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Abstract: We present the equation of state (pressure, trace anomaly, energy density and

entropy density) of the SU(3) gauge theory from lattice field theory in an unprecedented

precision and temperature range. We control both finite size and cut-off effects. The

studied temperature window (0.7 . . . 1000Tc) stretches from the glueball dominated system

into the perturbative regime, which allows us to discuss the range of validity of these

approaches. We also determine the preferred renormalization scale of the Hard Thermal

Loop scheme and we fit the unknown g6 order perturbative coefficient at extreme high

temperatures T > 100Tc. We furthermore quantify the nonperturbative contribution to

the trace anomaly using a simple functional form. Our high precision data allows one to

have a complete theoretical description of the equation of state from T = 0 all the way to

the phase transition, through the transition region into the perturbative regime up to the

Stefan-Boltzmann limit. We will discuss this description, too.
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1 Introduction

The general feature of asymptotic freedom makes weak coupling approaches very natural in

non-abelian gauge theories, such as the SU(3) model, which describes the gluonic degrees

of freedom of Quantum Chromodynamics. At asymptotically high temperatures low orders

of perturbation theory may be acceptable, but at any lower scale that could be probed by a

realistic experiment an extension is necessary: either by the inclusion of very high order di-

agrams, or by an efficient resummation scheme, such as Hard Thermal Loops (HTL). Note

however that analytic perturbative expansions are plagued by infrared divergences due to

which the series can be computed only up to a given finite order. There is strong simulation

evidence that at low temperatures (Tc ∼ 260 MeV) the gluonic matter freezes and a first

order transition takes place. At even lower temperatures colorless non-perturbative excita-

tions govern the thermodynamics. To describe the phase transition or the glueball gas no

weak coupling scheme succeeds and one has to rely on a natively non-perturbative approach,

such as lattice field theory. The pure gauge theory is a very good test-bed for perturbative

and non-perturbative studies. On the one hand it is only moderately CPU demanding. Full

QCD for µ = 0 is more expensive, and at µ > 0 it is even more expensive (see e.g. [1]). On

the other hand the pure SU(3) theory shows all the infrared difficulties of the full theory.

The past years witnessed considerable achievements on the side of the analytical re-

sults (see e.g. [2]). HTL perturbation theory (which was first developed in refs. [3, 4]) has

been recently used to calculate the pure SU(3) gauge theory’s thermodynamic potential to
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the next-to-next-to-leading order (NNLO) [5, 6]. The authors used their results at inter-

mediate temperatures (∼ 4Tc) where existing lattice data was available. Later the same

authors have extended their results to full QCD (with massless quarks) [7, 8], which was

compared to results of the Wuppertal-Budapest collaboration [9].

In the weak coupling expansion even higher orders can be computed by dimensional

reduction [10]. This method was applied to calculate the pressure of QCD first in refs. [11,

12] up to g5. When re-expanded in the coupling g the full expression can be calculated up

to g6 log(g) order and was given in ref. [13] and compared to the Bielefeld lattice data [14] at

T = 4.5Tc. Fitting the pressure (thermodynamic potential) the slope of the pressure curve

was successfully predicted. This raised hope that at this high order perturbation theory

does possess some predictive power at phenomenological temperatures. In this paper we

repeat this fitting procedure at a much higher temperature, where the sixth order can be

shown to be a minor correction to the fifth order.

For more than a decade the renowned paper by Boyd et al [14] has been the reference

lattice simulation of the SU(3) theory in the temperature range of 1 . . . 4.5Tc. It uses the

plaquette gauge action at up to Nt = 8 lattice spacing and an aspect ratio of 4. Here

Nt denotes the number of lattice points in the Euclidean time direction, meaning that

the lattice spacing at any given temperature T is a = 1/(TNt). The fixed Nt approach

has been introduced in ref. [15] and this work follows it, too. It implies that the lattice

spacing varies with temperature. Continuum limit is achieved by performing an 1/Nt → 0

extrapolation on the data at a set of fixed physical temperatures. The aspect ratio r = LT

sets the ratio between space and time-like lattice points.

Since the publication of [14] several similar simulations were performed to study pure

gauge theory. The equation of state has been recalculated using the Symanzik improved

gauge action [16]. This set of simulations have been further generalized to SU(Nc) theories

with Nc > 3 in refs. [17, 18]. Alternatively, the equation of state can also be calculated by

fixing the lattice spacing, and using Nt for tuning the temperature [19]. This approach is

mostly advantageous with Wilson-type dynamical fermions, and less economic for the pure

gluonic theory.

In most fixed Nt simulation projects, like ref. [14], the aspect ratio is kept constant

to allow the use of a single lattice geometry. This means that higher temperatures are

simulated at smaller volumes. As we discuss later the aspect ratio sets the maximum

temperature as a precondition for the non-perturbativeness of the simulation: in first

approximation one expects T . rTc. In most previous works this was set to r = 4.

The outline of the paper can be summarized as follows. In section 2 we briefly present

the lattice framework for the equation of state. Sections 3, 4 and 5 deal with some tech-

nicalities, namely with the determination of the non-perturbative/non-ideal contributions,

with finite volume effects and with scale setting. Readers who are not interested in these

details can jump to section 6 for our results or even to section 7 for a short summary of

our findings and for comments on the various theoretical descriptions and model building.
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2 Equation of state

In the lattice simulation we use the Symanzik improved gauge action [20, 21],

Sg = −β

c0 ∑
n,µ<ν

Re TrU1×1
µν (n) + c1

∑
n,µ 6=ν

Re TrU2×1
µν (n)

 (2.1)

with inverse gauge coupling β = 6/g2. Here the coefficients are set to c0 = 5/3 and c1 =

−1/12, such that the scaling with the lattice spacing a is improved on the tree level. The

primary observable in our approach is the trace anomaly,1 as measured on the lattice [15],

I

T 4
≡ ε− 3p

T 4
= N4

t a
dβ

da

(
〈sg〉N3

s×Nt
− 〈sg〉N3

s×Nsub
t

)
(2.2)

where β(a) is the relation between the bare coupling and the lattice spacing a which we de-

termine in section 5. The gauge action density sg = T/V ·Sg contains quartic divergences in

the cutoff, which we cancel here by taking the difference between measurements at the same

parameter β but different temporal extent Nt, i.e. different temperature. The temporal size

N sub
t of the lattice used for the subtraction will be either set to 2 ·Nt (corresponding to half

the temperature) or Ns (corresponding to zero temperature), as will be discussed later.

Having calculated the trace anomaly as a function of the temperature, all other ther-

modynamic observables can also be reconstructed. The pressure is obtained as a definite

integral,

p(T )

T 4
− p(T0)

T 4
0

=

T∫
T0

I(T ′)

T ′5
dT ′, (2.3)

where the integration constant can be set using a glueball resonance gas model, see sec-

tion 6.1. Using the pressure and the trace anomaly, the energy density ε and the entropy

density s can be calculated as

ε = I + 3p, s =
ε+ p

T
. (2.4)

Besides the thermodynamic observables defined above, for the setting of the lattice

scale we also measure the susceptibility χP of the Polyakov loop P , defined as

P =
1

V

∑
n1,n2,n3

Tr

Nt−1∏
n4=0

U4(n), χP = V
(〈
P 2
〉
− 〈P 〉2

)
. (2.5)

3 Non-perturbative contributions

Recently there have been interesting observations about the presence of a non-perturbative

contribution in the equation of state in the transition region [22, 23]. For dimensional rea-

sons, any finite order perturbative formula can only give logarithmic corrections to the

1The trace anomaly is often also called interaction measure as it measures the deviation from the equation

of state of an ideal gas ε = 3p.
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Figure 1. Our results for the normalized trace anomaly multiplied by T 2/T 2
c for Nt = 5, 6, 7 and

8 (red, green and blue dots, respectively). Also plotted are lattice results of [14], g5 perturbation

theory [13] and the HTL approach [6].

p(T ) ∼ T 4 Stefan-Boltzmann law. Instead of such logarithmic corrections, lattice data

suggests that there is an approximately quadratic contribution which is dominant for tem-

peratures up to ∼ 4Tc. This non-perturbative pattern may be explained within a fuzzy bag

model [23], in terms of a dimension-2 gluon condensate [24, 25], in a system of transversely

polarized quasi-particles [26] or within the gauge/string duality [27]. Here we do not go

into the viability of such models and only identify it as the dominant non-perturbative

contribution.

This non-perturbative contribution can be best observed in the trace anomaly I =

ε − 3p. Specifically, it is instructive to study the combination I/T 4 · (T/Tc)2, which is

shown in figure 1. Our results with the Symanzik improved gauge action for various lattice

spacings are compared to results obtained with the Wilson gauge action [14], the 4-loop

perturbative expansion [13] and the HTL NNLO scheme. While for the former the renor-

malization scale µ = 2πT is used (black dashed line in the figure), for the latter a range of

µHTL = πT . . . 4πT is considered (gray band).

Apparently, the combination I/T 2 as measured on the lattice is approximately con-

stant in the temperature range Tc < T < 5Tc (there are however discrepancies between the

Symanzik and Wilson results, see discussion later). While up to 5Tc lattice results seem

completely incompatible with the perturbative predictions, at larger temperatures our re-

sults also account for the T 4-like steep rise in I(T ) indicating a qualitative agreement with

perturbative methods. This suggests that besides the ideal (perturbative) contribution

∼ T 4, I also contains a non-ideal (non-perturbative) term ∼ T 2. Thus we separate the
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trace anomaly into two parts,

I(T )

T 4
=
Ipert(T )

T 4
+
Inp(T )

T 4
. (3.1)

The pressure can be obtained from the trace anomaly with a definite integral, as in (2.3).

At extremely high temperatures its value is given by the Stefan-Boltzmann limit pSB =

8π2/45T 4. Integrating down from this point one obtains,

p(T )

T 4
= pSB −

∞∫
T

(
Ipert(T

′)

T ′5
+
Inp(T ′)

T ′5

)
dT ′ =

ppert(T )

T 4
−
∞∫
T

Inp(T ′)

T ′5
dT ′. (3.2)

The results for the trace anomaly in the high-temperature region allow for a fitting

of the HTL renormalization scale µHTL and the unknown coefficient (qc in the notation

of [13]) of the O(g6) order contribution of perturbation theory. While qc has already been

calculated by means of a fit to the lattice data of [14], here we are able to repeat this

fitting procedure at a much higher temperature, where the sixth order can be shown to be

a minor correction to the fifth order. Once the optimal coefficient of the g6 term is known,

the non-perturbative contribution can also be quantified through a fit to some specified

parameters of the function Inp(T ).

4 Finite volume effects and high temperature

Existing lattice results for the pressure end at around 5Tc. These include results in the

pure gauge sector with the Wilson plaquette action [14, 28] and also with various improved

actions like the Symanzik action [16, 29], renormalization group-improved actions [30] or

fixed-point actions [31]. The effect of changing the number of colors [17] was also studied.

Results for the pressure of full QCD [9, 32–35] are also present only up to (5− 10) · Tc.
There are two main reasons for the absence of high temperature results: first, at

increasingly high temperatures the signal/noise ratio in the trace anomaly decreases signif-

icantly, dropping below 0.01% already above Tc. Consequently, it becomes more and more

difficult to detect a nonvanishing value for I/T 4, and this small signal is just the informa-

tion necessary to fit the unknown perturbative parameters like qc mentioned in the previous

section. Second, since the lattice spacing varies with the temperature as a = (NtT )−1, in

order to have a constant physical lattice size, the number of lattice points Ns in the spatial

directions in principle has to increase like T . While the former problem can be avoided by

accumulating larger statistics, the latter obstacle is more of a matter of principle. Length

scales discussed in the HTL approach and in the dimensional reduction method are nor-

mally well accommodated in the lattice. However, to establish the range of validity of the

perturbative approach itself, one has to simulate the non-perturbative ∼ Tc scale, too. This

implies that the aspect ratio Ns/Nt has to be increased linearly with T , up to temperatures

where the matching to perturbation theory can be performed in a reliable manner.

Keeping in mind these considerations we perform three sets of simulations. First, we

calculate the trace anomaly in the temperature range of T/Tc = 0.7 . . . 15 (on 803 × 5,
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963× 6 and 1123× 7 lattices) and also extract a continuum limit from these results. These

lattices with aspect ratio Ns/Nt = 16 accommodate the non-perturbative scale T−1c up

to approximately 16Tc. We also support the continuum extrapolation with an additional

Nt = 8 set of lattices (643× 8) below 8Tc. This combined extrapolation is described in the

beginning of section 6. From the trace anomaly various other thermodynamic functions

can be determined according to the thermodynamic relations (2.3) and (2.4).

As a next step we study the finite volume scaling of the trace anomaly on a non-

continuum data set at Nt = 5. We presents results using lattices of aspect ratio Ns/Nt =

4, 6, 8, 16 and 24. The latter 1203×5 lattice accommodates the T−1c scale up to 24Tc. Using

these results we test finite size effects in the whole temperature region, see subsection 6.2.

Since from this analysis we find that finite size effects are smaller than our statistical

errors provided that Ns/Nt ≥ 6, in our third set of simulations we calculate the continuum

equation of state in a somewhat smaller box (r = 8 on 403×5, 483×6 and 643×8 lattices)

up to 1000Tc. In subsections 6.3 and 6.4 we use this data set to find the optimal free

parameters of existing perturbative calculations, i.e. the already mentioned qc parameter

of O(g6) perturbation theory and the renormalization scale µHTL of the HTL scheme. Using

these small volume results we observe a good agreement with the newly fitted perturbative

formulae, indicating that this approach successfully connects the low temperature non-

perturbative region with the high temperature perturbative realm. The precision of our

data points exceeds any previous calculation by about an order of magnitude.

In order for the large lattices to fit in the memory of our computer system, the renor-

malization of the trace anomaly was done via half-temperature subtraction, as explained

in section 2. Specifically, we calculate

I(T )

T 4
=

(
I(T )

T 4
− 1

16

I(T/2)

(T/2)4

)
+

1

16

I(T/2)− I(0)

(T/2)4
. (4.1)

In the right hand side of the expression I(T ), I(T/2), I(T/2) and I(0) are obtained by

using lattice sizes of (2Ns)
3 × Nt, (2Ns)

3 × (2Nt) at a given β and N3
s × Nt and N4

s at

another β′, respectively. The lattice spacing at β is half the lattice spacing at β′. This

guarantees that the spatial volumes are the same. The transition in the pure SU(3) theory

is a first order [36] phase transition (in contrast to full QCD which has a crossover for

physical masses [37]). Due to this first order phase transition the trace anomaly depends

on the volume around the critical temperature. In order to account for this dependence

we used the above choice for the volumes. Thus both terms are measured with the same

physical volume which ensures that the sum is smooth around T = 2Tc, 4Tc, . . . (otherwise

the difference between the volumes shows up as small cusps at these temperatures). For

the lattices with half the spatial size (i.e. the second term in the right hand side of (4.1))

the subtraction is carried out in the standard way, i.e. at T = 0. The continuum limit from

this combined technique is equal to what one finds using the standard scheme.

5 Scale setting

Besides the proper treatment of finite volume effects another challenging issue was the ac-

curate determination of the non-perturbative beta function corresponding to the Symanzik

– 6 –



J
H
E
P
0
7
(
2
0
1
2
)
0
5
6

improved action. This function determines the relation between the lattice spacing and the

bare gauge coupling which is the only free parameter in the lattice Lagrangian. The stan-

dard strategy for obtaining the lattice scale is the determination of the string tension σ or

the Sommer parameter r0 in a zero temperature setting. Yet, for the fine lattices we needed

for the high temperatures this would have been computationally extremely demanding.

Instead it was advantageous to define the lattice spacing in terms of the transition temper-

ature. To this end we determined the critical couplings βc up to Nt = 20 from the peak of

the Polyakov loop susceptibility (2.5). For finer lattices we determined the scale using the

continuum extrapolated value of the renormalized Polyakov loop at T = 1.5Tc, analogously

to the step scaling method. This allowed us to calculate the critical coupling up to Nt = 36.

Matching to the universal two-loop running (in terms of the improved coupling in the

“E” scheme [38], generalized for the case of the Symanzik improved action) we determined

the lambda parameter in terms of the transition temperature: Tc/ΛMS = 1.26(7). (The

error is overwhelmingly systematic and reflects the sensitivity to various continuum ex-

trapolations.) This is consistent with the combination of previous determinations: the

Lambda parameter ΛMS = 0.614(2)(5)r−10 of [39] can be translated to
√
σ units using√

σr0 = 1.192(10) (based on [40]) and then used with Tc/
√
σ = 0.629(3) of [14]. Through

our direct result one can easily translate the scale setting of the perturbative expressions

to the lattice language.

6 Results

First we reproduce the results of [14] in the transition region. In figure 2 these results are

compared to the trace anomaly measured on our first set of simulations, i.e. on large lattices

(Ns/Nt = 16) with Nt = 5, 6, 7, supplemented by Nt = 8, with Ns/Nt = 8. From these

four sets of results we perform a continuum extrapolation via a combined spline fitting

method. The datasets for different lattice spacings are fitted together by an Nt-dependent

spline function. This “multi-spline” function — defined upon a set of nodepoints βk with

k = 1 . . .K — is parameterized by two values at each nodepoint, written in the form

ak + bkN
−2
t (the Nt-dependence is motivated by the scaling properties of the Symanzik

action). We fit these 2K parameters to the measurements: the minimum condition for χ2

leads to a set of linear equations, which can be solved for the parameters.

As a result we have a smooth function interpolating our data for each Nt (colored

lines in the figure), together with a smooth, continuum extrapolated curve (yellow band

in the figure). The statistical error of the fit is determined by a jackknife analysis, while

the systematic error of the continuum result is estimated by the difference between the

extrapolation from Nt = 5, 6, 7 and Nt = 5, 6, 7, 8. As visible in the figure, data points

for various lattice spacings are on top of each other, with the exception of the transition

region. This region is zoomed into in the inset of the figure, showing that our data indeed

exhibits the expected scaling.

As figure 2 shows there is an apparent discrepancy between our continuum result and

that of [14], particularly around Tc. In ref. [14] the Wilson gauge action was applied

and the continuum limit of the trace anomaly was calculated based on Nt = 6 and 8
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Figure 2. The trace anomaly on Ns/Nt = 8 lattices for various lattice spacings in the transition

region. The result of a combined spline fit for each lattice spacing, together with the continuum

extrapolation is shown by the colored lines and the yellow band, respectively. For comparison results

with the standard Wilson action [14] are also shown by the dashed-dotted line. The continuum

estimate of [14] in the inset has the same peak height as our Nt = 6 curve, which is about 7% higher

than our continuum value.

lattices. Figure 2 shows that even with the Symanzik improved action there is significant

difference between the Nt = 8 data (black points) and the continuum curve (yellow band)

for temperatures just above Tc. The extrapolation using several lattice spacings is therefore

essential in this temperature region. Moreover, differences can also be attributed to finite

volume effects as well as to the systematics of the scale setting procedures.

6.1 Comparison to the glueball gas model

In order to explore the thermodynamics of the confined phase, next we zoom into the low

temperature region T < Tc in the left panel of figure 3. In this region one can also calculate

the trace anomaly within the glueball resonance model (note that the hadron resonance gas

model works very well for full QCD [9, 41]). In figure 3 we plot our results together with the

contribution of the first twelve glueballs of [42]. There is an apparent deficit of the model

prediction as compared to the lattice results. It has been suggested [43] to cover this deficit

with the addition of a Hagedorn spectrum [44] contribution ρ(M) ∝ exp(M/Th). As it can

be seen in figure 4 the temperature dependence of our continuum extrapolated equation

of state shows a good agreement with this picture (we actually use the direct lattice data

of [43] to set the integration constant of the entropy density). We parameterized the result

of this theoretical description (glueballs + Hagedorn spectrum) and comment on it in the

last section of our paper.
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Figure 3. The trace anomaly in the confined phase measured with various lattice spacings and

the continuum extrapolation (yellow band). The dashed line corresponds to the glueball resonance

model, estimated from the twelve lightest glueballs.

Figure 4. Entropy in the confining phase. The red band shows our continuum extrapolated lattice

result based on Nt = 5, 6 and 8 data. The thick line is the entropy of a glueball gas where the

Hagedorn spectrum is assumed beyond the two-particle threshold [43]. The dashed line shows our

parameterization in eq. (7.1).

– 9 –
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Figure 5. Volume dependence of the trace anomaly on our Nt = 5 lattices. Unless the box is very

small, there is no significant difference whether or not the box size allows contributions from the

inverse Tc scale.

6.2 Volume dependence of the results

As discussed in section 3, the trace anomaly contains a non-perturbative contribution which

dominates for Tc < T < 5Tc. The effect of this ∼ T 2 contribution reduces at increasing

temperatures. Moreover, the presence of this contribution becomes unnoticeable at suffi-

ciently high T , regardless of whether or not the lattice size accommodates the inverse Tc
scale. One way to discuss the relevance of this non-perturbative scale is to compare the trace

anomaly at various spatial volumes. This comparison is shown in figure 5 for our Nt = 5

lattices. The standard aspect ratio Ns/Nt = 4 gives somewhat smaller values for I/T 4, but

beyond Ns/Nt = 6 we do not see any difference in the results above the transition region.

We summarize our findings as i) the large volume lattice trace anomaly data shows

qualitative (and as we find using the fitted g6 order coefficient, also quantitative, see later)

agreement with the perturbative results for T > 10Tc, and ii) we see no deviation be-

tween results from various volumes (with Ns/Nt ≥ 6), moreover iii) the dominant non-

perturbative contribution loses significance as ∼ 1/T 2. These considerations suggest that

— even if the lattice volumes are ever shrinking as the temperature is increased — our re-

sults are able to describe the physical trace anomaly (and its integral, the thermodynamic

potential) within the error bars shown. Of course, this assumes that all relevant scales are

properly accounted for. In all our lattices besides the hard (T ) scale, the soft (gT ) as well

as ultrasoft (g2T ) scales are well represented. Thus it is reasonable to conjecture that our

Ns/Nt = 8 dataset reliably connects the transition region with the perturbative regime.

– 10 –
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6.3 Fitting improved perturbation theory

Regardless of whether the conjecture of the last subsection is valid or not, we can make use

of our small volume simulations at high temperature to compare to perturbative expan-

sions, in particular, to extract some unknown coefficients of these formulas. We perform

the continuum extrapolation in the same manner as for the large volume data, see sec-

tion 6, using the Nt = 5, 6 and 8 lattices. First we compare our results to O(g6) improved

perturbation theory [13]. We perform a fit to the subtracted trace anomaly,

Ipert(T, qc, µ)

T 4
− Ipert(T/2, qc, µ)

(T/2)4
, (6.1)

for the unknown coefficient qc of the g6 term with a fixed renormalization scale of µ = 2πT .

If we also allow for a variation of the scale, we find µ/2πT to be consistent with 1 within

errors. These fits are carried out for our results between 10Tc < T < 1000Tc and the

systematic error is estimated by varying the endpoints of the fit interval. Beyond this we

also consider as a source of systematic error the uncertainty of our lattice scale setting (see

section 5). We quote as our final result for this parameter,

qc = −3526(4)(55)(30), (6.2)

with the numbers in the parentheses are from left to right the statistical error, the error com-

ing from the lattice scale and that from the variation of the fit interval. A good fit quality

is indicated as χ2/dof = 0.7. The fitted function is shown by the dashed-dotted gray line in

figure 6. Note that a similar fit was attempted in the framework of an effective field theory

in ref. [45]. Here we fitted the missing coefficient in the re-expanded formula (7.2), which

we could, because our data stretches to temperatures where this re-expansion is justified.

While the ∼ T−2 behavior of the trace anomaly in the low-temperature region has been

seen and studied in many papers (see e.g. [14, 17, 22, 23, 27, 46] and references therein), its

relative weight in the total observable has not yet been quantified. Therefore we also con-

sider it useful to estimate the non-perturbative contribution to the trace anomaly, which we

assume to be of the form Inp(T )/T 2T 2
c = anp + bnp e

−cnpT/Tc , i.e. we propose the following

fit function:
Ipert(T )

T 4
+
anp + bnp exp(−cnp · T/Tc)

(T/Tc)2
. (6.3)

First we perform the fit to our large volume Ns/Nt = 16 continuum results for anp with

bnp = 0 kept fixed, then we carry out the fit for both non-perturbative coefficients. The

fit interval is chosen to be 1.5Tc < T < 10Tc. We find that the constant approximation

is not able to resolve the trace anomaly in the low temperature region as χ2/dof ≈ 25.

The exponential correction significantly improves the situation and we get χ2/dof = 0.9.

Moreover, the parameters are rather sensitive to the variation of the lower endpoint of

the fit interval which is just above the transition. Nevertheless, since there is no a priori

constraint on the form of the fit function (6.3), we accept this as a first approximation to

the non-perturbative contribution. We obtain the following coefficients:

anp = 0.69(1)(9), bnp = 3.64(3)(7), cnp = 0.69(1)(2), (6.4)

– 11 –
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Figure 6. Left panel: the continuum extrapolated lattice result for the T 2-scaled trace anomaly in

the temperature region of 1.1Tc to 4Tc. The data stays constant within a range of 5% around the

value 3.3. Right panel: the continuum limit obtained from the lattice results (red band), compared

to fitted perturbation theory. We fit the g6 coefficient (gray dashed-dotted line) and subtract it

from the lattice results (blue band) to show the non-perturbative contribution which is then fitted

by a simple function (black dashed line).

with the errors coming from the statistics and the lattice scale, respectively. We also show

this non-perturbative fit by the dashed black line in figure 6, in comparison with the lat-

tice results minus the O(g6) fitted formula. Note that instead of using the second term

of eq. (6.3) an equally good description of our data can be given by a term of the form:

Inp/T
4 = A/T 2 +B/T 3 + C/T 4.

Using (3.2) the fitted perturbative formulae for the pressure are also straightforward to

write down. In figure 7 we compare our continuum results to the so obtained predictions.

Similar comparisons can be made for the case of the energy density and the entropy density

also, where we find qualitatively the same behavior as for the pressure, see figures 8 and 9.

In these plots the large volume (Ns/Nt = 16) continuum results are shown up to 10Tc,

continued with the small volume (Ns/Nt = 8) continuum results beyond. The results for

the trace anomaly and for the pressure are also listed up to T/Tc = 1000 in table 1.

6.4 Fitting HTL perturbation theory

Next we discuss the region of validity of the HTL resummed perturbation theory. In par-

ticular, we compare once again our Ns/Nt = 8 continuum results to the NNLO expansion

of the HTL scheme [6]. We consider the renormalization scale µHTL as a free parameter of

this expansion, and perform a fit to this parameter, i.e. our fit function to the subtracted

trace anomaly is
Ipert(T, µHTL)

T 4
− Ipert(T/2, µHTL)

(T/2)4
. (6.5)

The fit is carried out for T > 100Tc, and the endpoint is varied to obtain the systematic

error coming from the fitting procedure. The sum of deviations for this fit is χ2/dof = 0.6,

– 12 –
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Figure 7. The normalized pressure in the continuum limit. A comparison is shown to fitted O(g6)

perturbation theory and to perturbation theory plus an additional non-perturbative contribution

(see text).

Figure 8. The normalized energy density in the continuum limit. A comparison is shown to

fitted O(g6) perturbation theory and to perturbation theory plus an additional non-perturbative

contribution (see text).

indicating a nice agreement between lattice results and the perturbative expansion. Our

result for the renormalization scale is (in the same notation for the errors as before)

µHTL

2πT
= 1.75(2)(6)(50). (6.6)

– 13 –
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Figure 9. The normalized entropy density in the continuum limit. A comparison is shown to

fitted O(g6) perturbation theory and to perturbation theory plus an additional non-perturbative

contribution (see text).

Figure 10. The trace anomaly in the continuum limit, compared to the NLO and NNLO HTL

expansion with varied renormalization scale 0.5 < µHTL/2πT < 2 (green and gray shaded regions).

The dashed-dotted line represents the NNLO expansion with the fitted scale (see text).

The fitted formula for the trace anomaly is shown in figure 10.
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T/Tc I/T 4 p/T 4 T/Tc I/T 4 p/T 4

0.70 0.0104(25) 0.0015(1) 3.0 0.3589(27) 1.4098(13)

0.74 0.0162(27) 0.0023(0) 3.5 0.2736(20) 1.4582(14)

0.78 0.0232(31) 0.0033(1) 4.0 0.2207(11) 1.4910(14)

0.82 0.0318(22) 0.0046(2) 4.5 0.1855(15) 1.5149(14)

0.86 0.0433(19) 0.0064(3) 5.0 0.1606(21) 1.5330(14)

0.90 0.0594(22) 0.0087(3) 6.0 0.1266(13) 1.5591(17)

0.94 0.0859(36) 0.0118(3) 7.0 0.1050(10) 1.5768(18)

0.98 0.1433(47) 0.0164(4) 8.0 0.0903(9) 1.5898(18)

1.00 1.0008(672) 0.0222(4) 9.0 0.0798(8) 1.5998(19)

1.02 2.0780(137) 0.0571(9) 10 0.0720(15) 1.6078(19)

1.06 2.4309(29) 0.1455(10) 20 0.0375(16) 1.6444(29)

1.10 2.4837(38) 0.2370(10) 30 0.0265(13) 1.6572(35)

1.14 2.4309(22) 0.3250(10) 40 0.0216(11) 1.6641(40)

1.18 2.3426(17) 0.4074(10) 50 0.0191(11) 1.6686(43)

1.22 2.2342(28) 0.4837(10) 60 0.0174(12) 1.6720(46)

1.26 2.1145(20) 0.5539(10) 80 0.0154(12) 1.6767(48)

1.30 1.9980(21) 0.6181(9) 100 0.0142(12) 1.6800(50)

1.34 1.8867(21) 0.6770(9) 200 0.0112(11) 1.6887(53)

1.38 1.7809(19) 0.7309(9) 300 0.0100(12) 1.6930(53)

1.42 1.6810(17) 0.7804(9) 400 0.0091(12) 1.6958(53)

1.46 1.5872(17) 0.8258(9) 500 0.0085(12) 1.6977(52)

1.5 1.4995(19) 0.8675(9) 600 0.0080(12) 1.6992(52)

2.0 0.8038(24) 1.1890(8) 800 0.0073(11) 1.7014(52)

2.5 0.5057(23) 1.3319(12) 1000 0.0068(10) 1.7030(52)

Table 1. Continuum extrapolated lattice results for the trace anomaly and the pressure as functions

of the temperature.

7 Theoretical description and model building

The present paper summarizes a long term project of us (for earlier reports see [47, 48]).

We have determined the equation of state of the pure SU(3) theory with a.) unprece-

dented accuracy and b.) in a far larger temperature range than previous studies. These

two ingredients allow one to have a complete theoretical description of the equation of

state from T = 0 all the way to the phase transition, through the transition region into the

perturbative regime up to the Stefan-Boltzmann limit. Our precision data will hopefully
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contribute to an even better understanding of the theory and/or model building. Below we

summarize the various temperature regimes. These regimes can be described with different

theoretical rigor and accuracy, which we comment on. First we discuss the confining phase,

then the perturbative regime. The next region, which we study is the one above Tc with its

non-perturbative/non-ideal contribution. Finally comparing the latter with the confining

phase we estimate the latent heat.

i. Confining phase. We provided a continuum extrapolated equation of state also in

this phase. We found a nice agreement with ref. [43] (which is not continuum extrap-

olated yet, but the results are obtained on quite fine lattices), which also provided

a Hagedorn-type description of its data up to the vicinity of Tc. It is observed that

the gas model of stable gluons underestimates the equation of state below Tc (c.f. fig-

ure 3). Extending the spectral sum with an exponential spectrum ρ(M) ∝ exp(M/Th)

(suggested by Hagedorn [44] almost half a century ago) provides a good description

of the lattice result (see figure 4). A simple fit to the Hagedorn model between the

first and the last simulation points of ref. [43], i.e. between 0.7Tc and 0.985Tc, can

provide an accurate description of the equation of state on the few percent level,

sconf(T )

T 3
= −0.2 · T

Tc
− 0.134 · log

(
1.024− T

Tc

)
. (7.1)

Here we used Th/Tc = 1.024(3) of ref. [43] as a fixed parameter. Our (preliminary)

data at low temperatures has been put into the context of various gauge algebras in

ref. [49].

ii. Perturbative regime and the Stefan Boltzmann limit. We have determined the un-

known coefficient of the g6 term of the perturbative approach. The perturbative

result with this g6 term is accurate already from about 10Tc all the way up to the

Stefan-Boltzmann limit (see our discussion in section 6.3). The equation of state in

this expansion contains various terms of log(T/Tc) and g (which can be expressed by

logarithms of T/ΛMS or T/Tc, too). As a quick reference we provide the normalized

pressure p(T )/T 4 as a function of the strong coupling αs to order α3
s logαs [13],

ppert
T 4

=
8π2

45

[
1−1.1937 · αs+5.3876 · α3/2

s +16.2044 · α2
s+6.8392 · α2

s · log(αs) (7.2)

−45.6800 · α5/2
s −36.5990 · α3

s · log(αs)+41.8960 · α3
s+0.03225 · qc · α3

s

]
,

where in the last term the result of our fit to qc, eq. (6.2) enters,

qc = −3526(4)(55)(30). For the coupling constant one may use the three-loop

formula [50], at renormalization scale µ = 2πT ,

αs(T ) = 1.1424 · 1
t
−0.9630 · log t

t2
+0.4143 · 1

t3
−0.8118 · log t

t3
+0.8118 · (log t)2

t3
, (7.3)

with

t = 4.1380 + 2 · log(T/Tc), (7.4)

where we used the central value of our Tc/ΛMS = 1.26(7) determination. Clearly,

from p one can obtain all other thermodynamic observables.
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iii. Deconfined phase with non-perturbative contribution. As it was observed in [23, 51]

the lattice data for the T 2 scaled trace anomaly is essentially constant in the

temperature range T ≈ 1.3 − 4Tc. The author suggested an effective Lagrangian

based on the Wilson-line (L), in which the confinement-deconfinement transition

arises through the term ∝ T 2Bf |tr L|2. Adding such a mass term is standard

in Landau-Ginzburg type of analyses. One needs a linear term, too (see e.g.

refs. [46, 52]), which was first suggested in ref. [22]).

The new data confirmed the existence of such a non-perturbative or non-ideal term,

proportional to T 2. Subtracting the perturbative result from the lattice data one can

determine this non-perturbative/non-ideal contribution. Interestingly enough this

term has an exponentially decaying part. For completeness, we repeat the formula

for this non-perturbative term here again:

Inp
T 4

=
T 2
c

T 2
[anp + bnp exp(−cnp · T/Tc)] , (7.5)

with anp = 0.69(1)(9), bnp = 3.64(3)(7) and cnp = 0.69(1)(2). For this term we have

chosen a form, in which the coincidence between the numerical values for anp and

cnp is transparent (this coincidence might be interesting from the model building

point of view). The sum of the terms Ipert/T
4 + Inp/T

4 describes the data down to

about 1.3Tc.

iv. Phase transition. The pure SU(3) gauge theory undergoes a weak first order phase

transition. The strength of the phase transition is well illustrated by the dimensionless

latent heat. Its value Lh/T
4
c ≈ 1.4 is fairly well known from the literature [43, 53, 54].

On the confining side of the transition the hadron resonance gas provides a good de-

scription up to the vicinity of Tc. This confining phase within the Hagedorn model (see

the point i. of our discussion) ends with an entropy value of s/T 3
c ≈ 0.3 (note that the

normalized pressure is much smaller).

As we have seen in the previous two points the perturbative approach with an intrin-

sically non-perturbative part describes the data from the Stefan-Boltzmann limit all the

way down to the vicinity of the phase transition, to about 1.3Tc. In this deconfined phase

one observes an approximately constant behavior of the T 2 scaled trace anomaly, with a

value around 3.3, see left panel of figure 6. One could naively extend this plateau to Tc
and take the appropriate difference between the energy densities of the two sides of the

transition. Using this naive procedure one ends up with a latent heat, which is about twice

as large as the real value, measured on the lattice. The reason for that is that the plateau

in the trace anomaly turns down as it gets closer to Tc. On the other side of Tc a similar

(upward) effect appears. Though a factor of two might seem large, with the new precision

data in hand one hopes to understand more about the region between Tc and 1.3Tc and

to come up with even better models and results (see e.g. ref. [46] and references therein).

To that end the lattice should provide better data for the temperature dependence of the

renormalized Polyakov loops, which will be the topic of a forthcoming publication.
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