly) for every contraction
[see Eq. (E9)], and (iii) a factor (−χearly) for every double
vertex [see Eq. (E5)]. The sign from (i) is readily obtained
from the number of crossing contraction lines in the diagrams,
giving the first factor of Eq. (E28). The signs due to (ii) and
(iii) can be determined together: First of all, the minus signs

FIG. 26. (Color online) Different types of vertices: late (double)
vertex (a), early (double) vertex (b), and intermediate double vertices
(c), (d). The corresponding sign factors are denoted below the vertex.
Note that χe,ηe refer to the earlier vertex of the double vertex and not
to being earlier in the contractions.

can be omitted since the number of contractions and double
vertices is always even. For the further procedure, it is helpful
to distinguish three types of vertices sketched in Fig. 26: (a)
“late (double) vertices”, where both vertices are the later ones
in their contractions. Then no signs due to contractions have to
be considered and only the charge index of the earlier vertex
occurs. We furthermore have (b) “early (double) vertices”
where both vertices are the earlier ones in their contractions.
The signs due to both contractions cancel each other since
charge and H.c. indices of both vertices in any double vertex
are opposite. Thus, the sign for this type of vertex is again given
by the earlier charge index. Finally, there are (c) “intermediate
(double) vertices,” where one of the vertices is earlier and the
other one is later in its contraction. The sign factor is in this
case the H.c. index ηearly of the earlier vertex of the double
vertex.

6. Hermitian conjugated partner diagrams

Since any observable must have a real expectation value,
the imaginary parts of all diagrams have to cancel each
other. In fact, diagrams come in complex conjugates pairs,
which are obtained from each other by inverting the H.c.
indices, or, diagrammatically speaking, by inverting all arrow
directions. Therefore, it is sufficient to take only one diagram
as a representative of both. We therefore obtain schematically
instead of Eq. (E26)

A|n ∼ 2Re(signs)
∫

{ωi }
(propagators)

×
∏

oriented
loops

tr[· · · (ť · ř) · · · (Fi · ř) · · · ]. (E29)

We next explicitly show how the complex-conjugation sym-
metry arises in our formulation of real-time diagrammatics.
Inverting all H.c. indices, ηi → η̄i , involves the following
modifications.

(i) The sign factor is negated. All charge indices may be
kept fixed except for those of the current vertex [see Eq. (E33)].
This involves an additional minus sign from the early and late
double vertices. The sign due to the intermediate vertices does
not change since their number #IV of this type of vertices
is always even. Reverting all ηe → η̄e therefore results in an
additional factor (−1)#IV = 1 compared to the original sign
factor.

(ii) The order of the Pauli operators in the spin trace is
inverted, yielding the complex conjugate of the original trace
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expression,

tr(ř1 · · · řn) → tr(řn · · · ř1) = tr(ř1 · · · řn)∗, (E30)

where we used ř
†
1 = ř1 and (ř†n · · · ř†1) = (ř1 · · · řn)†.

(iii) The propagators are mapped onto their negative Hermi-
tian conjugate since Xi → −Xi :

1

i0 + Xi

→ 1

i0 + (−Xi)
= −

(
1

i0 + Xi

)∗
. (E31)

As the number of propagators is odd, we obtain an additional
minus sign.

Since all remaining factors are real [cf. Eq. (E26)] and
have no further η dependence, we conclude that the mapping
ηi → η̄i results in the positive complex conjugate contribution
of the initial expression. Adding both these partner diagrams
gives two times the real part of one of the two diagrams,
proving Eq. (E29).

7. Covariant diagram rules for charge current and spin current

We first describe the modifications of the covariant diagram
rules required for the charge current and spin current, which
can be treated simultaneously as outlined in Sec. IV A. The
expressions for the current operator read [see Eq. (80)]

IRr
μ

=
∑

nn′kk′σσ ′
(−irμT )rr̄σσ ′c

†
rnkσ cr̄n′k′σ ′ − H.c., (E32)

with (rT )σσ ′ = ∑
τ rστ T

rr̄
τσ ′ . The structure of the current is

very similar to the tunneling Hamiltonian with the simple
replacement T rr̄

σσ ′ → (−irμT )rr̄σσ ′ . Introducing a superoperator
for the left action IRr

μ
· = IRr

μ
·, we may therefore treat the cor-

responding current vertices similar to the tunneling Liouvillian
by making the replacement

χ̄1′ [L〈σ1|ť · ř|σ1′ 〉R]η1′ → δχ̄1′η1′ ,+[(−i)L〈σ1|iRr
μ
|σ1′ 〉R]η1′ ,

(E33)

with iRr
μ

given by Eq. (E36) below. The restriction δχ̄1′η1′ ,+
is due to the fact that all field operators in IRr

μ
act from the

left, whereas the tunneling Liouvillian as a commutator also
possesses a part that acts from the right. Consequently, we
have accounted for the following modifications.

(i) Insert iRr
μ

instead of (ť · ř) into the spin traces.
(ii) Set η1′ = χ̄1′ = +. The first equality follows from the

factor δχ̄1′η1′ ,+ in Eq. (E33) and the second from the freedom to
chose one representative of the complex conjugated diagrams,
which we fix by an explicit choice for η1′ . Note that the
“missing” factor χ̄1′ = + in the second line of Eq. (E33) does
give any further modifications for this choice.

(iii) Replace Re(· · · ) → Im(· · · ) in Eq. (E29), which is due
to the additional factor (−i)η1′=+ = −i in Eq. (E33).

We now present a systematic way to draw all diagrams
and read off the respective nth-order contributions to the
expectation value IRr

μ
|n, schematically given by

IRr
μ
|n ∼

∑
irr.contr.
{χ,η}

2Im

{
(signs)

∫
{ωi }

(
· · · 1

i0 + Xi

· · ·
)

×
∏
loops

tr[· · · (ť · ř) · · · (Fi · ř) · · · ]

}
. (E34)

The first sum in Eq. (E34) adds up all possible diagrams,
whereas the residual term corresponds to an individual dia-
gram. All allowed diagrams contributing to IRr

μ
|n are obtained

by the following drawing instructions [an easy example is
given in Fig. 25(c)].

1. Propagator and vertices. For the nth-order contribution,
put 2n double vertices on a propagator line. The later (earlier)
vertex of each double vertex refers to the left (right) electrode.
Mark the latest vertex with the symbol IRr

μ
, designating this

one to be the observable vertex. Symbols: A horizontal line
represents the propagator line; double dots encircled by a line
depict the double vertices; solid (open) dots refer to the left
(right) electrode, respectively.

2. Contractions. Construct all possible irreducible contrac-
tions. Solid (open) vertices are only permitted to be contracted
with solid (open) vertices. Symbols:Contractions are depicted
as solid lines above the propagator; attach an “i”, denoting the
Liouville index of the earlier dot in each contraction.

3. Hermitian conjugation indices. Construct all possibilities
for the choice of the H.c. indices, obeying the following rules.
(i) The H. c. indices of each double vertex have to be opposite,
(ii) the earlier H.c. index of the observable vertex is + , and
(iii) the H.c. indices have to alternate in each loop. Symbols:
Arrow pointing to (away from) a dot is associated with η = +
(η = −).

4. Charge indices. Construct all possible charge index
arrangements, restricted by (i) the charge indices of a double
vertex have to be opposite, (ii) the charge indices of the
observable vertex have to be opposite to the H.c. indices.
Symbols: + ,– below the vertex.

Translating diagrams into algebraic expressions, schemati-
cally indicated in Eq. (E34), proceeds as follows.

1. Propagators. For each propagator segment following a
tunneling vertex write down a factor

1

i0 + X
with X =

∑
(ωearly − ωlate). (E35)

The sum in X involves all frequencies associated with
contractions that cross over that segment from the left to the
right (earlier frequency) or from the right to the left (later
frequency), respectively.

2. Loopwise evaluation of spin traces. Start at any point and
follow the loop in the direction of the arrow. Insert from the
right to the left into a trace in spin space the following terms
when encountering

(i) a tunneling vertex, ť · ř;
(ii) an observable vertex,

iRr
μ

=
{−(ť · ř)rμ, r = R,

+rμ(ť · ř), r = L;
(E36)

(iii) a contraction, Fi · ř where i refers to the earlier dot,
(Fi)ρi

= ν̄ri (ωi)f
ri

χ̄i
(ωi)ňri

ρi
(ωi), and

ňr
ρ =

√
2

{
1, ρ = 0,

nr Ĵ r
ρ , ρ = 1,2,3.

(E37)

Repeat this for all other loops in the diagram.
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3. Signs. Put a factor

(−1)#cr. ∏
early+late

vertices

χe

∏
intermediate

vertices

ηe,

where #cr. is the number of crossings of contractions, the
subscript “e” refers to the earlier dot of a vertex. For the
meanings of late, early, and intermediate double vertices see
Fig. 26.

4. Complete expectation value. Multiply all expressions
obtained from steps 1, 2, and 3 and integrate over all
frequencies {ωi}, where i refers to the indices associated with
the contractions. Take 2Im(· · · ) of this expression and sum up
the contributions of all valid diagrams.

8. Covariant diagram rules for spin-quadrupole current

The calculation of the expectation value of the SQM current
requires some modifications compared to that of the charge and
spin-dipole currents. The reason is that the spin-quadrupole
current operator for node 〈rr ′〉, i.e., Irr ′

Q = i[HT ,Qrr ′
], is a

dyadic of two vector operators:

Irr ′
Q = 1

2 [grr ′
ISr � Sr ′ + (r ↔ r ′) + H.c.]. (E38)

We remind the reader of the factor grr ′ = 2 if r �= r ′ and grr =
1. Crudely speaking, the diagrams for the spin-quadrupole
current have the same structure as for the spin current, but
include an additional spin vertex. However, the spin operator
has to be treated differently from the tunneling or current
vertices (E32) as is contains only one sum over the k modes
[see Eq. (40)] instead of two. We discuss this point later in
detail.

We restrict ourselves in the following to spin-independent
tunneling. If and only if this is the case, we may replace Ir

S
with 2Irr̄

Sr , where

Irr̄
Sr =

∑
k,k′,σ,σ ′

[−ir〈σ |iSr |σ ′〉r̄ ]c†rkσ cr̄k′σ ′ , (E39)

with r̄ = R,L for r = L,R and iSr defined in Eq. (E36) for μ =
x,y,z. Note that Irr̄

Sr only accounts for the contribution to the
spin current for electrode r due to tunneling from subsystem
r̄ to r , but not for tunneling from r to r̄ . Using Eq. (E38), the
expectation value of the spin-quadrupole current is then given
by 〈

Irr ′
Q

〉 = 2grr ′
Re

[
tr
(
Irr̄

Sr � Sr ′)
ρ(t)

] + (r ↔ r ′). (E40)

In the following, we discuss the modifications that are
necessary to calculate Eq. (E40) starting from the spin current.
First of all, IQrr′ contains four field operators so that the
associated observable vertex is a quadruple vertex instead of
a double vertex. This is sketched in Fig. 27: The later two
vertices refer to the spin current operator (whose dots refer
to two electrodes) and the earlier vertices refer to the spin

FIG. 27. (Color online) SQM current vertex for r = L, see text.

operator (whose dots refer to only one electrode). As all field
operators act from the left, all charge indices are opposite to the
H.c. indices. The action of the spin operator can be expressed
by

Sj ∼ δη1′ ,+δ−η1′χ1′ ,+δχ1,χ̄1′ δη1,η̄1′ δk1k1′
(
sr
j

)
σ1σ1′ J1J1′ .

(E41)

This fixes ηearly = χ̄early = +.
The technical challenge for implementing the spin-

quadrupole current vertex is the single k summation in the spin
operator. If we contract the two dots within the spin operator
this is no problem since the contraction also sets the k indices
to be the same anyway. However, if the two dots are contracted
with other vertices, their k’s are not independent, so we
cannot introduce the one-particle DOS for both contractions
individually (denoted by 1 and 1′ in the following). Instead,
we obtain an expression of the form∑

τ1τ1′

∑
k1

δσ1τ1′ δσ1′ τ1g
(
εr ′
n1k1τ1′ ,ε

r ′
n1k1τ1

)
r ′ 〈σ1|s|σ1′ 〉r ′ , (E42)

where g is some function and the Cartesian index j refers
to the spin operator. We may treat this expression similar to
the calculation of the exchange contribution to the SQM in
equilibrium (see Sec. II C) by introducing the two-particle
density of states νr

σ1σ1′ (ω1,ω1′ ) (16) and expressing the latter
by Eq. (A11). Then the term in (E42) equals∫

{ω1,ω1′ }
g(ω1,ω1′ )2Ar ′

μνr ′ 〈σ1|řμsřν |σ1′ 〉r , (E43)

where the 2DOS (16) enters through the matrix Ar
μν given by

Eqs. (A12)–(A15). Consequently, the frequency and energy
part of the diagrams can be treated without modification as
explained in Appendix E 4. Furthermore, the signs can be
treated without modifications as well as we can simply omit
the factor χ̄1′ = + in Eq. (E41). In contrast, the spin part
is altered: We now insert for the spin vertex and the two
associated contractions the factor

√
2Ar

μν řμsj řν into the spin
trace.

Finally, we mention that the symmetrization in r ↔ r ′ and
multiplying with grr ′

in Eq. (E40) is equivalent to multiplying
with a factor of 2 and symmetrizing in r ↔ r ′ only for r �= r ′.

We now summarize the modifications of the diagram rules
for the SQM current compared to the spin current. We first
state the drawing rules.

1. Propagator and vertices. The observable vertex consists
of four vertices, the later two depicting ISr and the earlier two
depicting Sr ′

.
2. Contractions. No changes.
3. Indices. The H.c. indices of the observable vertex are

fixed to (–, + ,–, + ) and the charge indices are opposite to
this.

The changes in the rules for translation into algebraic
expressions are as follows.

1. Propagators. No changes.
2. Evaluation of loops. If the vertices associated with Sr ′

in Eq. (E40) are (a) contracted with each other, then insert
Fr ′

+(ω1′) · řs. If they are (b) contracted with other vertices, then

insert 2t2f
r1
χ̄1

(ω1)f r1′
χ̄ ′

1
(ω1′)Ar ′

μν řμsřν .
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This accounts for both dots of the spin double vertex and
their contractions. Here 1 (1′) refers to the earlier indices of the
contractions of the later (earlier) dot in the spin double vertex.

3. Signs. For the evaluation of the signs, treat the SQM
current vertex as two double vertices.

4. Complete expectation value. Multiply with a factor
of 2 and retain the symmetric and traceless parts of the
tensor-valued result ∼iSr ⊗ s. If r �= r ′, symmetrize the result
in r ↔ r ′.
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