-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Juelich Shared Electronic Resources

FORSCHUNGSZENTRUM JULICH GmbH
Zentralingtitut fir Angewandte M athematik
D-52425 Julich, Tel. (02461) 61-6402

Interner Bericht

A Comparison of two
Parallization Strategies
for TRACE

Michael Gerndt, Olaf Neuendorf*
Joachim Primmer, Harry Vereecken*

KFA-ZAM-IB-9425

November 1994
(Stand 22.11.94)

(*) Institut fir Erddl und Organische Geochemie (ICG 4)

https://core.ac.uk/display/35035413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Comparison of two Parallelization Strategies for TRACE

Michael Gerndt!, Olaf Neuendorf?,

Joachim Priimmer!, Harry Vereecken?

! Zentralinstitut fiir Angewandte Mathematik (ZAM)
2 Institut fiir Erdol und Organische Geochemie (ICG 4)
Forschungszentrum Julich
D-52425 Julich

{m.gerndt, o.neuendorf, j.pruemmer, h.vereecken }@kfa-juelich.de

Abstract

In this report we compare two different methods of parallelization of a finite element
code describing water flow in soils. The first method uses Domain Decomposition based on a
parallel Schwarz algorithm. The second method uses a Data Partitioning approach pursued
in High Performance Fortran (HPF). Experiments with the parallel versions were performed
on the Paragon XP/S 10 at KFA.

1 Introduction

In the consequence of the agricultural and industrial growth of the last decades many environ-
mental problems appeared. Worldwide the protection of water resources is one of the major
issues in the present day environmental policies. This involves a detailed understanding of the
transport of chemicals in soils and aquifers. Therefore mathematical models are increasingly
used as the most important tool to quantify the transport of these pollutants and to understand
the underlying processes.

The common mathematical approach is to describe these processes as a set of deterministic
ordinary and partial differential equations which are solved numerically. In the last years it has
been recognised that a deterministic approach is not able to describe the behaviour of various
pollutants in natural systems. Detailed measurements of soil and aquifer properties have shown
a considerable spatial variability which influences substantially the behaviour of pollutants.
Taking account of the intrinsic variability leads to stochastic partial differential equations. For
the numerical solution of this type of equations one often needs a discretization with a large
number of nodal grid points (more than 10° unknowns), depending on the extend of the area of
interest and the correlation scale of the parameters. Additionally, in variably saturated systems
(soils with shallow groundwater table) the partial differential equations describing the transport
of reactive (sorptive) solutes are nonlinear and therefore more difficult to solve in terms of
numerics and computer requirements. The combination of both problems requires powerful
computer systems to obtain a solution.

Recent developments in computer systems with parallel architecture have stimulated the interest
in using this type of computers to solve such problems. Various methods and techniques are

available in the literature which allow to treat these types of numerical problems on massively
parallel computer systems (MPP). In this report we compare two different methods of paral-
lelization of a finite element code describing water flow in soils. The first method uses Domain
Decomposition based on a parallel Schwarz algorithm. The second method uses a Data Parti-
tioning approach pursued in High Performance Fortran (HPF) [7]. Although first HPF compilers
for massively parallel systems are available we manually implemented the parallel version since
unstructured grid applications are not supported in the current design of HPF.

2 Application

The usual approach to model the transport of pollution in the soil/aquifer system is to start
with the well known Richards equation describing the flow of water [6]

F%—?:ﬁ*(Kﬁ(h—l—z))—l—S

— 4o
F=3

(1)

where F is the storage term (L~!), h is the pressure head (L), K the hydraulic conductivity
tensor (LT~!), z the vertical coordinate (L), S the sink/source term (T~1), © the moisture
content (L3/L3), dimensions in brackets. The parameter K and the functional relationship
between © and h are known to vary in space thereby influencing considerably water flow and
solute transport. They are often considered as stationary random space functions, described by
their first and second statistical moments. To solve flow problems using Eq. (1), initial and
boundary conditions need to be specified. Depending on the type of problem three different
types of boundary conditions can be imposed: Dirichlet, Neumann, and variable, which means
either Dirichlet or Neumann, depending on the value of h.

To perform the time discretization the method of finite differences is used, while for the space
discretization the Bubnov-Galerkin finite element method with linear hexaedric elements is ap-
plied. This leads to the non linear matrix equation

ARy xE=7 (2)

where A is the coefficient matrix depending upon the solution and ¥ a vector containing known
information resulting from the boundary conditions. A fully implicit approach updating the
coefficient matrix and a load vector, combined with Picard’s iteration method to solve for the
non-linear iteration is used. This results in an outermost time loop and an inner non-linear loop,
as shown in Figure 1. A third iteration loop is necessary to account for the variable boundary
condition. The resulting system is solved by the Conjugate Gradients method using diagonal
scaling as preconditioner [4].

After solving for the water transport, the solute transport can be calculated using the convec-
tion/dispersion equation:

V(DVe — cii) = 8¢/8t + S(c, t)

¢ — concentration in water

4 — pore velocity (3)
D - dispersion/dif fusion tensor

S — sink/source term

timeloop

C Update time-dependent boundary conditions)

variable boundary loop

non-linear loop
C Evaluate soil properties) SPROP
C Assemble the nonlinear equation) ASSEMBLE
(Prepare Boundary Conditions)
C Solve system of linear equations) CGALG
(Evaluate soil properties) SPROP
(Prepare variable boundary conditions)

C Compute fluxes through al types of boundaries)

Figure 1: Sequential program structure

This second step is not discussed in this paper. The interest is focused upon the possibility
to calculate the water flow on a parallel computer using two different methods of paralleliza-
tion. The methods presented for water flow are however applicable to the convection/dispersion
equation.

3 Parallelization Strategies

For the application described in Section 2 we implemented two different parallel versions based on
Domain Decomposition and Data Partitioning. Domain Decomposition and Data Partitioning
have in common that the nodes of the finite element grid are distributed onto the processors
of a parallel machine. Thus those processors are responsible for the nodes they own. The
main difference between the two strategies is that Domain Decomposition has a coarser level of
communication than Data Partitioning.

In Domain Decomposition a processor computes a solution for the linear equation regarding
only the nodes it owns. Afterwards the solutions on the borders are compared with those of the
neighboring processors. This is iterated until some criterion is satisfied.

In Data Partitioning the global solution for the linear equation system is computed in parallel.
Thus in each iteration the solution vector is consistent to the one computed by the sequential
version of the program.

3.1 Domain Decomposition Approach

The Domain decomposition technique is based upon the idea, that a physical domain of interest
Q2 can be divided into a number of subdomains €2;, while for each of them the same differential
equations have to be solved. It was the idea of Schwarz (1890) to use overlapping subdomains

therby exchanging appropriate subdomain boundary information in order to obtain a solution
for the overall domain.

We define on the domain Q a boundary value problem [2, 5] described by Eq. (4)
Lu= f(£,t), 7€ Q (4
where u is the pressure head and L the partial differential operator
0 - -
L=_—-VKV.
ot

The domain €2 is divided into p subdomains

with
Liuf = fi(Z,t) (6)

and L; and f; are restrictions of L and f on £2;, respectively, and k is an iteration index. The
boundary conditions for the subdomains are given by

uk (@ t) = vF(E,1), T € 00/00 (7)

where ’yfc are considered as pseudo-Dirichlet boundary conditions, which are defined below by
Eq. (11).

A natural way to solve Eq.(4) is to apply either finite difference or finite element techniques,
requiring the definition of a numerical grid. For purpose of simplicity we will introduce a simple
rectangular grid G on the domain 2 = [0, 1] x [0, 1] x [0, 1] where

G = {(ziayiazh)a Z; :1/na Y; :j/na Zh:h/na 0< 1a.7ah§ n} (8)

with n a positive integer representing the number of intervals (or elements). Following Rodrigue
we define a sequence of integers such that

0=L<lh<r.<lp<rpi<r,=n (9)

where p is the number of subdomains. These integers delimit the right and left boundaries of
the subdomains

Q; = [, 2] x [0,1]x [0,1] 1<i<p. (10)

The parallel Schwarz procedure solves Eq.(6) on each of the subdomains independently, while
the boundary conditions defined by Eq. (7) are updated in the following way

timeloop

(Update time-dependent boundary conditions)

variable boundary loop

non-linear loop

(Evaluate soil properties)
(Assemble the nonlinear equations)
(Prepare Boundary Conditions)
Schwar z loop
(Solve system of linear equations)
| Exchange appropriate boundary information |

(Evaluate soil properties

(AN

(Prepare variable boundary conditions

(Compuite fluxes through all types of boundaries)

Figure 2: Parallel program structure with Domain Decomposition

uk(azli,y,z,t):uf__ll(a;li,y,z,t), 0 Syazé 1a 1:2,,]7 (11)

1
uf(azri,y,z,t) = ui_ll(x”,y,z,t), 0<y,z2<1; 1=1,...,p—-1

Eq. (11) defines the pseudo-Dirichlet boundary conditions. Although the overlap of the subdo-
mains may be varied, only the information at the boundary itself has to be exchanged.

Figure 2 shows a flow chart of the relevant part of the TRACE code, where the Schwarz algo-
rithm was implemented. The major additional feature according to the sequential version is the
introduction of a communication loop (Schwarz loop). Therefore just a slight change of the code
is necessary, which is one of the great advantages of this method. The innermost part of the
program is the solution of the linear equation system by the conjugant gradients method. The
number of CG iterations was limited to a maximum of 5 to avoid an unproportional high effort
for the first steps of the Schwarz loop. This Schwarz loop has to update its boundary vector in
such a way that neither the effort of this update nor the number of the Schwarz iterations itself
is too high. The effort for an update is mainly governed by the number of CG iterations while
again a higher number of Schwarz iterations leads to a rise in the number of CG iterations.

The Schwarz loop is repeated until the difference between the old and the new boundary vector
falls under a prespecified criterium. All the rest of the program remains unchanged except
for the input/output (I/O). The I/O has to be modified anyway, no matter which strategy of
parallelization is applied.

3.2 Data Partitioning Approach

In the Data Partitioning approach the sequential algorithm is parallelized by executing its opera-
tions simultaneously on the processors if these operations are independent. The resulting parallel
program performs almost the same number of floating point operations and the computed result
is equal to the result of the sequential program.

The operations are distributed to the processors with respect to data locality. Similar to the
Domain Decomposition approach, the global grid (Eq. 8) is subdivided into subgrids assigned to
the processors. Whereas the current implementation of the Domain Decomposisiton approach
only supports one-dimensional splitting, the Data Partitioning implementation already allows
splitting in each dimension.

The data structures in the sequential program reflect the global grid. All arrays are distributed
to the processors according to the decomposition of the grid and the operations are assigned to
the processors where the data reside.

This approach is the basic design concept of HPF. The current version of HPF supports regular
distribution of arrays to processors. This is not sufficient for this application since the arrays
are one-dimensional and the three dimensional grid is mapped in an arbitrary way to these
arrays. This mapping makes it necessary to specify irregular distributions for the arrays, i.e. to
map array elements individually to the processors. Upcoming HPF compilers are not able to
do automatically what we did by hand for this program because irregular distribution are not
supported and runtime overhead is reduced taking application properties into account.

In almost all phases of the sequential algorithm shown in Figure 1 the computation for individual
finite-element nodes requires information of neighbouring nodes. Since neighbouring nodes may
reside on other processors these data have to be communicated prior to the operation or the
operation has to be performed where the data reside and the result has to be communicated.
The implementation applies both alternatives to reduce communication overhead.

Some operations in the sequential code require global communication among all nodes, e.g. the
computation of the residuum of the global linear equation system’s solution. All processors have
to know the global value to make the same decision whether another CG-iteration has to be
executed.

Figure 3 gives an overview of the resulting parallelized program. Neighbour communication as
well as global communication is spread over the entire code. The most critical communication
with respect to parallel program efficiency is the gather and the global sum in each CG-iteration.
A CG-iteration basically consists of a single matrix-vector multiply for the subgrid. Therefore
the communication overhead - which is dominated by the message passing latency and thus only
dependend on the partitioning strategy and nearly constant in the number of processors - more
and more dominates the computation when the size of the subgrid is reduced.

Before the parallel program can be executed the following tasks have to be performed:

1. computation of subregions done by the distributor
2. computation of object distributions done by the object partitioner

3. rearranging input data done by the data partitioner

Figure 4 shows the global organization of these steps and the related tools. The user has to only

C Compute translation tables and scheduling information)

! 2 scatter_add operations on variable boundary nod&e I
1 gather operation on nonlocal nodes

variable boundary loop

non-linear loop

1 gather operation in loop |
1 global sum operation I
calculate residuum |

! calculate residuum of the non-linear loop |
X 1 global max operation I

check pressure head and infiltration !
1 global sum operation I

1 1 scatter_add operation on non-local boundary nodes
! 1 global sum operation

Figure 3: Parallel program structure with Data Partitioning

specify the desired distribution strategy, i.e. how the global domain should be distributed on
the processors. The other steps are performed automatically.

Distributor
node distribution

input data

Object
Partitioner

element distribution
boundary side/node distribution
Cauchy side/node distribution

Data
Partitioner

/\

replicated distributed
input data input data

Paral | el TRACE

Figure 4: Overall organization of the Data Partitioning version

The most performance critical decision is the selection of the distributions. Although the parallel
code handles arbitrary distributions correctly, the distribution of nodes should be done in a way
to minimize the communication overhead.

For this application we developed a tool, the distributor, which divides the three—dimensional
problem region into regular subregions. Input is the extension of every axis (x—, y— and z—
axis) and the number of blocks per axis. According to this user—specification the distributor
computes the number of nodes and the global node numbers assigned to each processor, i. e. the
node distribution.

From the node distribution several distributions are derived automatically by a tool called object
partitioner. The partitioner computes the distribution of the elements based on the majority
rule. An element is assigned to that processor which owns most of its nodes. If there is no
unique processor with this property an arbitrary processor is selected. We chose this strategy
in order to reduce nonlocal accesses to nodes although it may lead to load imbalances.

All other distributions are based on the node and element distributions. These distributions are
the boundary side distribution, boundary node distribution, cauchy side distribution, cauchy
node distribution, neumann side distribution, neumann node distribution, variable side distri-
bution, variable node distribution and dirichlet node distribution. All these objects are assigned
to that processor which owns the original object, i. e. the element or the node.

According to the distributions the input data are rearranged and copied to the parallel file
system. This enables each processor to read the information for its own array elements efficiently.

The developed tool, the data partitioner, is executed on one processor of the Paragon system.
It reads the different distributions and the original input data of the sequential program. From
these files it generates two files, one file on the host system containing the data replicated in all
processors and another file containing the information of distributed arrays. In the second file
the data of each distributed array are arranged into contiguous blocks for each processor.

3.2.1 TImplementation of the Data Partitioning version

The Data Partitioning parallelization strategy leads to a code written according to the SPMD
programming model (Single Program Multiple Data). Each processor executes the same program
on the data which correspond to the assigned subregion.

The parallel code is parameterized in the number of processors as well as the distribution of
nodes and elements. A deep understanding of the code was neccessary to find out where accesses
to nonlocal objects occur.

The implementation is based on the PARTI library [1], developed at NASA/ICASE by Joel
Saltz et al. It supports distributions of arrays, computation of processor—local indices, analysis
of communication patterns, and communication of nonlocal array elements.

In a first phase of the parallel program, called the inspector, array distributions are specified
in each processor via a list of the global array indices assigned to the processor. Based on the
distributions, communication patterns and local indices are computed.

Each processor passes a list of the array elements for which it will be responsible (locnd) and
the number of items in this list (NNP, the number of nodal points) to the inspector routine
IFBUILD_TRANSLATION_TABLE.

ND_TTAB = IFBUILD_TRANSLATION_TABLE (1 , LOCND , NNP)
The call to TFBUILD TRANSLATION TABLE returns the translation table for the nodes: ND_TTAB.
This table is used in another inspector routine, FLOCALIZE, to compute the local indices from
the global ones and to compute the communication schedules to resolve nonlocal accesses. A
call to FLOCALIZE looks like this:

CALL FLOCALIZE(ND_TTAB,ND_SCHED,OFFX,LOFFX,NOFFX,NON_LOC,NNP,JB)

On each processor P, FLOCALIZE is passed:

1. a pointer to a distributed translation table (ND_TTAB)

2. alist of global indices of distributed array elements that are accessed in processor P (0OFFX),
and

3. the number of global indices, NOFFX
FLOCALIZE returns:

1. aschedule that can be used in PARTI gather and scatter procedures (ND_SCHED) to resolve
nonlocal accesses in OFFX,

2. alist of locally indexed array references for which processor P is responsible (LOFFX), and

3. the number of distinct off-processor references found in OFFX (NON_LOC).

The pre—computed communication schedules are then used in communication operations to
perform the actual exchange of array element values. This is called the ezecutor part. PARTI
provides gather, scatter, and scatter_add operations to fetch, distribute and combine information
for nonlocal elements.

For example, the GATHER routine has to be inserted in the code whereever nonlocal references
appear. For example, array X stores the x—coordinate of the nodes. If processor P accesses
local nodes as well as nonlocal nodes and thus array elements of X it has to allocate memory for
the array elements for local nodes as well as for copies of nonlocal nodes. The doubleprecision
FORTRAN version of GATHER is DFGATHER.

CALL DFGATHER (ND_SCHED , X (NNP + 1) , X (1))

As the first parameter DFGATHER takes the precomputed schedule of the nodes (ND_SCHED), the
second parameter is the buffer for nonlocal nodes X (NNP + 1), and the third parameter are
the local nodes of the processor X (1).

Besides these operations on one—dimensional arrays also operations on two—dimensional arrays
were needed in this application and were partly developed in cooperation with ICASE during
the parallelization.

Example:

As an example we look at a typical loop of the program where such non—local read and write
accesses OCCur.

CALL DFGATHER (ND_SCHED , X (NNP + 1) , X (1))

DO M = 1, NEL

DO IQ = 1, 8
NI = IEN (M, IQ)
Q (1@) =X (NI)
ENDDO
DO IQ = 1, 8
NI = IEN (M, IQ)
VX (NI) =VX (NI) + QRX (IQ)
ENDDO
ENDDO

CALL DFSCATTER_ADD (ND_SCHED , VX (NNP + 1) , VX (1))

The loop shown iterates over all elements (NEL is the number of elements). For each element IEN
stores the node indices of those nodes which belong to the element. These nodes, however, are not

10

neccessarily local nodes, and a node can belong to different elements at the same time. Therefore
non—local values of X have to be gathered before the loop starts, using the pre—computed schedule
of the nodes (NODE_SCHED).

In the second inner loop some node information is added to vector VX. This information has to
be made available to the processor who owns the non-local nodes by a scatter_add operation.
It means that these non—local values are added to those values that the owner computed itself.

4 Comparison by a Single Test Case

To compare both methods, a simple flow domain was chosen with a geometry to enable the
calculation of the whole domain on one processor of the Intel Paragon. The number of Finite
Element nodes is 9216 with 6 x 6 x 256 in the three directions. The type of the boundaries is
Dirichlet except for the top, where a variable Neumann/Dirichlet type with rainfall respectively
evaporation is imposed. For simplicity a homogeneous permeability distribution was chosen.
This test run performs 14 time steps. For more realistic runs simulation times of several hundred
time steps have to be performed.

The overlap in the Domain Decomposition version is three elements with a one dimensional
structure of four and eight subdomains while the size of the subdomains is exactly the same
for each processor to assure a unique load balance distribution. According to the geometry the
domain was subdivided in the z-direction. Note that in the example of Eq. (10) the x-direction
was chosen. The distribution in the Data Partitioning version is also in blocks in the z-direction.

Table 1 presents the execution times, Table 2 the speedup, and Table 3 the efficiency of the
two program versions. The first row are the values of the Domain Decomposition version (DD),
the second row those of the Data Partitioning program (DP). Simulation runs of DD on more
than eight processors were not feasible due to the manual generation of the input files. This is
presently the most limiting step in the application of the Domain Decomposition method.

In the Data Partitioning version SETUP precomputes the communication patterns. Although
there is no similar phase in the Domain Decomposition version we present this overhead sepa-
rately in the timing table. This phase is executed once when the parallel program is started.
Due to the long runtime of the time loop this overhead is neglectable but has to be taken into
account for correctness.

The difference in execution time on one processor between DD and DP is mainly caused by a
difference in output instructions in the time loop. DP is based on a cleanedup version of the
original sequential code for the time loop. Both versions have some minor differences in one of
the iteration loops in terms of output statements.

Comparing the speedup and efficiencies, the Data Partitioning method seems to be slightly better
than the Domain Decomposition method. This is mainly caused by the redundant computations
due to the overlap and by the additional effort needed in the Schwarz iterations. Clearly the
linear equation has to be solved more frequently in DD than in DP. Improvement of the Domain
Decomposition method can be obtained by imposing the convergence of the Schwarz iteration
or by introducing a load balancing algorithm.

In comparison to DD, DP has a considerable amount of memory overhead due to the PARTI
library. The additional memory is used for storing the distributions, computing the commu-

11

9211 9216

A
variable boundary
r condition
4 T
9181 9186
f3
I4 :
I E
! (&]
To)
N~
o
g
I3 .
M
I
2 i
| 31 36| |
I bl e
/x’/ Dirichlet bou
37 _.-" condition
| :1 6 25cm
z 1
+—25cm———>
y 9216 nodal points

6375 elements
X

dx=dy=dz=5cm

Figure 5: Test domain for 4 CPUs

12

[Proc. | 1 [4 [8 |16 [32]
SETUP DD | na na | na | na | na

DP | na 2 1 1 2
SPROP DD | 620 | 160 | 85

DP | 622 | 156 | 78 | 39 | 20
ASEMBL DD | 881 | 228 | 121

DP | 880 | 235 | 116 | 57 | 29
CGALG DD | 285 | 100 | 59

DP | 274 | 82 | 46 | 29 | 22
time loop DD | 2069 | 567 | 315

DP | 1948 | 517 | 264 | 139 | 80

Table 1: Execution time in seconds

[Proc. | 1] 4 | 8 | 16 | 32 |
SPROP DD | 1.0 3.88 | 7.29

DP | 1.0|3.99 | 7.95 | 15.95 | 31.10
ASEMBL DD | 1.0 | 3.86 | 7.28

DP | 1.0|3.74| 759 | 15.44 | 30.34
CGALG DD | 1.0 | 2.85 | 4.83

DP | 1.0 | 3.34 | 596 | 945 | 12.45
time loop DD | 1.0 | 3.65 | 6.57

DP | 1.0 | 3.77 | 7.38 | 14.01 | 24.35

Table 2: Speedup

[Proc. | 1| 4 | 8] 16 [32]
SPROP DD | 100 | 97 |91

DP | 100 | 100 | 99 | 100 | 97
ASEMBL DD | 100 | 97 | 91

DP | 100 | 94 | 95| 96 | 95
CGALG DD | 100 | 71 | 60

DP | 100 | 84 | 74| 59 | 39
time loop DD | 100 | 91 | 82

DP | 100 | 94 |92 | 88 | 76

Table 3: Efficiency

13

nication schedules, storing the schedules, and for buffering the communicated data. Since the
memory is allocated dynamically a more precise estimation of its amount is impossible but the
effect may not be neglected in the case of large flow domains.

At present only a simple case using a limited number of processors has been tested. For further
comparison larger and more complex problems in terms of decomposition of the domain (two
and three dimensional) will have to be examined.

5 Conclusion

In this study two different strategies for parallelization of a finite element code for water and
solute transport in porous media are compared. Both the Domain Decomposition and the Data
Partitioning method give very good speedups and efficiencies for the case examined. It opens the
perspective of being able to solve large time dependent non-linear flow and transport problems
with millions of unknowns on massively parallel computer systems.

For both methods the speedup for the solution of the linear equation is the limiting factor.
In case of the Domain Decomposition this is caused by the need for an increased number of
Schwarz iterations by increasing processor number. This results in a more frequent solution of
the linear equation system. In the Data Partitioning method, the number of times the linear
equation system is solved remains constant but the time for communication becomes more and
more important.

Both parallelizations required a deep knowledge of the application and the applied algorithm.
Although researchers are working on the automatic transformation of such codes to parallel
programs in the context of HPF this knowledge will still be required for selecting the data
distribution and for understanding the resulting performance of the application. Not only the
knowledge of the application is required to under the application’s performance but the user
has to understand also the automatically carried out transformations. Although the Data Par-
titioning approach for this application is based on the same techniques, HPF compilers will
only be able to generate as efficient code if they are able to perform agressive interprocedural
optimizations which were easily performed during the manual parallelization.

Although the coding phase of the actual parallelization, i.e. insertion of communication and
transformation of array declarations, took more time for the Data Partitioning version, both
parallelizations were completely dominated by the task of parallelizing the I/O. The time in-
vested in this task can be seen as overhead since the execution time for I/O is neglectable
compared to the overall calculation time.

Parallelization of the I/O is unnecessary when the data structures are allocated in a global
shared memory. In [8] we report on some parallelization experiments with this application for
scalable shared memory machines. We developed parallel versions for the KSR, and for a shared
memory software implementation called KOAN on top of an IPSC/2. Our experiments showed
speedups similar to those obtained for the Paragon.

Due to the enormous requirements of this application in computation time and memory we are
currently investigating a meta-computing approach. We plan to connect a CM-5 at GMD/Bonn
and our Paragon via a high-speed link and to run the Domain Decomposition version of TRACE
in parallel on both machines.

14

References

[1]

[2]

[7]

8]

R. Das, J. Saltz, A manual for PARTI runtime primitives - revision 2, Internal Research

Report, ICASE, 1992

G. Rodrique, Inner/outer iterative methods and numerical Schwarz algorithms, Parallel
Computing 2, 1985, 205-218

H.A. Schwarz,Gesammelte Mathematische Abhandelungen, Vol.2, Springer Verlag,
Berlin, 1890, 133-143

H. Vereecken, G. Lindenmayr, A. Kuhr, D.H. Welte, A. Basermann, Numerical modeling
of field scale transport in heterogeneous variably saturated porous media, KFA /ICG-4
Internal Report No. 500393, Juelich, Germany, 1993

H. Vereecken, O. Neuendorf, G. Lindenmayr, A. Basermann, A parallel Schwarz domain
decomposition method for the numerical solution of transient water flow in heteroge-
neous porous media, submitted to Parallel Computing 1994

G.T. Yeh, SBDFEMWATER : A Three Dimensional Finite Element Model of Water Flow
Through Saturated-Unsaturated Media, Report ORNL-6386, Environmental Science
Division Publ. 2904, Oak Ridge, USA, 1987

HPFF, High Performance Fortran Language Specification, High Performance Fortran
Forum, May 1993, Version 1.0, Rice University Houston Texas

R. Berrendorf, M. Gerndt, Z. Labjomri, T. Priol, A Comparison of Shared Virtual
Memory and Message Passing Programming Techniques Based on a Finite Element
Application, to appear in: Proceedings of CONPAR’94, Linz

15

