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The LDA+DMFT �local density approximation combined with dynamical mean-field theory� computation
scheme has been used to study spectral and magnetic properties of FeSi and Fe1−xCoxSi. Having compared
different models, we conclude that a correlated band insulator scenario in contrast to Kondo insulator model
agrees well with FeSi band structure and experimental data. Coulomb correlation effects lead to band narrow-
ing of the states near the Fermi level with mass renormalization parameter m��2 in agreement with the results
of angle-resolved photoemission spectroscopy. Temperature dependence of spectral functions and magnetic
susceptibility calculated in DMFT reproduces transition from nonmagnetic semiconductor to metal with local
magnetic moments observed experimentally. Cobalt doping leads to ferromagnetism that has itinerant nature
and can be successfully described by the LDA+DMFT method.
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I. INTRODUCTION

The narrow-gap semiconductor FeSi demonstrates an in-
teresting interplay between magnetic and electronic proper-
ties. Magnetic susceptibility temperature dependence shows
maximum at 500 K and Curie-Weiss behavior at higher
temperatures.1 While intrinsic magnetic susceptibility van-
ishes below 50 K, FeSi does not show any sign of spin or-
dering down to the lowest temperatures.2 Photoemission3 and
optical experiments show an energy gap of about 60 meV at
low temperatures that is gradually filled with temperature
increase.4 A resistivity temperature dependence shows tran-
sition from a narrow-gap semiconductor to a bad metal.5 Co-
balt doping results in ferromagnetic metal state for
Fe1−xCoxSi.6

Several models have been suggested to explain the un-
usual temperature dependence of the FeSi physical properties
ranging from spin fluctuations7 to phenomenological models
assuming two narrow d bands in the vicinity of the band
gap.8,9 Such density of states �DOS� models are similar to a
Kondo insulator description and due to the striking similari-
ties in the physical properties of these Kondo insulators it
was claimed that FeSi is the first Kondo insulator containing
no f electrons.10,11

Historically, the first FeSi model was proposed by Jac-
carino et al.1 To describe the unusual magnetic susceptibility
and specific heat, a model DOS with extreme narrow-band
peaks around a small energy gap was proposed. Despite the
fact that the model fitting results were in good agreement
with experimental data for the susceptibility this picture con-
tradicts a band structure calculation12 where no unphysically
narrow bands were obtained.

The next model proposed to describe electronic and mag-
netic properties of FeSi was the Kondo insulator model.13

The motivation of applying the Kondo model to explain
physical properties of FeSi was that the spin-fluctuation

spectra of CeNiSn and FeSi are similar. According to this
model, a set of localized atomiclike electron levels interact
with a wide itinerant band. The insulating state scaled by a
Kondo temperature TK is the result of a weak hybridization
between the localized and itinerant bands. The implementa-
tion of the Kondo insulator model to FeSi compound is how-
ever questionable since the band structure of FeSi shows a
strong hybridization between the Fe 3d and Si p states. Also
the magnetic interactions in FeSi are essentially ferromag-
netic and not antiferromagnetic as it would be expected from
a Ruderman-Kittel-Kasuya-Yosida �RKKY� picture. For all
these reasons it is desirable to have a microscopic model
based on the realistic band structure which can reproduce
experimental data.

First-principles band structure calculations performed by
Mattheis and Hammann12 have shown that the energy gap
value of 0.1 eV is essentially smaller than the width of the
band above the Fermi level ��0.5 eV�. Band-structure
analysis led the authors to conclusion that hybridization
between Fe d and Si p states is very strong. These results
do not support the Jaccarino’s model as well as the Kondo
scenario.

Recently, another model of a correlated band insulator
�CBIM� was proposed by Kuneš and Anisimov.14 Using the
dynamical mean-field theory �DMFT� the authors have taken
into account local dynamical correlations for a gapped local-
density approximation �LDA� spectral function of FeSb2 that
experimentally demonstrates a temperature-dependent transi-
tion from nonmagnetic semiconductor to metal with local
moments similar to FeSi. It was found that in DMFT the
energy gap is reduced due to the correlation effects by a
factor of 2 in comparison with the LDA value. Within the
CBIM picture bands above and below the energy gap are
formed by nonlocal bonding and antibonding orbital combi-
nations. The account of the on-site Coulomb interaction
leads to a competition between localization and formation of
the nonlocal bonds. The DMFT calculations allowed then to
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successfully reproduce temperature dependence of magnetic
susceptibility, resistivity, and optical conductivity experi-
mentally measured in FeSb2.

Recent angle-resolved photoemission experiments15 have
revealed a considerable renormalization of the energy bands
in FeSi. The authors estimated an effective band mass renor-
malization m� /m�2. As a consequence, the LDA band gap
of 100 meV is renormalized by a factor of 0.5–50 meV in
agreement with other experimental data.

We summarize the parameters of the models used to de-
scribe FeSi in Table I. The basic difference between Kondo
insulator and CBIM models is a ratio between the energy gap
value Egap and a width W of the bands around the gap. While
the Kondo insulator model requires W /Egap�1 to give rea-
sonable results, CBIM uses W /Egap�1 in agreement with
the FeSi realistic band structure.12

This paper is aimed to provide microscopic analysis of
hybridization and correlation processes in FeSi. We start
from construction of a simple band insulator model that cap-
tures the essential hybridization effects between Fe 3d and
Si 3p states in FeSi �Sec. II A�. This model demonstrates an
energy gap that is five times narrower than the width of
bands. In order to investigate correlation effects we define a
density of states model based on the LDA calculations for
FeSi and solve it using the dynamical mean-field theory
�Sec. II B�. A strong renormalization of DOS near the Fermi
level was found in the DMFT calculations that is in good
agreement with a band narrowing observed in the recent
angle-resolved photoemission spectroscopy �ARPES� experi-
ments. The temperature increase in the DMFT calculations
results in a transition from a nonmagnetic insulator to a bad
metal with local moments in agreement with experimental
data. Having encouraged by these results, we investigated a
doped FeSi model to study the magnetic properties of
Fe1−xCoxSi alloys �Sec. III�. We demonstrated that a good
agreement between calculated and experimental values for
magnetization M as a function of doping x can be achieved
using the LDA+DMFT method.

II. FeSi

A. Band effects

The crystal structure of FeSi corresponds to four formula
units in the unit cell and its band structure is rather compli-
cated for analysis using a simple model. To provide a better
understanding of FeSi band structure near the Fermi level
Mattheiss and Hamann12 have proposed to consider the
closely related phase with the symmetry of the rocksalt struc-
ture. The latter phase can be obtained from original crystal

structure by a relatively small shift of atomic positions. They
have shown that the origin of the energy gap in FeSi can be
traced to a pseudogap that is already present in the rocksalt
phase. This result is a starting point of our investigation that
is aimed to construct a minimal realistic band insulator
model which captures main features of LDA electronic spec-
trum of FeSi.

As the first step we studied effects of atomic positions
shift on the band picture of FeSi. For that purpose we carried
out calculations using the tight-binding linear muffin-tin or-
bital approach in atomic sphere approximation �STUTTGART

LMTO47 code�16 with conventional LDA. The exchange-
correlation potential of the Barth-Hedin-Janak form17 was
used. The crystal structure information about space group,
lattice constants, and atomic positions was taken from Ref.
12. The radii of atomic spheres were set to r�Fe�
=2.46 a.u. and r�Si�=2.5 a.u.. Two types of empty spheres
r�E1�=1.62 a.u. and r�E2�=1.13 a.u. were added. In the or-
bital basis set the following states were included:
Fe�4s ,4p ,3d� and Si�3s ,3p�. The Brillouin-zone integration
has been performed in the grid generated by using �8;8;8�
divisions.

Figure 1 gives band structures for real �simple cubic�
structure �atomic positions are u�Fe�=0.1358 and u�Si�
=0.844�, rocksalt �face-centered-cubic�—phase �u�Fe�=0.25
and u�Si�=0.75� and for two model structures with interme-
diate atomic positions �Fig. 1�. The obtained bands agree
well with the linear augmented plane-wave �LAPW� results
for real and rocksalt phases.12 The fcc band structure con-

TABLE I. Classification of FeSi models.

Jaccarino’s modela W�Egap�W→0 K, Egap=1520 K�

Kondo insulator modelb W=Egap /2�W=500 K, Egap=1000 K�
CBIM �this work� W�Egap�W=5000 K, Egap=1000 K�
aReference 1.
bReference 8.

FIG. 1. TB-LMTO energy bands of FeSi obtained with different
sets of atomic-position parameters u�Fe� and u�Si�. �a� Structure
with u�Fe�=0.25 and u�Si�=0.75 corresponds to nonprimitive rock-
salt structure that contains four FeSi formula units. Figures �b� and
�c� are energy-band results for two transitional structures with
u�Fe�=0.23, u�Si�=0.76 and u�Fe�=0.19, and u�Si�=0.79, respec-
tively. Figure �d� corresponds to the real FeSi structure. Symmetry
lines are chosen according to Ref. 12.
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tains several electrons and holes pockets near G and X points
in the Brillouin zone that corresponds to a pseudogap in the
energy spectrum in contrast to the real gap in the simple
cubic structure. For intermediate structure with atomic-
position parameters u�Fe�=0.19 and u�Si�=0.79, the energy
gap is open along all symmetry lines of the Brillouin zone,
except the GM line. One can see that there is a complete
energy gap in the real FeSi structure. This result agrees well
with a conclusion of Mattheiss and Hamann12 that the energy
gap state of FeSi results from the distortion of the
pseudogapped rocksalt structure.

It is natural to expect that the features of the FeSi elec-
tronic spectrum, such as the narrow gap and the peak above
the Fermi level, are provided by Fe 3d and Si 3s, 3p
states.12,18 To investigate the origin of the pseudogapped
state in the fcc phase we artificially scaled the hybridization
strength between Si 3s, 3p, and Fe 3d states. To do so off-
diagonal Hamiltonian elements which describe the hybrid-
ization between Fe and Si atoms were multiplied by a coef-
ficient 0���1. These results are presented in Fig. 2.

To simplify our analysis of the band structures, one can
consider dispersion curves along LG symmetry line where
complete energy gap opens due to hybridization between
Fe 3d and Si 3s, 3p states. Without hybridization ��=0� the
wide silicon band crosses three narrow 3d bands of iron for k
vectors along LG direction. At increasing hybridization
strength �Figs. 2�b� and 2�c�� two of the iron bands strongly
interact with silicon states while one of them remains almost
unaffected by d-p hybridization. The resulting dispersion
curves of the fully hybridized system are presented in Fig.
2�d�. It means that the pseudogapped state �Fig. 2�d�� origi-

nates from a strong hybridization of the wide silicon band
��10 eV� with the relatively narrow iron band ��1 eV�.
The narrow gap opens between antibonding hybridized band
above and unhybridized band below the Fermi level.

While qualitatively this situation resembles the Kondo in-
sulator picture with weakly hybridized wide and narrow
bands, there are two essential quantitative differences. First,
the “narrow” band having width of an order of magnitude
smaller than the “wide” band is still too wide in absolute
value of about 1 eV. Second, d-p hybridization is so strong
that “pure hybridization” gap in Fig. 2�d� is larger than 2 eV.
The small value of the gap is not due to d-p hybridization
weakness but happens between hybridized and unhybridized
bands.

Another argument against the Kondo scenario can be
found from analysis of the two bands �Fig. 1�d�� forming a
well-separated narrow peak above the Fermi level �Fig. 6�. In
Kondo system these bands should be associated with
strongly localized atomic orbitals of an iron atom. To check
this, we calculated the Wannier function for the first conduc-
tion band using a projection procedure.19 A spatial distribu-
tion of the calculated Wannier function is shown in Fig. 3.
The resulting Wannier function corresponds to a complex
combination of 3d states of iron and 3s, 3p states of silicon
and is spread over many unit cells. This picture is very far
from localized atomic orbital needed for the Kondo scenario
and supports the band insulator model.

For LG direction we construct an effective microscopic
model �Fig. 4� with a minimal set of orbitals that reproduces
the gapped state. The model silicon and iron atoms are de-
scribed with one and two orbitals, respectively. The model
Hamiltonian is given by
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FIG. 2. Band structures for the different degrees of the hybrid-
ization strength between Fe 3d and Si 3s, 3p states in fcc crystal
structure with one formula unit in unit cell. Figures �a�–�d� are the
energy spectra for the hybridization scaling parameter �=0, 0.1,
0.5, and 1, respectively. Symmetry lines are chosen according to
Ref. 12.

FIG. 3. �Color online� Wannier function corresponding to the
first band above the Fermi level �see Fig. 1�d��. The Wannier func-
tion is centered at a 3d orbital of iron atom �red spheres�. Green
spheres correspond to silicon atoms. We found about 40% of the
electron density at the central atom and its iron neighbors. The rest
of the Wannier function is distributed over many unit cells and is
formed by iron and silicon atomic orbitals with contributions of
about 1%.
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H = � 2t3 cos�k� 2t4 cos�k� 2t1� cos�k/2�
2t4 cos�k� 2t3 cos�k� 2t1� cos�k/2�

2t1� cos�k/2� 2t1� cos�k/2� 2t2 cos�k�
� ,

where t1, t2, t3, and t4 are hoppings between model iron and
silicon orbitals presented in Fig. 4, and � is a hybridization
scaling parameter. These parameters were calculated for the
LG model using the real band structure of the full Hamil-
tonian presented in Fig. 2 as t1=2.0 eV, t2=3.0 eV, t3
=−1.2 eV, and t4=−0.25 eV. The values are much larger
than those calculated for localized systems20 and are far out-
side the values range needed for the Kondo insulator sce-
nario.

For the defined above model the band structures with
��=1� and without ��=0� hybridization are presented in Fig.
5. One can see that our model results are in good agreement
with those obtained from calculations with full Hamiltonian
�Fig. 2�. The substantial Fe-Si hybridization leads to splitting
into a lower bonding and upper antibonding bands with a
nonbonding band in between. We obtained the semiconduct-
ing ground state with a small energy gap of 0.8 eV that is
much smaller than the narrowest band width of 4.8 eV near
the Fermi level. One should note that the small value of the
energy gap is not a consequence of a weak Fe-Si hybridiza-
tion and the minimal realistic band structure model of FeSi

differs qualitatively from the Kondo insulator regime.
The proposed band model can be used to study Coulomb

correlation problem in the framework of static or dynamical
mean-field approaches. However, as we will show below, it
is possible to define an effective density of states model de-
rived from the full DOS obtained in the LDA calculation for
the real crystal structure. Solution of this model by DMFT
allows us to describe anomalous physical properties of FeSi.

B. Correlation effects

In this section we study the effects of the Coulomb cor-
relations on the electronic structure and physical properties
of FeSi using the dynamical mean-field theory. As an input
DMFT requires a noninteracting Hamiltonian or a DOS.21

The essential features of FeSi density of states obtained in
the LDA calculations �Fig. 6� are a small energy gap
�0.1 eV and a narrow ��0.5 eV� peak above the Fermi
level containing 0.5 electrons per spin per Fe atom. We de-
fined the model density of states �see filled area in Fig. 6� by
cutting from the entire DOS area around the Fermi energy
with an integral equal to one electron per spin per Fe atom.
The model density of states contains the main features of the
FeSi spectrum, namely, the energy gap �0.1 eV� and the nar-
row peak above the Fermi level �0.5 eV�.

We would like to stress that a similar density of states
model was used in Ref. 27 and 28. To study the correlation
effects in FeSi Urasaki and Saso28 have applied the self-
consistent second-order perturbation theory. It was found that
the DOS becomes strongly temperature dependent and the
peaks of the gap edges move toward the center of the gap. As
we will show below the account of the Coulomb correlation
effects in the framework of DMFT results in a strong renor-
malization of the states near the Fermi level.

As impurity solvers of the DMFT problem we used a
quantum Monte Carlo method with the Hirsch-Fye
algorithm22 �QMC-HF�, a continuous-time quantum Monte
Carlo method with interaction expansion23 �CT-QMC�, and
an exact diagonalization �ED� temperature-dependent
Lanczos24 approach. Each DMFT techniques was used to
describe physical properties of FeSi at different tempera-
tures. For instance, the ED approach gives accurate results
from T=0 up to T=250 K.24 In turn Hirsch-Fye QMC is

FIG. 4. �Color online� One-dimensional effective model. Large
and small circles correspond to iron and silicon atoms in the fcc
phase of FeSi.

FIG. 5. Model �black solid lines� and real �grey dotted lines�
band structures. Lower and upper figures correspond to the models
with and without hybridization, respectively.

FIG. 6. �Color online� Model �filled area� and full �line� densi-
ties of states obtained from LDA calculations.
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well suited for relatively high temperatures from 100 K up to
1000 K. The QMC methods require a maximum entropy
method for analytical continuation of the resulting Green’s
function to real-energy axis.

The authors of Ref. 27 have shown that one should vary
the value of the on-site Coulomb interaction in order to fit
different experimental data. In our investigation the value of
the on-site Coulomb interaction parameter U was fitted to
obtain the best agreement with experimentally observed band
narrowing m�=2. We have chosen U=1 eV that is close to
the value used in Ref. 14. This rather small value can be
justified by an effective screening of d-d Coulomb interac-
tion due to a strong Fe-ligand hybridization as it was dem-
onstrated in constrain DFT calculation of the Coulomb inter-
action parameter U for LaOFeAs.25

The resulting paramagnetic densities of states calculated
in DMFT at T=232 K are presented in Fig. 7. One can see
that all the methods result in a pseudogapped state with a
strongly renormalized density of states near the Fermi level.
There are satellites at �U /2 which correspond to the lower
and upper Hubbard bands.

The energy area around the Fermi level corresponds to
quasiparticle states that are usually described as noninteract-
ing bands renormalized by Coulomb correlations. The renor-
malization process can be understood by a low-frequency
analysis of the dynamical mean-field equations.21 The lattice
Green’s function is given by

G��� = 	
k

�� − 	��� − 
�k��−1, �1�

where 	 is a self-energy and 
�k� is a LDA spectrum. We
expand the real part of the self-energy in the vicinity of the
Fermi energy leaving only linear term

Re 	��� � Re 	�0� + �
d Re 	���
d�



�=0

. �2�

Then Green’s function for specific wave vector k is

Gk��� � ��m� − 
�k��−1, �3�

where m� is the effective band mass-renormalization param-
eter

m� � 1 −
d Re 	���
d�



�=0

. �4�

Equation �3� can be rewritten as

Gk��� �
Z

� − 
̃�k�
, �5�

where Z�1 /m� is a quasiparticle weight and 
̃�k�
�
�k� /m� is the dispersion of the renormalized band. There-
fore, the renormalization for quasiparticle states near the
Fermi level due to the Coulomb correlations results in a band
structure narrowing by a factor of m� and a reduction in the
corresponding spectral weight by a factor of Z with the rest
of the spectral weight transferred to the upper and lower
Hubbard bands at �U /2.

In our DMFT calculations the effective band mass-
renormalization parameter m��2 was found in good agree-
ment with the results of the ARPES �Ref. 15� showing band
narrowing by a factor of 2 in comparison with bands calcu-
lated in LDA.

Experimentally, FeSi demonstrates transition from
narrow-gap semiconductor to bad metal with the increase in
temperature.5 We performed DMFT calculations at different
temperatures and such an experimentally observed transition
was successfully reproduced theoretically. The DMFT spec-
tral functions calculated at different temperatures are pre-
sented in Fig. 8. The energy gap of about 50 meV at T
=96 K agrees well with experimental results of resistivity
measurements which indicate a charge gap of about 60
meV.26 At T=386 K the gap area is almost completely filled
by a spectral weight transfer from the sharp peaks near the
gap resulting in the spectral function corresponding to a bad
metal. The energy gap value obtained in the DMFT calcula-
tion is two times smaller than the corresponding value from
the LDA band structure calculations �0.1 eV�. That agrees
very well with the effective band mass-renormalization pa-
rameter m��2 Eq. �4� obtained in our DMFT calculations.

FIG. 7. �Color online� Spectral functions obtained from the
DMFT calculations using QMC-HF �blue dashed line�, CT-QMC
�black solid line�, and exact diagonalization �red solid line� tech-
niques at T=232 K. Orange filled area corresponds to the LDA
density of states.

FIG. 8. �Color online� Densities of states obtained from the
QMC-HF calculations at T=386 K �black line� and 96 K �orange
line�.
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Optical spectroscopy experiments show gradual filling of
the low-temperature energy gap with the temperature in-
crease till complete gap disappearance above room
temperature.4 We estimated the optical conductivity by a
spectral function convolution using the following expression:

���,T� =
1

�
� d
N�
�N�
 + ���1 − f�
 + �,T�� , �6�

where N�
� is a spectral function obtained from the DMFT
calculations �Fig. 7� and f�
 ,T� is the Fermi distribution
function. The calculated convolution together with experi-
mental data for temperature-dependent optical conductivity4

is presented in Fig. 9.
At low temperatures a well-pronounced energy gap of

about 0.05 eV can be observed in both experimental and
theoretical curves. With the temperature increase optical con-
ductivity increases at the energies below 0.05 eV and finally
at T=386 K there is no any trace of the gap in the theoretical
curve in good agreement with experimental data.

In the vicinity of the room-temperature FeSi displays an
unusual crossover from a singlet semiconducting ground
state with a narrow band gap to a metal with an enhanced
spin susceptibility and Curie-Weiss temperature
dependence.1 All previous attempts to explain this behavior
were based on the models assuming extremely narrow
��1000 K� peaks at the energy gap edges in DOS while
LDA calculations gave band width nearly an order of mag-
nitude larger than that value. Our DMFT calculations dem-
onstrate that the correlated band insulator model with realis-
tic DOS can reproduce anomalous temperature dependence
of the magnetic susceptibility for FeSi. We computed �T� as
a ratio

�T� =
M

h
, �7�

where h is a small uniform external magnetic field and M is
an induced magnetization of the system. In our DMFT cal-

culations the external magnetic field acts only on spin motion
and has no effect on orbital motion. The comparison of the
experimental and calculated magnetic susceptibilities is pre-
sented in Fig. 10. We would like to stress that the stable
DMFT solutions with a small magnetic moment were ob-
tained at T�200 K. One can see that the calculated spin
susceptibility reaches maximum at 600 K, which is in good
agreement with the experimental temperature of 500 K.
However, the calculated absolute values of the magnetic sus-
ceptibility at T�300 K disagree with experimentally ob-
served �T�. Such a disagreement was observed in the pre-
vious theoretical investigation.27 Varying the Coulomb
interaction U the authors of Refs. 27 and 28 were able to fit
a theoretical curve to the experimental one.

In the present investigation the model DOS �Fig. 6� and
Coulomb interaction parameter U value were used to suc-
cessfully reproduce band narrowing observed in ARPES,15

optical conductivity,4 and temperature dependence of mag-
netic susceptibility.1

III. Fe1−xCoxSi

The correct theoretical description of magnetic properties
of transition-metal monosilicides such as MnSi and
Fe1−xCoxSi alloys presents a longstanding problem of con-
densed matter physics. There has been a considerable
amount of experimental and theoretical work on MnSi and
Fe1−xCoxSi, regarding their structural, magnetic, and elec-
tronic properties. However, at the moment there is no satis-
factory first-principles description of monosilicides magnetic
properties. For instance, in case of MnSi it was found that
the experimental value of the magnetic moment is about
0.4�B. Different first-principles calculations based on the
density-functional theory gave much larger magnetic mo-
ment value of 1�B.29,30

Fe1−xCoxSi alloys are magnetic for almost all of the inter-
mediate concentration regimes,6,31,32 while the end com-
pounds FeSi and CoSi are nonmagnetic, the latter being a
diamagnetic semimetal. Fe1−xCoxSi system is also interesting
for scientists due to the promising properties for spintronic
device applications. For instance, in paper of Ref. 33 the
authors have reported the discovery of a large anomalous

FIG. 9. �Color online� The convolution for FeSi model obtained
from LDA+DMFT calculations in the framework of QMC-HF
method at 386 K �black line�, 232 K �red line�, and 96 K �orange
line�. The grey dotted lines correspond to the experimentally ob-
served optical conductivity at T=20 K, 150 and 250 K �taken from
Ref. 4�.
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FIG. 10. �Color online� Spin susceptibility �T� �in �B
2 / eV�

from the LDA+DMFT calculations with QMC-HF solver �orange
solid line� and from experiment �Ref. 1� �blue dashed line�.
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Hall effect for Fe1−xCoxSi. They have demonstrated that the
large effect is most likely intrinsic—derived from the band
structure effects rather than due to impurity scattering. They
have proposed to consider the transition metal monosilicides
as potential alternatives to the �GaMn�As and �GaMn�N
which are the most popular materials for spintronics.

From theoretical side no calculation reported so far repro-
ducing correctly both magnetic moment value and Curie
temperature of Fe1−xCoxSi system. To model the magnetic
properties of Fe1−xCoxSi alloys, the authors of paper of Ref.
34 used the full potential linearized augmented plane-wave
method in combination with a virtual crystal approximation
as well as with a supercell approach. The resulting magnetic
moments agree well with experimental values only for x
�0.25. Having supposed an important role of ordering and
segregation, they simulated several alloy configurations for
concentrations x�0.5. The weighted average magnetic mo-
ment that was calculated through Boltzmann distribution is
in reasonable agreement with experimental value. However,
there are no experimental results which support the segrega-
tion and ordering phenomena. Moreover, the results of neu-
tron measurements35 demonstrated a random distribution of
transition metals in Fe0.5Co0.5Si.

To simulate randomly distributed Fe1−xCoxSi alloys, the
authors of Ref. 36 have used the combination of an exact
muffin-tin orbitals method and a coherent potential approxi-
mation. They have found an extreme sensitivity of magnetic
properties to the internal structure parameters and lattice con-
stant. However, the calculated magnetic moments at concen-
trations x�0.3 still disagreed with those experimentally ob-
served.

In this paper we have investigated electronic structure and
magnetic properties of Fe1−xCoxSi alloys using static local
spin density approximation �LSDA� and dynamical �DMFT�
mean-field approaches. The virtual crystal approximation
gives us the opportunity to investigate the electronic struc-
ture of Fe1−xCoxSi system in whole range of concentrations.
We found that LSDA results strongly overestimate magnetic
moment values and extend magnetic phase diagram to much
large values of Co concentration x comparing with experi-
ment. An account of correlation effects within DMFT results
in good agreement with experiment for magnetic moment
values as well as the position of the magnetization M�x�
maximum. We concluded that Fe1−xCoxSi is an itinerant elec-
trons system which magnetic properties can be correctly de-
scribed by the LDA+DMFT method.

A. Static mean-field results

The electronic structure of Fe1−xCoxSi was calculated us-
ing the tight-binding linear muffin-tin orbital method in
atomic sphere approximation with conventional LDA.16 The
Fe and Co atoms in Fe1−xCoxSi alloy were treated by virtual
atoms with the atomic number value averaged by the con-
centration x. The experimentally observed lattice constants33

were used in the present band structure calculations. The
calculated magnetic moment as a function of cobalt concen-
tration is presented in Fig. 11 and densities of states for x
=0.2, 0.5, and 0.8 are presented in Fig. 12. One can see that

the calculated results start strongly deviate from experimen-
tal values of magnetic moments for Co concentration x
�0.3 with magnetization M�x� maximum at 0.5�B instead of
experimental value of about 0.2�B and giving stable magne-
tism for larger x values than it is observed experimentally.
Our results agree well with those presented in Refs. 34 and
36.

A small magnetic moment value calls the question of the
nature of magnetism in Fe1−xCoxSi: do we see itinerant elec-
trons magnetism of the Stoner type or moments are local but
their average value is suppressed due to quantum fluctuations
and disorder effects? In order to investigate the localization
degree of the magnetic moment in Fe1−xCoxSi system we
performed the supercell calculation to simulate a Co impu-
rity in FeSi. The supercell was constructed in the FeSi lattice
with all basis lattice vectors doubled and containing a total of
32 atoms of transition metal. The impurity Co atom was
assumed to substitute one of Fe atom. The obtained magne-
tization spatial distribution in Fe31CoSi32 is presented in Fig.
13. One can see that the magnetic moment is not localized on
the Co impurity. There is a magnetic cluster containing one
cobalt atom and six nearest iron atoms. This is a result of a
strong hybridization of 3d states cobalt and iron through 3s
and 3p states of silicon.

The fact that the magnetic moment induced in FeSi by Co
alloying is delocalized supports the itinerant magnetism pic-
ture. In this case the Stoner approach is expected to give a
realistic description of Fe1−xCoxSi magnetic properties. How-
ever, the results of this section and previous works show that
direct Stoner theory application leads to a substantial over-
estimation of the magnetic moment value at intermediate
concentrations �Fig. 11�. This is a result of ignoring dynami-
cal correlation effects that, as we will show below, result in a
strong renormalization of states near the Fermi level and sub-
sequent reduction in the magnetic moment value.

B. Dynamical mean-field results

In this section we investigate the influence of dynamical
correlation effects on the magnetic properties of Fe1−xCoxSi.
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FIG. 11. �Color online� Concentration dependences of the mag-
netization per transition metal atom �in �B� obtained from the
LDA+DMFT �orange bold line� and virtual crystal approximation
�black thin line� in comparison with the neutron scattering experi-
mental data �Ref. 6� �blue dashed line�.
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In our calculations we assume that Coulomb correlations
treated by DMFT renormalize a paramagnetic density of
states and then this new DOS is used as an input for Stoner
theory calculations.

Let us first qualitatively discuss the origin of magnetism
of the investigated alloys using the Stoner criterion

IdN�EF� � 1. �8�

Assuming the Stoner parameter Id value is equal to 1 eV the
magnetic ground state is stable if the density of states at the
Fermi level N�EF� is larger than 1 states/eV. With Co substi-
tuting Fe in FeSi number of electrons per formula unit in-
creases and the Fermi level runs through the peak above the
energy gap. Hence for Fe1−xCoxSi the value of N�EF� is de-
termined by the height of the peak. In DMFT the spectral

function depends on the temperature. Figure 14 gives DMFT
densities of states obtained at T=58 K and T=232 K by
using the exact diagonalization technique. One can see that
the density of states value at the peak maximum is larger
than 1 states/eV at T=58 K but becomes less than 1 at T
=232 K. Then the Stoner criterion for magnetism Eq. �8� is
satisfied for T=58 K but not for T=232 K. This result
agrees with the experimental value of the Curie temperature
Tc=50 K.

We are now in a position to perform the quantitative
analysis of the magnetism. The DMFT calculations for
Fe1−xCoxSi were carried out for various concentrations x.
The results for x=0.36 and x=0.66 are presented in Fig. 15.
One can see that for x=0.36 the density of states at the Fermi
level N�EF��1 and for x=0.66 N�EF��1. According to the
Stoner criterion Eq. �8� that gives magnetic and nonmagnetic
ground states for x=0.36 and x=0.66, correspondingly, in
good agreement with experimental data �see Fig. 11�.

We have used the obtained paramagnetic DMFT densities
of states for different concentrations �Fig. 15� to solve the
Stoner model. Self-consistent values for spin-up n↑ and spin-
down n↓ numbers of electrons are given by equations for the
total magnetic moment

(a)

(b)

(c)

FIG. 12. �Color online� Densities of states for x=0.2, 0.5, and
0.8 obtained in the LSDA calculations based on virtual crystal
approximation.

FIG. 13. �Color online� Schematic representation of a magnetic
cluster simulated with the LSDA supercell calculations. Numbers
are values of magnetic moments of ions �in �B� from different
coordination spheres. The arrows denote directions of the magnetic
moments in the ground state.
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FIG. 14. �Color online� Densities of states for FeSi obtained by
using exact diagonalization DMFT method at T=232 K �red
dashed line� and T=58 K �brown solid line�.
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M = �
−�

+�

�N�
 + Idn↑� − N�
 + Idn↓��f�
,T�d
 �9�

and the total number of electrons

N = �
−�

+�

�N�
 + Idn↑� + N�
 + Idn↓��f�
,T�d
 �10�

that are recalculated iteratively. Here N�
� is a density of
states obtained in the DMFT calculations and f�
 ,T� is the
Fermi distribution function. The Stoner parameter Id was
chosen to be 1 eV close to that used in previous theoretical
estimations.36

The calculated concentration dependence of magnetiza-
tion M�x� is presented in Fig. 11. There is good agreement
between experimental and theoretical values. The main effect
of using ��
� obtained in DMFT is a strong reduction in the
resulting magnetic moment values compared to calculations
using the unrenormalized LDA DOS. This reduction is due to
the quasiparticle weight factor Z�1 /m� appearing in the nu-

merator for Green’s function expression Eq. �5�. Then the
integral over quasiparticle band states near the Fermi level is
decreased by a factor of Z comparing with unrenormalized
LDA values. As Z�0.5 in our DMFT calculations that re-
sults in corresponding decrease in M�x� values by this factor.

IV. DISCUSSION

In this paper we have investigated electronic structure and
magnetic properties of FeSi and Fe1−xCoxSi systems using
static and dynamical mean-field approaches. Our band struc-
ture analysis supports the correlated band insulator model for
these materials in contrast to the Kondo insulator model. The
results of the DMFT calculations revealed a strong renormal-
ization of states near the Fermi level. The estimated band-
mass renormalization m��2 agrees well with that obtained
in the recent ARPES experiments. Analyzing paramagnetic
DMFT densities of states calculated at different temperatures
and at different Co concentrations we demonstrated that itin-
erant magnetism picture is valid for Fe1−xCoxSi alloys.
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