
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Interner Bericht

A Comparison of two
Parallization Strategies

for TRACE

Michael Gerndt, Olaf Neuendorf*
Joachim Prümmer, Harry Vereecken*

KFA-ZAM-IB-9425

November 1994
(Stand 22.11.94)

(*) Institut für Erdöl und Organische Geochemie (ICG 4)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35035413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




A Comparison of two Parallelization Strategies for TRACEMichael Gerndt1, Olaf Neuendorf2,Joachim Pr�ummer1, Harry Vereecken21 Zentralinstitut f�ur Angewandte Mathematik (ZAM)2 Institut f�ur Erd�ol und Organische Geochemie (ICG 4)Forschungszentrum J�ulichD-52425 J�ulichfm.gerndt, o.neuendorf, j.pruemmer, h.vereeckeng@kfa-juelich.deAbstractIn this report we compare two di�erent methods of parallelization of a �nite elementcode describing water 
ow in soils. The �rst method uses Domain Decomposition based on aparallel Schwarz algorithm. The second method uses a Data Partitioning approach pursuedin High Performance Fortran (HPF). Experiments with the parallel versions were performedon the Paragon XP/S 10 at KFA.1 IntroductionIn the consequence of the agricultural and industrial growth of the last decades many environ-mental problems appeared. Worldwide the protection of water resources is one of the majorissues in the present day environmental policies. This involves a detailed understanding of thetransport of chemicals in soils and aquifers. Therefore mathematical models are increasinglyused as the most important tool to quantify the transport of these pollutants and to understandthe underlying processes.The common mathematical approach is to describe these processes as a set of deterministicordinary and partial di�erential equations which are solved numerically. In the last years it hasbeen recognised that a deterministic approach is not able to describe the behaviour of variouspollutants in natural systems. Detailed measurements of soil and aquifer properties have showna considerable spatial variability which in
uences substantially the behaviour of pollutants.Taking account of the intrinsic variability leads to stochastic partial di�erential equations. Forthe numerical solution of this type of equations one often needs a discretization with a largenumber of nodal grid points (more than 106 unknowns), depending on the extend of the area ofinterest and the correlation scale of the parameters. Additionally, in variably saturated systems(soils with shallow groundwater table) the partial di�erential equations describing the transportof reactive (sorptive) solutes are nonlinear and therefore more di�cult to solve in terms ofnumerics and computer requirements. The combination of both problems requires powerfulcomputer systems to obtain a solution.Recent developments in computer systems with parallel architecture have stimulated the interestin using this type of computers to solve such problems. Various methods and techniques are1



available in the literature which allow to treat these types of numerical problems on massivelyparallel computer systems (MPP). In this report we compare two di�erent methods of paral-lelization of a �nite element code describing water 
ow in soils. The �rst method uses DomainDecomposition based on a parallel Schwarz algorithm. The second method uses a Data Parti-tioning approach pursued in High Performance Fortran (HPF) [7]. Although �rst HPF compilersfor massively parallel systems are available we manually implemented the parallel version sinceunstructured grid applications are not supported in the current design of HPF.2 ApplicationThe usual approach to model the transport of pollution in the soil/aquifer system is to startwith the well known Richards equation describing the 
ow of water [6]F @h@t = ~r � (K~r(h+ z)) + SF = d�dh (1)where F is the storage term (L�1), h is the pressure head (L), K the hydraulic conductivitytensor (LT�1), z the vertical coordinate (L), S the sink/source term (T�1), � the moisturecontent (L3/L3), dimensions in brackets. The parameter K and the functional relationshipbetween � and h are known to vary in space thereby in
uencing considerably water 
ow andsolute transport. They are often considered as stationary random space functions, described bytheir �rst and second statistical moments. To solve 
ow problems using Eq. (1), initial andboundary conditions need to be speci�ed. Depending on the type of problem three di�erenttypes of boundary conditions can be imposed: Dirichlet, Neumann, and variable, which meanseither Dirichlet or Neumann, depending on the value of h.To perform the time discretization the method of �nite di�erences is used, while for the spacediscretization the Bubnov-Galerkin �nite element method with linear hexaedric elements is ap-plied. This leads to the non linear matrix equationA(~h) � ~h = ~y (2)where A is the coe�cient matrix depending upon the solution and ~y a vector containing knowninformation resulting from the boundary conditions. A fully implicit approach updating thecoe�cient matrix and a load vector, combined with Picard's iteration method to solve for thenon-linear iteration is used. This results in an outermost time loop and an inner non-linear loop,as shown in Figure 1. A third iteration loop is necessary to account for the variable boundarycondition. The resulting system is solved by the Conjugate Gradients method using diagonalscaling as preconditioner [4].After solving for the water transport, the solute transport can be calculated using the convec-tion/dispersion equation: ~r(D~rc� c~u) = @c=@t+ S(c; t)c � concentration in water~u � pore velocityD � dispersion=diffusion tensorS � sink=source term (3)2



Prepare Boundary Conditions

Compute fluxes through all types of boundaries

Solve system of linear equations

Update time-dependent boundary conditions

time loop

variable boundary loop

non-linear loop

Evaluate soil properties

Prepare variable boundary conditions

SPROP

CGALG

Assemble the nonlinear equation ASSEMBLE

Evaluate soil properties SPROP

Figure 1: Sequential program structureThis second step is not discussed in this paper. The interest is focused upon the possibilityto calculate the water 
ow on a parallel computer using two di�erent methods of paralleliza-tion. The methods presented for water 
ow are however applicable to the convection/dispersionequation.3 Parallelization StrategiesFor the application described in Section 2 we implemented two di�erent parallel versions based onDomain Decomposition and Data Partitioning. Domain Decomposition and Data Partitioninghave in common that the nodes of the �nite element grid are distributed onto the processorsof a parallel machine. Thus those processors are responsible for the nodes they own. Themain di�erence between the two strategies is that Domain Decomposition has a coarser level ofcommunication than Data Partitioning.In Domain Decomposition a processor computes a solution for the linear equation regardingonly the nodes it owns. Afterwards the solutions on the borders are compared with those of theneighboring processors. This is iterated until some criterion is satis�ed.In Data Partitioning the global solution for the linear equation system is computed in parallel.Thus in each iteration the solution vector is consistent to the one computed by the sequentialversion of the program.3.1 Domain Decomposition ApproachThe Domain decomposition technique is based upon the idea, that a physical domain of interest
 can be divided into a number of subdomains 
i, while for each of them the same di�erentialequations have to be solved. It was the idea of Schwarz (1890) to use overlapping subdomains3



therby exchanging appropriate subdomain boundary information in order to obtain a solutionfor the overall domain.We de�ne on the domain 
 a boundary value problem [2, 5] described by Eq. (4)Lu = f(~x; t); ~x 2 
 (4)where u is the pressure head and L the partial di�erential operatorL = @@t � ~rK~r:The domain 
 is divided into p subdomains
 = p[i=1
i (5)with Liuki = fi(~x; t) (6)and Li and fi are restrictions of L and f on 
i, respectively, and k is an iteration index. Theboundary conditions for the subdomains are given byuki (~x; t) = 
ki (~x; t); ~x 2 @
i=@
 (7)where 
ki are considered as pseudo-Dirichlet boundary conditions, which are de�ned below byEq. (11).A natural way to solve Eq.(4) is to apply either �nite di�erence or �nite element techniques,requiring the de�nition of a numerical grid. For purpose of simplicity we will introduce a simplerectangular grid G on the domain 
 = [0; 1]� [0; 1]� [0; 1] whereG = f(xi; yi; zh); xi = i=n; yi = j=n; zh = h=n; 0 � i; j; h � ng (8)with n a positive integer representing the number of intervals (or elements). Following Rodriguewe de�ne a sequence of integers such that0 = l1 < l2 < r1::: < lp < rp�1 < rp = n (9)where p is the number of subdomains. These integers delimit the right and left boundaries ofthe subdomains 
i = [xli ; xri]� [0; 1]� [0; 1] 1 � i � p: (10)The parallel Schwarz procedure solves Eq.(6) on each of the subdomains independently, whilethe boundary conditions de�ned by Eq. (7) are updated in the following way4



Prepare Boundary Conditions

Compute fluxes through all types of boundaries

Update time-dependent boundary conditions

time loop

variable boundary loop

non-linear loop

Evaluate soil properties

Prepare variable boundary conditions

Evaluate soil properties

Exchange appropriate boundary information

Solve system of linear equations

Schwarz loop

Assemble the nonlinear equations

Figure 2: Parallel program structure with Domain Decompositionuki (xli; y; z; t) = uk�1i�1 (xli ; y; z; t); 0 � y; z � 1; i = 2; :::; puki (xri ; y; z; t) = uk�1i+1 (xri; y; z; t); 0 � y; z � 1; i = 1; :::; p� 1 (11)Eq. (11) de�nes the pseudo-Dirichlet boundary conditions. Although the overlap of the subdo-mains may be varied, only the information at the boundary itself has to be exchanged.Figure 2 shows a 
ow chart of the relevant part of the TRACE code, where the Schwarz algo-rithm was implemented. The major additional feature according to the sequential version is theintroduction of a communication loop (Schwarz loop). Therefore just a slight change of the codeis necessary, which is one of the great advantages of this method. The innermost part of theprogram is the solution of the linear equation system by the conjugant gradients method. Thenumber of CG iterations was limited to a maximum of 5 to avoid an unproportional high e�ortfor the �rst steps of the Schwarz loop. This Schwarz loop has to update its boundary vector insuch a way that neither the e�ort of this update nor the number of the Schwarz iterations itselfis too high. The e�ort for an update is mainly governed by the number of CG iterations whileagain a higher number of Schwarz iterations leads to a rise in the number of CG iterations.The Schwarz loop is repeated until the di�erence between the old and the new boundary vectorfalls under a prespeci�ed criterium. All the rest of the program remains unchanged exceptfor the input/output (I/O). The I/O has to be modi�ed anyway, no matter which strategy ofparallelization is applied. 5



3.2 Data Partitioning ApproachIn the Data Partitioning approach the sequential algorithm is parallelized by executing its opera-tions simultaneously on the processors if these operations are independent. The resulting parallelprogram performs almost the same number of 
oating point operations and the computed resultis equal to the result of the sequential program.The operations are distributed to the processors with respect to data locality. Similar to theDomain Decomposition approach, the global grid (Eq. 8) is subdivided into subgrids assigned tothe processors. Whereas the current implementation of the Domain Decomposisiton approachonly supports one-dimensional splitting, the Data Partitioning implementation already allowssplitting in each dimension.The data structures in the sequential program re
ect the global grid. All arrays are distributedto the processors according to the decomposition of the grid and the operations are assigned tothe processors where the data reside.This approach is the basic design concept of HPF. The current version of HPF supports regulardistribution of arrays to processors. This is not su�cient for this application since the arraysare one-dimensional and the three dimensional grid is mapped in an arbitrary way to thesearrays. This mapping makes it necessary to specify irregular distributions for the arrays, i.e. tomap array elements individually to the processors. Upcoming HPF compilers are not able todo automatically what we did by hand for this program because irregular distribution are notsupported and runtime overhead is reduced taking application properties into account.In almost all phases of the sequential algorithm shown in Figure 1 the computation for individual�nite-element nodes requires information of neighbouring nodes. Since neighbouring nodes mayreside on other processors these data have to be communicated prior to the operation or theoperation has to be performed where the data reside and the result has to be communicated.The implementation applies both alternatives to reduce communication overhead.Some operations in the sequential code require global communication among all nodes, e.g. thecomputation of the residuum of the global linear equation system's solution. All processors haveto know the global value to make the same decision whether another CG-iteration has to beexecuted.Figure 3 gives an overview of the resulting parallelized program. Neighbour communication aswell as global communication is spread over the entire code. The most critical communicationwith respect to parallel program e�ciency is the gather and the global sum in each CG-iteration.A CG-iteration basically consists of a single matrix-vector multiply for the subgrid. Thereforethe communication overhead - which is dominated by the message passing latency and thus onlydependend on the partitioning strategy and nearly constant in the number of processors - moreand more dominates the computation when the size of the subgrid is reduced.Before the parallel program can be executed the following tasks have to be performed:1. computation of subregions done by the distributor2. computation of object distributions done by the object partitioner3. rearranging input data done by the data partitionerFigure 4 shows the global organization of these steps and the related tools. The user has to only6



check pressure head and infiltration

1 gather operation on non-local nodes

1 gather operation on non-local nodes

Compute fluxes through all types of boundaries

1 scatter_add operation on non-local boundary nodes
1 global sum operation

Assemble the nonlinear equation

1 gather operation on non-local nodes

2 scatter_add operations on non-local nodes

2 scatter_add operations on variable boundary nodes
1 gather operation on nonlocal nodes

non-linear loop

variable boundary loop

time loop

Update time dependent boundary conditions

9 gather operations on nonlocal nodes

Compute translation tables and scheduling information

calculate residuum of the non-linear loop

Solve system of linear equations

1 gather operation in loop

calculate residuum
1 global sum operation

Evaluate soil properties

1 gather operation on non-local nodes

2 scatter_add operations on non-local nodes

Prepare boundary conditions

Evaluate soil properties

4 gather operations on non-local nodes

Prepare variable boundary conditions

3 scatter_add operations on non-local nodes

1 global max operation

1 global sum operationFigure 3: Parallel program structure with Data Partitioning7



specify the desired distribution strategy, i.e. how the global domain should be distributed onthe processors. The other steps are performed automatically.
Distributor

node distribution input data

Object
Partitioner

element distribution
boundary side/node distribution
Cauchy side/node distribution

...

Data
Partitioner

replicated
input data

distributed
input data

Parallel TRACEFigure 4: Overall organization of the Data Partitioning versionThe most performance critical decision is the selection of the distributions. Although the parallelcode handles arbitrary distributions correctly, the distribution of nodes should be done in a wayto minimize the communication overhead.For this application we developed a tool, the distributor, which divides the three{dimensionalproblem region into regular subregions. Input is the extension of every axis (x{, y{ and z{axis) and the number of blocks per axis. According to this user{speci�cation the distributorcomputes the number of nodes and the global node numbers assigned to each processor, i. e. thenode distribution.From the node distribution several distributions are derived automatically by a tool called objectpartitioner. The partitioner computes the distribution of the elements based on the majorityrule. An element is assigned to that processor which owns most of its nodes. If there is nounique processor with this property an arbitrary processor is selected. We chose this strategyin order to reduce nonlocal accesses to nodes although it may lead to load imbalances.All other distributions are based on the node and element distributions. These distributions arethe boundary side distribution, boundary node distribution, cauchy side distribution, cauchynode distribution, neumann side distribution, neumann node distribution, variable side distri-bution, variable node distribution and dirichlet node distribution. All these objects are assignedto that processor which owns the original object, i. e. the element or the node.According to the distributions the input data are rearranged and copied to the parallel �lesystem. This enables each processor to read the information for its own array elements e�ciently.8



The developed tool, the data partitioner, is executed on one processor of the Paragon system.It reads the di�erent distributions and the original input data of the sequential program. Fromthese �les it generates two �les, one �le on the host system containing the data replicated in allprocessors and another �le containing the information of distributed arrays. In the second �lethe data of each distributed array are arranged into contiguous blocks for each processor.3.2.1 Implementation of the Data Partitioning versionThe Data Partitioning parallelization strategy leads to a code written according to the SPMDprogramming model (Single ProgramMultiple Data). Each processor executes the same programon the data which correspond to the assigned subregion.The parallel code is parameterized in the number of processors as well as the distribution ofnodes and elements. A deep understanding of the code was neccessary to �nd out where accessesto nonlocal objects occur.The implementation is based on the PARTI library [1], developed at NASA/ICASE by JoelSaltz et al. It supports distributions of arrays, computation of processor{local indices, analysisof communication patterns, and communication of nonlocal array elements.In a �rst phase of the parallel program, called the inspector, array distributions are speci�edin each processor via a list of the global array indices assigned to the processor. Based on thedistributions, communication patterns and local indices are computed.Each processor passes a list of the array elements for which it will be responsible (locnd) andthe number of items in this list (NNP, the number of nodal points) to the inspector routineIFBUILD TRANSLATION TABLE.ND_TTAB = IFBUILD_TRANSLATION_TABLE ( 1 , LOCND , NNP )The call to IFBUILD TRANSLATION TABLE returns the translation table for the nodes: ND TTAB.This table is used in another inspector routine, FLOCALIZE, to compute the local indices fromthe global ones and to compute the communication schedules to resolve nonlocal accesses. Acall to FLOCALIZE looks like this:CALL FLOCALIZE(ND_TTAB,ND_SCHED,OFFX,LOFFX,NOFFX,NON_LOC,NNP,JB)On each processor P, FLOCALIZE is passed:1. a pointer to a distributed translation table (ND TTAB)2. a list of global indices of distributed array elements that are accessed in processor P (OFFX),and3. the number of global indices, NOFFXFLOCALIZE returns:1. a schedule that can be used in PARTI gather and scatter procedures (ND SCHED) to resolvenonlocal accesses in OFFX, 9



2. a list of locally indexed array references for which processor P is responsible (LOFFX), and3. the number of distinct o�{processor references found in OFFX (NON LOC).The pre{computed communication schedules are then used in communication operations toperform the actual exchange of array element values. This is called the executor part. PARTIprovides gather, scatter, and scatter add operations to fetch, distribute and combine informationfor nonlocal elements.For example, the GATHER routine has to be inserted in the code whereever nonlocal referencesappear. For example, array X stores the x{coordinate of the nodes. If processor P accesseslocal nodes as well as nonlocal nodes and thus array elements of X it has to allocate memory forthe array elements for local nodes as well as for copies of nonlocal nodes. The doubleprecisionFORTRAN version of GATHER is DFGATHER.CALL DFGATHER ( ND_SCHED , X ( NNP + 1 ) , X ( 1 ) )As the �rst parameter DFGATHER takes the precomputed schedule of the nodes (ND SCHED), thesecond parameter is the bu�er for nonlocal nodes X ( NNP + 1 ), and the third parameter arethe local nodes of the processor X ( 1 ).Besides these operations on one{dimensional arrays also operations on two{dimensional arrayswere needed in this application and were partly developed in cooperation with ICASE duringthe parallelization.Example:As an example we look at a typical loop of the program where such non{local read and writeaccesses occur.CALL DFGATHER ( ND_SCHED , X ( NNP + 1 ) , X ( 1 ) )..DO M = 1, NELDO IQ = 1, 8NI = IEN ( M , IQ )XQ ( IQ ) = X ( NI )ENDDODO IQ = 1, 8NI = IEN ( M , IQ )VX ( NI ) = VX ( NI ) + QRX ( IQ )ENDDOENDDO..CALL DFSCATTER_ADD ( ND_SCHED , VX ( NNP + 1) , VX ( 1 ) )The loop shown iterates over all elements (NEL is the number of elements). For each element IENstores the node indices of those nodes which belong to the element. These nodes, however, are not10



neccessarily local nodes, and a node can belong to di�erent elements at the same time. Thereforenon{local values of X have to be gathered before the loop starts, using the pre{computed scheduleof the nodes (NODE SCHED).In the second inner loop some node information is added to vector VX. This information has tobe made available to the processor who owns the non{local nodes by a scatter add operation.It means that these non{local values are added to those values that the owner computed itself.4 Comparison by a Single Test CaseTo compare both methods, a simple 
ow domain was chosen with a geometry to enable thecalculation of the whole domain on one processor of the Intel Paragon. The number of FiniteElement nodes is 9216 with 6 x 6 x 256 in the three directions. The type of the boundaries isDirichlet except for the top, where a variable Neumann/Dirichlet type with rainfall respectivelyevaporation is imposed. For simplicity a homogeneous permeability distribution was chosen.This test run performs 14 time steps. For more realistic runs simulation times of several hundredtime steps have to be performed.The overlap in the Domain Decomposition version is three elements with a one dimensionalstructure of four and eight subdomains while the size of the subdomains is exactly the samefor each processor to assure a unique load balance distribution. According to the geometry thedomain was subdivided in the z-direction. Note that in the example of Eq. (10) the x-directionwas chosen. The distribution in the Data Partitioning version is also in blocks in the z-direction.Table 1 presents the execution times, Table 2 the speedup, and Table 3 the e�ciency of thetwo program versions. The �rst row are the values of the Domain Decomposition version (DD),the second row those of the Data Partitioning program (DP). Simulation runs of DD on morethan eight processors were not feasible due to the manual generation of the input �les. This ispresently the most limiting step in the application of the Domain Decomposition method.In the Data Partitioning version SETUP precomputes the communication patterns. Althoughthere is no similar phase in the Domain Decomposition version we present this overhead sepa-rately in the timing table. This phase is executed once when the parallel program is started.Due to the long runtime of the time loop this overhead is neglectable but has to be taken intoaccount for correctness.The di�erence in execution time on one processor between DD and DP is mainly caused by adi�erence in output instructions in the time loop. DP is based on a cleanedup version of theoriginal sequential code for the time loop. Both versions have some minor di�erences in one ofthe iteration loops in terms of output statements.Comparing the speedup and e�ciencies, the Data Partitioning method seems to be slightly betterthan the Domain Decomposition method. This is mainly caused by the redundant computationsdue to the overlap and by the additional e�ort needed in the Schwarz iterations. Clearly thelinear equation has to be solved more frequently in DD than in DP. Improvement of the DomainDecomposition method can be obtained by imposing the convergence of the Schwarz iterationor by introducing a load balancing algorithm.In comparison to DD, DP has a considerable amount of memory overhead due to the PARTIlibrary. The additional memory is used for storing the distributions, computing the commu-11



1 6

3631

37

9181 9186

92169211

l1

l2

r2

r1

l4

r4

l3

r3

variable boundary
condition

Dirichlet boundary
condition

12
75

 c
m

25 cm

25 cm

x

y

z

9216 nodal points
6375 elements

dx = dy = dz = 5 cmFigure 5: Test domain for 4 CPUs12



Proc. 1 4 8 16 32SETUP DD na na na na naDP na 2 1 1 2SPROP DD 620 160 85DP 622 156 78 39 20ASEMBL DD 881 228 121DP 880 235 116 57 29CGALG DD 285 100 59DP 274 82 46 29 22time loop DD 2069 567 315DP 1948 517 264 139 80Table 1: Execution time in secondsProc. 1 4 8 16 32SPROP DD 1.0 3.88 7.29DP 1.0 3.99 7.95 15.95 31.10ASEMBL DD 1.0 3.86 7.28DP 1.0 3.74 7.59 15.44 30.34CGALG DD 1.0 2.85 4.83DP 1.0 3.34 5.96 9.45 12.45time loop DD 1.0 3.65 6.57DP 1.0 3.77 7.38 14.01 24.35Table 2: SpeedupProc. 1 4 8 16 32SPROP DD 100 97 91DP 100 100 99 100 97ASEMBL DD 100 97 91DP 100 94 95 96 95CGALG DD 100 71 60DP 100 84 74 59 39time loop DD 100 91 82DP 100 94 92 88 76Table 3: E�ciency13



nication schedules, storing the schedules, and for bu�ering the communicated data. Since thememory is allocated dynamically a more precise estimation of its amount is impossible but thee�ect may not be neglected in the case of large 
ow domains.At present only a simple case using a limited number of processors has been tested. For furthercomparison larger and more complex problems in terms of decomposition of the domain (twoand three dimensional) will have to be examined.5 ConclusionIn this study two di�erent strategies for parallelization of a �nite element code for water andsolute transport in porous media are compared. Both the Domain Decomposition and the DataPartitioning method give very good speedups and e�ciencies for the case examined. It opens theperspective of being able to solve large time dependent non-linear 
ow and transport problemswith millions of unknowns on massively parallel computer systems.For both methods the speedup for the solution of the linear equation is the limiting factor.In case of the Domain Decomposition this is caused by the need for an increased number ofSchwarz iterations by increasing processor number. This results in a more frequent solution ofthe linear equation system. In the Data Partitioning method, the number of times the linearequation system is solved remains constant but the time for communication becomes more andmore important.Both parallelizations required a deep knowledge of the application and the applied algorithm.Although researchers are working on the automatic transformation of such codes to parallelprograms in the context of HPF this knowledge will still be required for selecting the datadistribution and for understanding the resulting performance of the application. Not only theknowledge of the application is required to under the application's performance but the userhas to understand also the automatically carried out transformations. Although the Data Par-titioning approach for this application is based on the same techniques, HPF compilers willonly be able to generate as e�cient code if they are able to perform agressive interproceduraloptimizations which were easily performed during the manual parallelization.Although the coding phase of the actual parallelization, i.e. insertion of communication andtransformation of array declarations, took more time for the Data Partitioning version, bothparallelizations were completely dominated by the task of parallelizing the I/O. The time in-vested in this task can be seen as overhead since the execution time for I/O is neglectablecompared to the overall calculation time.Parallelization of the I/O is unnecessary when the data structures are allocated in a globalshared memory. In [8] we report on some parallelization experiments with this application forscalable shared memory machines. We developed parallel versions for the KSR and for a sharedmemory software implementation called KOAN on top of an IPSC/2. Our experiments showedspeedups similar to those obtained for the Paragon.Due to the enormous requirements of this application in computation time and memory we arecurrently investigating a meta-computing approach. We plan to connect a CM-5 at GMD/Bonnand our Paragon via a high-speed link and to run the Domain Decomposition version of TRACEin parallel on both machines. 14



References[1] R. Das, J. Saltz, A manual for PARTI runtime primitives - revision 2, Internal ResearchReport, ICASE, 1992[2] G. Rodrique, Inner/outer iterative methods and numerical Schwarz algorithms, ParallelComputing 2, 1985, 205-218[3] H.A. Schwarz,Gesammelte Mathematische Abhandelungen, Vol.2, Springer Verlag,Berlin, 1890, 133-143[4] H. Vereecken, G. Lindenmayr, A. Kuhr, D.H.Welte, A. Basermann, Numerical modelingof �eld scale transport in heterogeneous variably saturated porous media, KFA/ICG-4Internal Report No. 500393, Juelich, Germany, 1993[5] H. Vereecken, O. Neuendorf, G. Lindenmayr, A. Basermann, A parallel Schwarz domaindecomposition method for the numerical solution of transient water 
ow in heteroge-neous porous media, submitted to Parallel Computing 1994[6] G.T. Yeh, 3DFEMWATER : A Three Dimensional Finite Element Model of Water FlowThrough Saturated-Unsaturated Media, Report ORNL-6386, Environmental ScienceDivision Publ. 2904, Oak Ridge, USA, 1987[7] HPFF, High Performance Fortran Language Speci�cation, High Performance FortranForum, May 1993, Version 1.0, Rice University Houston Texas[8] R. Berrendorf, M. Gerndt, Z. Labjomri, T. Priol, A Comparison of Shared VirtualMemory and Message Passing Programming Techniques Based on a Finite ElementApplication, to appear in: Proceedings of CONPAR'94, Linz

15


