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The spectrum of the SU(2) flavor baryons is studied in the frame of a relativistic chiral quark potential
model based on the one-pion and one-gluon exchange mechanisms. It is argued that the N� and Δ�

resonances strongly coupled to the πN channel are identified with the orbital configurations ð1S1=2Þ2ðnljÞ
with a single valence quark in the excited state (nlj). With the obtained selection rules based on the “chiral
constraint,” we show that it is possible to construct a schematic periodic table of baryon resonances,
consistent with the experimental data and yielding no “missing resonances.” A new original method for the
treatment of the center of mass problem is suggested which is based on the separation of the three-quark
Dirac Hamiltonian into the parts, corresponding to the Jacobi coordinates. The numerical estimations for
the energy positions of the nucleon and delta baryons (up to and including F-wave N� and Δ� resonances),
obtained within the field-theoretical framework by using time ordered perturbation theory, yield an overall
good description of the experimental data at the level of the relativized constituent quark model of
S. Capstick and W. Roberts without any fitting parameters. The only free parameter of the linear
confinement potential was fitted previously by Th. Gutsche to reproduce the axial charge of the nucleon.
The ground state Δð1232Þ is well reproduced. However, nucleon ground state and most of the radially
excited baryon resonances (including Roper) are overestimated. On the contrary, the first band of the
orbitally excited baryon resonances with a negative parity are underestimated. At the same time, the second
band of the orbitally excited Δ� states with the negative parity are mostly overestimated, while the N� states
are close to the experimental boxes. The theoretical estimations of the energy levels for the positive parity
baryon resonances with J ¼ 5=2, 7=2 are close to the experimental data. At higher energies, where the
experimental data are poor, we can extend our model schematically and predict an existence of seven N�

and four Δ� new states with larger spin values.
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I. INTRODUCTION

Presently, several experimental collaborations study the
production and decay of excited baryons motivated by open
questions concerning the origin of the hadronic masses [1].
The successes of lattice quantum chromodynamics(QCD)
in describing the ground state hadrons confirm the QCD
Lagrangian in the nonperturbative regime of the strong
interaction [2]. First studies of the masses of excited
baryons are available [3–5]. While the lattice simulations
are numerically very involved, there are simpler empirical
rules which work amazingly well: the Forkel-Klempt mass
formula reproduces the known N� andΔ� masses with three
parameters [1]. The question arises whether the lattice
results can be interpreted by simpler models, such as flux
tubes or constituent quarks. The constitutent quark models
(CQM) are the oldest approaches to baryon spectroscopy
and have evolved into three major subspecies, based on the
Goldstone-boson exchange (GBE) [6], the one-gluon
exchange (OGE) [7,8] or (and) instanton induced exchange
(IIE) [9] mechanisms between (non)relativistic constituent

quarks. In the present approach, we start from relativistic
chiral quark models [10–15] which respect the chiral
symmetry. There are no studies of the excited baryon
spectrum within these approaches in the literature.
In [16–18] we have developed a relativistic chiral quark

model for the lower excitation spectrum of the nucleon and
delta. The splitting of the Roper resonance from the N(939)
was reproduced with a reasonable accuracy. The model was
tested first in Ref. [19] for the study of the nucleon charge
form factors, then in Refs. [20,21] for the study of the
nucleon properties such as mass, charge radius, magnetic
moment, axial charge, and reasonable agreement with the
experimental values was obtained. A slightly modified
version of the model was extensively used for the study of
the ground state baryon properties, such as masses and
electromagnetic structure in Refs. [22–27], and for the
detailed analysis of the meson-nucleon sigma terms in
Refs. [28,29], and also for the study of the strange nucleon
form factors in Ref. [30].
The model is based on an effective chiral Lagrangian.

Quark wave function is obtained from the solution of the
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Dirac equation with a Cornell type potential containing a
linear confining term and a Coulomb part due to short range
gluon field correlations. All the model parameters of the
model, except one are fixed from the Lattice study of
previous authors [31,32]. The only free parameter of the
model is the so-called “mass term” in the confinement
potential, which was fitted in Ref. [21] to reproduce the
axial charge of the nucleon. The calculations are done at
one loop or at order of accuracy oð1=f2π; αsÞ.
The aim of the present paper is to extend the relativistic

chiral quark model to the higher excitation spectrum of
SU(2) flavor baryons. First we want to check, whether the
relativistic chiral quark model can help to understand the
systematics of the excited nucleon and delta states and an
orbital structure of each baryon state. Based on selection
rules obtained from one-pion exchange mechanisms
between valence quarks, below we will show that it is
possible to construct a periodic table, where each excited
Nucleon or Delta state can be identified with an orbital
configuration ð1SÞ2ðnljÞ with a single radially or/and
orbitally excited valence quark.
Second we will estimate the excited nucleon and delta

spectrum in the present model with taking into account
second-order perturbative corrections due to the pion and
color-magnetic gluon fields and compare with the exper-
imental data.
The relevant suggestion is that the results of our study

can be reproduced in any chiral quark model describing the
baryons as bound states of three valence quarks with a
Dirac two-component structure and surrounded by the
cloud of π-mesons, as required by the chiral symmetry [33].
In Sec. II we give the main formalism of the model. The

numerical results are presented in Sec. III, and final
conclusions are given in Sec. IV.

II. MODEL

A. Basis formalism

The effective Lagrangian of the modelLðxÞ (see [20,34])
contains the quark core part LQðxÞ, the quark-pion LðqπÞ

I ðxÞ
and the quark-gluon LðqgÞ

I ðxÞ interaction terms, and the
kinetic parts for the pion LπðxÞ and gluon LgðxÞ fields:

LðxÞ ¼ LQðxÞ þ LðqπÞ
I ðxÞ þ LðqgÞ

I ðxÞ þ LπðxÞ þ LgðxÞ
¼ ψ̄ðxÞ½i∂ − SðrÞ − γ0VðrÞ�ψðxÞ

− 1=fπψ̄ ½SðrÞiγ5τiϕi�ψ − gsψ̄Aa
μγ

μ λ
a

2
ψ

þ 1

2
ð∂μϕiÞ2 −

1

2
m2

πϕ
2
i −

1

4
Ga

μνG
μν
a : ð1Þ

Here, ψðxÞ, ϕi, i ¼ 1; 2; 3 and Aa
μ are the quark, pion, and

gluon fields, respectively. The matrices τi (i ¼ 1; 2; 3) and
λa (a ¼ 1;…; 8) are the isospin and color matrices,
correspondingly. The pion decay constant fπ ¼ 93 MeV.

In the model, the chiral symmetry violated through the
quark confinement mechanism is restored with the help of
the linearized σ-model. The mass term for the pion field is
introduced in order to satisfy the PCAC theorem [35],
which is consistent with the Goldberger-Treiman relation.
We use the Cornell type potential in the Dirac equation

for the single quark states in accordance with the lattice
QCD theory. The scalar part of the static confinement
potential is given by

SðrÞ ¼ crþm; ð2Þ

where c and m are constants. The strength parameter c of
the confinement potential is defined from the lattice study
[31], whilem is the only free parameter of the model which
can be fitted to reproduce the axial charge gA of the proton
(and the πNN coupling constant via the Goldberger-
Treiman relation).
At short distances, transverse fluctuations of the string

are dominating [36], with an indication that they transform
like the time component of the Lorentz vector. They are
given by a Coulomb type vector potential (the so-called
Luscher term) as

VðrÞ ¼ −α=r; ð3Þ

where α ¼ π=12 is defined from the QCD lattice
study [32].
The quark fields are obtained from solving the Dirac

equation with the corresponding scalar plus vector potentials

½iγμ∂μ − SðrÞ − γ0VðrÞ�ψðxÞ ¼ 0: ð4Þ

The respective positive and negative energy eigenstates as
solutions to the Dirac equation with a spherically sym-
metric mean field, are given in a general form as

uαðxÞ ¼
� gþNκðrÞ
−ifþNκðrÞ~σ ~̂x

�
Y

mj
κ ð~̂xÞχmt

χmc
expð−iEαtÞ; ð5Þ

vβðxÞ ¼
� g−NκðrÞ
−if−NκðrÞ~σ ~̂x

�
Y

mj
κ ð~̂xÞχmt

χmc
expðþiEβtÞ: ð6Þ

The quark and antiquark eigenstates u and v are labeled by
the radial, angular, azimuthal, isospin, and color quantum
numbers N, κ, mj, mt, and mc, which are collectively
denoted by α and β, respectively. The spin-angular part of
the quark field operators

Y
mj
κ ð~̂xÞ ¼ ½Ylð~̂xÞ ⊗ χ1=2�jmj

j ¼ jκj − 1=2: ð7Þ

The quark fields ψ are expanded over the basis of positive
and negative energy eigenstates as
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ψðxÞ ¼
X
α

uαðxÞbα þ
X
β

vβðxÞd†β: ð8Þ

The expansion coefficients bα and d†β are operators, which
annihilate a quark and create an antiquark in the orbits α
and β, respectively.
The free pion field operator is expanded over plane wave

solutions as

ϕjðxÞ ¼ ð2πÞ−3=2
Z

d3k

ð2ωkÞ1=2
½ajk expð−ikxÞ

þ a†jkexpðikxÞ� ð9Þ

with the usual destruction and creation operators ajk and

a†jk, respectively. The pion energy is defined as ωk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

π

p
. The free gluon field operators is expanded in

the same way.
In denoting the three-quark vacuum state by j0i, the

corresponding noninteracting many-body quark Green’s
function (propagator) of the quark field is given by the
customary vacuum Feynman propagator for a binding
potential [37]:

iGðx; x0Þ ¼ iGFðx; x0Þ ¼ h0jTfψðxÞψ̄ðx0Þgj0i
¼
X
α

uαðxÞūαðx0Þθðt − t0Þ

þ
X
β

vβðxÞv̄βðx0Þθðt0 − tÞ: ð10Þ

Since the three-quark vacuum state j0i does not contain any
pion or gluon, the pion and gluon Green’s functions are
given by the usual free Feynman propagator for a boson
field:

iΔijðx − x0Þ ¼ h0jTfϕiðxÞϕ̄jðx0Þgj0i

¼ iδij

Z
d4k
ð2πÞ4

1

k2 −m2
π þ iϵ

exp½−ikðx − x0Þ�;

ð11Þ

iΔðμνÞ
ab ðx − x0Þ ¼ h0jTfAa

μðxÞAb
νðx0Þgj0i

¼ iδabgμν
Z

d4k
ð2πÞ4

1

k2 þ iϵ
exp½−ikðx − x0Þ�;

ð12Þ

(in the Coulomb gauge), where gμν ¼ δμνgμμ, g00 ¼
−g11 ¼ −g22 ¼ −g33 ¼ 1.
In Ref. [23] the authors have shown that the initial

effective Lagrangian Eq. (1) of the chiral quark model and
the renormalized Lagrangian which includes counterterms
yield the same expression for the mass spectrum of the
nucleon. Assuming that this is true for all SU(2) baryons,

we use the initial effective Lagrangian as the basis for the
estimations of the ground and excited baryon mass spectra.
On the basis of the effective Lagrangian and using

the time-ordered perturbation theory within the frame of
many-body quantum field theory [37] we can develop the
calculation scheme for the excitation spectrum of the
nucleon and delta.
At zeroth order the quark core result (EQ) is obtained by

solving Eq. (4) for the single quark system numerically by
using the harmonic oscillator basis. Since we work in the
independent particle model, we assume that the bare three-
quark state of the SUð2Þ-flavor baryons corresponds to the
structure ð1S1=2Þ2ðnljÞ with a single excited valence quark
in the nonrelativistic spectroscopic notation. Below, on
the basis of the one-pion and one-gluon exchange mech-
anisms we will argue that such a configuration of the three
valence quarks is identified with the baryon resonances
decaying strongly into the π þ N channel. And to the
contrary, the baryon states with more than one valence
quarks in excited orbits do not have a strong coupling into
this channel. In other words, all baryon resonances appear-
ing in the πN scattering data can be identified with the
above orbital configuration containing a single excited
valence quark. This is why we fix the excited baryon
configuration as ð1S1=2Þ2ðnljÞ. The corresponding quark
core energy is evaluated as the sum of single quark energies
with:

EQ ¼ 2Eð1S1=2Þ þ EðnljÞ: ð13Þ

The second order perturbative corrections to the energy
spectrum of the SU(2) baryons due to the pion (ΔEðπÞ)
and gluon (ΔEðgÞ) fields are calculated on the basis of the
Gell-Mann and Low theorem:

ΔE ¼
*
Φ0

���X∞
n¼1

ð−iÞn
n!

Z
iδðt1Þd4x1…d4xnT

× ½HIðx1Þ…HIðxnÞ�
���Φ0

+
c

ð14Þ

with n ¼ 2, where the relevant quark-pion and quark-gluon
interaction Hamiltonian densities are

HðqπÞ
I ðxÞ ¼ i

fπ
ψ̄ðxÞγ5~τ ~ϕðxÞSðrÞψðxÞ; ð15Þ

HðqgÞ
I ðxÞ ¼ gsψ̄ðxÞAa

μðxÞγμ
λa

2
ψðxÞ: ð16Þ

The stationary bare three-quark state jΦ0i is constructed
from the vacuum state using the usual creation operators:

jΦ0iαβγ ¼ bþα bþβ b
þ
γ j0i; ð17Þ

where α, β, and γ represent the quantum numbers of the
single quark states, which are coupled to the respective
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baryon configuration. The energy shift of Eq. (14) is
evaluated up to second order in the quark-pion and quark-
gluon interaction, and generates self-energy and exchange
diagrams contributions. In the self-energy diagrams a single
pion or gluon is emitted and absorbed by the same valence
quark, which however can be excited to an intermediate
quark or antiquark state. In the second order exchange
diagrams a single pion or gluon, emitted by a valence quark
is absorbed by another valence quark of the SU(2) baryon.

B. Center of mass corrections for the ground
state N and Δ

The result for EQ in Eq. (13) contains an essential
spurious contribution of the center of mass motion to the
energy of the baryons. A covariant way of the separation of
the CM motion is possible in nonrelativistic models. In the
nonrelativistic three nucleon system the energy is reduced
by factor about 1=3 after the separation of the CM. At the
same time different approaches are being used in relativistic
mean field models.
For the ground state nucleon and delta baryons we use

the development of the Ref. [38], where three different
approximations have been used, which estimate corrections
for the center of mass motion: the R ¼ 0 [39], P ¼ 0 [40],
and LHO [41] methods. In all three methods the baryon
wave function is rewritten in the Jacobi coordinates in the
center of mass system as ΦBð~r; ~ρ; ~RÞ, where ~r, ~ρ, and ~R are
relative coordinates between the two valence quarks,
between 3-valence quark and the center of mass of the
1þ 2 quarks, and the center of mass of the all three quarks,
respectively:

~r ¼ ~r1 − ~r2;

~ρ ¼ ð ~r1 þ ~r2Þ=2 − ~r3;

~R ¼ ð ~r1 þ ~r2 þ ~r3Þ=3: ð18Þ

The initial baryon wave function Φð ~r1; ~r2; ~r3Þ expanded
in the oscillator basis states are transformed to the Jacobi
coordinates by using the Moshinsky transformation (see
Ref. [38] for details).
In the R ¼ 0 method the baryon wave function in the

CM system is multiplied by the plane wave of the CM
motion:

ΦRð ~r1; ~r2; ~r3; ~PÞ ¼ NRexpði~P · ~RÞΦBð~r; ~ρ; ~R ¼ 0Þ: ð19Þ

The second P ¼ 0 method is based on the Fourier trans-
formation of the baryon wave function:

ΦPð ~r1; ~r2; ~r3; ~PÞ ¼ NPexpði~P · ~RÞ

×
Z

expð−i~P · ~R0ÞΦBð~r; ~ρ; ~R0Þd~R0:

ð20Þ

The lowest harmonic oscillator (LHO) method is based on
the projection of the baryon wave function on the lowest
harmonic oscillator state:

ΦLHOð ~r1; ~r2; ~r3; ~PÞ ¼ NLHOexpði~P · ~RÞ

×
Z

R0sð~R0ÞΦBð~r; ~ρ; ~R0Þd~R0: ð21Þ

The factors NR, NP, and NLHO differ each from other and
are found from the normalization conditions:

hΦð ~r1; ~r2; ~r3; ~PÞjΦð ~r1; ~r2; ~r3; ~P0Þi ¼ ð2πÞ3δð~P − ~P0Þ: ð22Þ

In all of the three methods, the average kinetic energy and
mass terms of the three-body system are estimated by using
angular momentum algebra and numerical methods (see
Ref. [38] for details).

C. Center of mass corrections for the excited
states N� and Δ�

For the excited nucleon and delta states with fixed orbital
configuration ð1SÞ2ðnljÞ, the Moshinsky transformation is
not applicable due to two-component structure of the
valence quark wave functions. An original new approach
to the center of mass correction problem is based on the
separation of the total three-quark core Dirac Hamiltonian
with the scalar and vector mean field potentials

Ĥ ¼
X3
i¼1

½ ~αi ~piþSð~ri − ~RÞβi þ Vð~ri − ~RÞ� ð23Þ

into two parts corresponding to the relative motion and
center of mass motion, respectively. In this way one can
estimate the zero-order quark-core energy for the baryon
states with fixed orbital configurations ð1SÞ2ðnljÞ free off
the center of mass motion by solving the corresponding
equation. At the zero order the energy values of all baryon
states with fixed orbital configuration degenerate. This
means that one can estimate the zero-order energy values
of baryon states with the fixed orbital configuration
ð1SÞ2ðnljÞ, assuming that the two S-quarks are in the 1S0
singlet scalar diquark state.
The kinetic energy term can be rewritten easily as:

Ĥ0 ¼ ĤR;0 þ Ĥrel;0;

ĤR;0 ¼
~α1 þ ~α2 þ ~α3

3
~PR;

Ĥrel;0 ¼ ð ~α1 − ~α2Þ ~Pr þ
�
~α1 þ ~α2

2
− ~α3

�
~Pρ: ð24Þ

First we study the center of mass motion problem for the
scalar-vector mean-field potential of the oscillator form
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Ĥint ¼
X3
i¼1

½V1ð~ri − ~RÞβi þ V2ð~ri − ~RÞ�;

Vkð~riÞ ¼ ckr2i þ μk; k ¼ 1; 2: ð25Þ

In this case the interaction part of the three-quark core
Hamiltonian can be exactly separated in Jacobi coordinates
as

Ĥint ¼ Vr þ Vρ;

Vr ¼ 1=2ðc1βr þ c2Þr2 þ 2ðμ1βr þ μ2Þ;
Vρ ¼ 2=3ðc1βρ þ c2Þρ2 þ μ1βρ þ μ2; ð26Þ

where we introduced the Dirac matrices βr and βρ corre-
sponding to the Jacobi coordinates r and ρ, respectively.
In consistency with the above assumption, that the two
S-quarks are in the singlet 1S0 state and combining the
kinetic and interaction parts of the relative motion
Hamiltonian for the case of the oscillator scalar-vector
mean field potentials we can write down:

Ĥrel ¼ Ĥr þ Ĥρ; ð27Þ

where the Hamiltonian Ĥr corresponds to the singlet
diquark relative motion, and the Hamiltonian Ĥρ is related
to the single excited valence quark motion with the
modified potentials:

Ĥr ¼ ð~α1 − ~α2Þ~Pr þ Vr

Ĥρ ¼ −~α3 ~Pρ þ Vρ: ð28Þ

The two-body Dirac equation

ĤrΨð~rÞ ¼ ErΨð~rÞ ð29Þ

can be solved in the same way as the single particle Dirac
equation with the only difference that the lower component
of the two-body Dirac wave function differs from the upper
component by the both spin and orbital momentum. This
result is a consequence of the relation:

ð~σ1 − ~σ2Þ~̂rYjmj

l;S ð~̂rÞ ¼ −2
ffiffiffi
3

p X
h

ð2hþ 1Þ
� 1

2
1
2

S

l j h

�

×

� 1
2

1
2

ðS� 1Þ
ðl� 1Þ j h

�
× Y

jmj

l�1;S�1ð~̂rÞ; ð30Þ
where

Y
jmj

lS ð~̂rÞ ¼ ½Ylð~̂rÞ ⊗ χSð1; 2Þ�jmj
; ð31Þ

which shows us the correct form for the two-body Dirac
bound state wave function to be as

Ψð~rÞ ¼
 

gN;lðrÞYjmj

l;S ð~̂rÞ
ifN;l�1ðrÞYjmj

l�1;S�1ð~̂rÞ

!
: ð32Þ

The radial wave functions gN;lðrÞ and fN;lðrÞ are expanded
over the oscillator basis states as was done for the single
quark wave function. For the scalar diquark in the ground
state the upper and lower components of the two-body Dirac
wave function present the 1S0 and 3P0 waves, respectively.
The estimated energy value of the Eq. (29) together with the
solution of the single-quark Dirac equation

ĤρΨð~ρÞ ¼ EρΨð~ρÞ ð33Þ
with the modified potential Eq. (26) yield us the quark core
results of the energy value for the excited baryon states with
the fixed orbital configuration ð1SÞ2ðnljÞ

E0 ¼ Er þ Eρ ð34Þ

free off the center ofmass contribution. Thus, we found away
toseparate thecenterofmassmotionof the three-quarksystem
bound by the scalar-vector mean-field oscillator potentials.
Now we return to the Eq. (23) with the interaction

Hamiltonian

Ĥint ¼
X3
i¼1

½Sð~ri − ~RÞβi þ Vð~ri − ~RÞ�; ð35Þ

with the linear scalar SðrÞ ¼ crþm [see Eq. (2)] and
Coulomb-like vector VðrÞ ¼ −α=r [see Eq. (3)] mean-field
potentials. For these potentials, unlike scalar-vector
mean-field potentials, the separation of the interaction
Hamiltonian on the potentials Vr and Vρ, dependent on
the Jacobi coordinates r and ρ, respectively, is a strong task.
For the confinement potential in the Jacobi coordinates we
have an expansion over multipoles

Ŝð~r; ~ρÞ ¼
X3
i¼1

Sð~ri − ~RÞ

¼ 2c
X

l¼0;2;…

ðρ=3Þl
ðr=2Þlþ1

�
ρ2=9
2lþ 3

−
r2=4
2l− 1

	
Plðcosð~r ;̂ ~ρÞÞ

þ 2

3
cρþ 3m; ð36Þ

where Plðcosð~r ;̂ ~ρÞÞ are the Legandre polynomials. The
Coulomb-like potential is transformed in the same way into
the Jacobi coordinates as

V̂ð~r; ~ρÞ ¼
X3
i¼1

Vð~ri − ~RÞ

¼ −
4α

r

X
l¼0;2;…

�
ρ=3
r=2

�
l
Plðcosð~r ;̂ ~ρÞÞ −

3α

2ρ
: ð37Þ
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The above equations are valid for ρ=3 < r=2. In the rest
area these variables must be interchanged. Thus, in the
Jacobi coordinates we come to the situation, when the
original linear confinement and Coulomb-like potentials
depend on the angle between the Jacobi coordinate-vectors
~r and ~ρ. However, at first approximation when keeping the
main multipoles, these potentials can be written as

Ŝð~r; ~ρÞ ≈ crþ 2

3
cρþ 3m;

V̂ð~r; ~ρÞ ≈ −
4α

r
−
3α

2ρ
: ð38Þ

On the basis of the last approximation we divide the
confinement and Coulomb potential terms in the Jacobi
coordinates into two parts according to the Eq. (28) and
corresponding to the scalar diquark plus the modified single
quark Hamiltonians. The first test calculations can be done
for the separation

Ŝð~rÞ ¼ crþ 2m; Ŝð~ρÞ ¼ 2

3
cρþm;

V̂ð~rÞ ¼ −
4α

r
; V̂ð~ρÞ ¼ −

3α

2ρ
: ð39Þ

With the help of these separated effective potentials, we can
estimate the energy values of the scalar diquark and the
single valence quark, which give us the three-quark core
energy value at the zero order, free off the center of mass
motion contribution. However, it is important to note that
the effective potentials for the diquark in the Eq. (39) in fact
coincide completely with the two-body potentials, derived
from the original single-quark confinement scalar SðrÞ ¼
crþm [see Eq. (2)] and Coulomb-like vector VðrÞ ¼
−α=r [see Eq. (3)] mean-field potentials. This means that
these effective potentials are exact for the free diquark
system, but not for the bound diquark inside the baryon. In
reality, the diquarks are bound with an additional valence
quark and have lighter mass than free diquarks. This is why
below we slightly increase the attraction in the diquark
effective potential by fitting them to reproduce the quark-
core energy value of the ground state nucleon, estimated by
one of the methods, described in the previous section. Then
we can employ the effective potentials for the solution of
Eq. (29) and Eq. (33) to estimate the quark core energy
values of the excited N� and Δ� resonances by using the
developed in the present section method.

D. Self-energy diagrams contribution

The self-energy terms contain contribution both from
intermediate quark (E > 0) and antiquark (E < 0) states.
These diagrams describe the processes when a pion or
gluon is emitted and absorbed by the same valence quark
which can be excited to the intermediate quark or antiquark
states.

The pion part of the self-energy term (pion cloud
contribution) (see Fig. 1) is evaluated as

ΔEðπÞ
s:e: ¼ −

1

2f2π

X3
a¼1

X
α0≤αF

Z
d3 ~p

ð2πÞ3p0

�X
α

Vaþ
αα0ð~pÞVa

αα0ð~pÞ
Eα − Eα0 þ p0

−
X
β

Vaþ
βα0ð~pÞVa

βα0ð~pÞ
Eβ þ Eα0 þ p0

�
; ð40Þ

with p2
0 ¼ ~p2 þm2

π . The q − q − π transition form factors
are defined as:

Va
αα0ð~pÞ ¼

Z
d3xūαð~xÞΓað~xÞuα0 ð~xÞe−i~p ~x; ð41Þ

Va
βα0ð~pÞ ¼

Z
d3xv̄βð~xÞΓað~xÞuα0ð~xÞe−i~p ~x: ð42Þ

The vertex function of the π − q − q and π − q − q̄
transition is

Γa ¼ SðrÞγ5τaIc; ð43Þ

where Ic is the color unity matrix. The expression of the
π − q − q transition form factor has been derived in
Ref. [17]:

Va
αα0 ð~pÞ ¼

X
ln

ð−iÞlnþ1

Z
drr2½gαðrÞfα0 ðrÞ

þ gα0 ðrÞfαðrÞ�SðrÞjlnðprÞY
m0

j−mj

ln
ðp̂Þ

×F ðl�; l0; ln; j; j0;mj;m0
jÞhmtjτajm0

tihmcjIcjm0
ci:

ð44Þ

The Hermitian conjunction of the transition form factor

q1

q
π π

q

q2 q3

q1 q2 q3

q1 q2 q3

q1 q2 q3

FIG. 1. Second order self-energy diagrams induced by π-meson
fields
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Vaþ
αα0 ð~pÞ ¼

X
ln

ðiÞlnþ1

Z
drr2½gαðrÞfα0 ðrÞ

þ gα0 ðrÞfαðrÞ�SðrÞjlnðprÞY
ðm0

j−mjÞ�
ln

ðp̂Þ
×F ðl�; l0; ln; j; j0;mj;m0

jÞhm0
tjτajmtihm0

cjIcjmci:
ð45Þ

After integration over the angular part in Eq. (17), the
self-energy diagrams contribution to the baryon spectrum
induced by pion fields is evaluated as:

ΔEðπÞ
s:e: ¼ −

1

16π3f2π

Z
dpp2

p0

×
X
α0≤αF

X
ln

�X
α

½R drr2Gαα0 ðrÞSðrÞjlnðprÞ�2
Eα − Eα0 þ p0

×Qs:e:ðl; l0; ln; j; j0Þ

−
X
β

½R drr2Gβα0 ðrÞSðrÞjlnðprÞ�2
Eβ þ Eα0 þ p0

×Qs:e:ðl; l0; ln; j; j0Þ
�
; ð46Þ

where jln is the Bessel function. The radial overlap of the
single quark states with quantum numbers α ¼ ðN; l; j; mj;
mt; mcÞ and α0 is defined as

Gαα0 ðrÞ ¼ fαðrÞgα0 ðrÞ þ fα0 ðrÞgαðrÞ: ð47Þ

The angular momentum coefficients Q are evaluated for all
SU(2) baryons as

Qs:e:ðl; l0; ln; j; j0Þ ¼ 12π½l��½ln�½j�

×

�
Cl00
l�0ln0

W

�
j
1

2
lnl0; l�j0

�	
2

×
X
mj

X
m0

J≤αf

h
C
j0m0

J
jmjlnðm0

J−mjÞ
i
2
; ð48Þ

where C and W are the Clebsch-Gordan and Wigner
coefficients, respectively.
The gluon part of the second order self-energy diagrams

(gluon cloud) contribution is estimated in a similar way as

ΔEðgÞ
s:e: ¼ g2s

2

X
a

gμν
X
α0≤αF

Z
d3~p

ð2πÞ3p
�X

α

Vaμþ
αα0 ð~pÞVaν

αα0 ð~pÞ
Eα − Eα0 þ p

−
X
β

Vaμþ
βα0 ð~pÞVaν

βα0 ð~pÞ
Eβ þ Eα0 þ p

�
; ð49Þ

where the transition form factor is evaluated with the
corresponding vertex matrix

Γa
μ ¼ γμ

λa

2
It ð50Þ

with the isospin unity matrix It.

Vaμ
αα0 ð~pÞ ¼ δμ0

Z
d3xūαð~xÞ

λa
2
Ituα0 ð~xÞ expð−i~p ~xÞ

þ δμk

Z
d3xūαð~xÞ

λa
2
Itα̂kuα0 ð~xÞ expð−i~p ~xÞ:

ð51Þ

The last expression is convenient for the estimation of the
exchange diagrams.
For the self-energy diagrams we use an alternative

expression of the transition form factors. Putting the quark
wave functions with further integration over the radial part
of the spatial coordinate one can write for the transition
form factor next equation:

Vaμ
αα0 ð~pÞ ¼

X
lnmn

X
LL0

X
mLm0

Lmsm0
s

�½L�½ln�ð4πÞ
½L0�

�1
2ð−iÞlnYlnmn

× ðp̂ÞMμ
msm0

s
CL00
L0ln0

C
jmj

LmL
1
2
ms
C
j0m0

j

L0m0
L
1
2
m0

s
C
L0m0

L
LmLlnmn

·
Z

r2Rαα0
μLL0 ðrÞjlnðprÞdrhmtjItjm0

tihmcj
λa
2
jm0

ci;

ð52Þ

where the spin transition matrices

M0
msm0

s
¼ δmsm0

s
;

and

Mk
msm0

s
¼

X
k0¼�1;0

hkk0½δk01δms1=2δm0
sð−1=2Þ

þ δk0ð−1Þδmsð−1=2Þδm0
s1=2 þ 2msδk00δmsm0

s
�

with the only nonzero expansion coefficients h1;þ1 ¼
h1;−1 ¼ h3;0 ¼ 1, and h2;þ1 ¼ −h2;−1 ¼ −i.
The radial functions are defined as

Rαα0
μLL0 ðrÞ ¼ δμ;0δLlδL0l0 ðgαgα0 þ fαfα0 Þ

þ iδμ;kðδLlδL0l0�gαfα0 − δL0l0δLl�gα0fαÞ:

The corresponding Feynman diagrams are given in
Fig. 2, where the contribution from intermediate quark
and antiquark levels have opposite signs.
After evaluation of the transition form factors and

integration over angular variables, the self-energy term
induced by gluon fields can be written as a sum of
color-electric (Coulomb) and color-magnetic parts (see
Ref. [17]):
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ΔEðgÞ
s:e: ¼ g2s

3π2
X
N0l0j0

X
ðα;βÞ

X
LL0L�L0�ln

½ln�
� ½L�½L��
½L0�½L0��

�
1=2

CL00
L0ln0

CL0�0
L�0ln0

�
δlLL�δl0L0L0�δlnlA

jj0mjm0
j

LL0L�L0�ln

�Z ½Rαα0lnðpÞ þ Fαα0lnðpÞ�2
Eα − Eα0 þ p

pdp

−
Z ½Rβα0lnðpÞ þ Fβα0lnðpÞ�2

Eβ þ Eα0 þ p
pdp

	
−
h
B
jj0mjm0

j

LL0L�L0�ln
−D

jj0mjm0
j

LL0L�L0�ln
þ 2E

jj0mjm0
j

LL0L�L0�ln

i

×

�Z
dpp

Eα − Eα0 þ p
Hαα0lnLL0L�L0� −

Z
dpp

Eβ þ Eα0 þ p
Hβα0lnLL0L�L0�

	�
; ð53Þ

where we define function

Hαα0lnLL0L�L0� ¼ Hαα0lnLL0L�L0� ðpÞ
¼ H2

αα0ln
δlLL�δl0�L0L0� þH2

α0αln
δl�LL�δl0L0L0�

−Hαα0lnHα0αlnðδlLδl�L�δl0�L0δl0L0�

þ δlL�δl�Lδl0L0δl0�L0� Þ ð54Þ
and radial integrals

Hαα0ln ¼ Hαα0lnðpÞ ¼
Z

dr½r2fα0 ðrÞgαðrÞjlnðprÞ�;

Rαα0ln ¼ Rαα0lnðpÞ ¼
Z

dr½r2gα0 ðrÞgαðrÞjlnðprÞ�;

Fαα0ln ¼ Fαα0lnðpÞ ¼
Z

dr½r2fα0 ðrÞfαðrÞjlnðprÞ�: ð55Þ

The angular momentum coefficients A, B, D, and E can
be found from Appendix C of Ref. [17].

E. Exchange diagrams contribution

The pion exchange contribution to the baryon energy-
shift (see Fig. 3) is evaluated as:

ΔEðπÞ
ex ¼ −

1

2f2π

X3
a¼1

X
α≤αF

X
α0≤αF

×
Z

d3 ~p
ð2πÞ3p2

0

fVaþ
αα ð~pÞVa

α0α0 ð~pÞ − Vaþ
αα0 ð~pÞVa

αα0 ð~pÞg:

ð56Þ

By using Wick’s theorem we can write a more convenient
expression for the energy shift of the SU(2) baryons from
the second order pion exchange diagrams:

ΔEðπÞ
ex ¼ −

1

16π3f2π

Z
dpp2

p2
0

X
ln

ΠlnðpÞ ð57Þ

where

ΠlnðpÞ ¼
*
ΦB

�����X
i≠j

~τðiÞ~τðjÞTlnðiÞTlnðjÞKlnðiÞKþ
ln
ðjÞ
�����ΦB

+

ð58Þ
and the operators ~τ, Tln and Kln are summed over single
quark levels i ≠ j of the SU(2) baryon. In the quark model,
the baryon wave function jΦBi is presented as a bound state
of three valence quarks in the orbital configuration
ð1SÞ2ðnljÞ, and it can be written down commonly as

jΦBi ¼ jαβγiðJ0T0Þ ¼ jαβ; γiTMT ðT0Þ
JMðJ0Þ

¼ Ŝ½jψαðr1Þψβðr2Þψγðr3ÞYJM
J0

ðx̂1 x̂2; x̂3Þi
× jχTMT

T0
ð12; 3Þi�jχcð123Þi;

where J0 and T0 are intermediate spin and isospin
couplings of the two S-wave valence quarks, respectively.
They satisfy the symmetry requirement S0 ¼ T0. The states
ψ are the single particle states, labeled by a set of quantum
numbers α, β, and γ, excluding the color degree of freedom.

π π

q1 q2 q3

q1 q2 q3 q1 q2 q3

q2 q1 q3

FIG. 3. Second order π-meson exchange diagrams.

q1

q

g

q

g

q2 q3

q1 q2 q3

q1 q2 q3

q1 q2 q3

FIG. 2. Second order self-energy diagrams induced by gluon
fields.
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The operator Tln in Eq. (58) is the radial integration
operator:

hαjTln jβi ¼
Z

dr½r2SðrÞjlnðprÞGαβðrÞ� ð59Þ

with

Gαα0 ðrÞ ¼ fαðrÞgα0 ðrÞ þ fα0 ðrÞgαðrÞ; ð60Þ

where α ¼ ðN; l; j; mj; mt; mcÞ and α0 are two sets of the
single quark quantum numbers. The matrix elements of the
operator Kln are given by

hαjKln jβi ¼ −ð4π½l�ðαÞ�½ln�½jðαÞ�Þ1=2ClðβÞ0
l�ðαÞ0ln0

×W

�
jðαÞ 1

2
ln; lðβÞ; l�ðαÞ; jðβÞ

�
× CjðβÞmðβÞ

jðαÞmjðαÞlnðmðβÞ−mðαÞÞ; ð61Þ

and the Hermitian conjunction

hαjKþ
ln
jβi ¼ hβjKln jαi;

where jðαÞ, lðαÞ, l�ðαÞ, mðαÞ are the quantum numbers of
the single quark state hαj.
The contribution of the second-order gluon-exchange

terms to the baryon spectrum (see Fig. 4) is given by

ΔEðgÞ
ex ¼ −

g2

2

X
aμν

X
α≤αF

X
α0≤αF

Z
d3 ~p

ð2πÞ3p2

×

�
Vaμþ
αα ð~pÞVaν

α0α0 ð~pÞ − Vaμþ
αα0 ð~pÞVaν

αα0 ð~pÞ
�
gμν:

ð62Þ

By using Wick’s theorem we can write more convenient
expression for this equation

ΔEðgÞ
ex ¼ −

g2

π

Z
∞

0

dp
X
lnmn

Qlnmn
ðpÞ ð63Þ

with the corresponding color-electric (Coulomb) and color-
magnetic parts:

Qlnmn
ðpÞ ¼

*
ΦB

�����X
i≠j

~λðiÞ
2

~λðjÞ
2

TðgÞ
ln ðiÞTðgÞ

ln ðjÞF̂lnmn

× ðiÞF̂þ
lnmn

ðjÞ
�����ΦB

+

−

*
ΦB

�����X
i≠j

~λðiÞ
2

~λðjÞ
2

TðgÞ
ln ðiÞTðgÞ

ln ðjÞF̂lnmn

× ðiÞF̂þ
lnmn

ðjÞ~̂αðiÞ~̂αðjÞ
�����ΦB

+
: ð64Þ

The operator TðgÞ
ln is the radial integration operator with the

factor jlnðprÞ. The operators F̂lnmn
ðiÞ and F̂þ

lnmn
ðjÞ are the

angular integration operator with the factors Ylnmn
ðx̂iÞ and

Y�
lnmn

ðx̂jÞ, respectively. All these operators are summed
over single quark levels i ≠ j of the SU(2) baryon.

F. Selection rules for the quantum numbers
of the excited N� and Δ� states

Now we begin to analyze the excited N� andΔ� spectrum
based on the relativistic description of one-pion and one-
gluon (color magnetic part) exchange mechanisms. These
exchange operators, as was found in Ref. [17], couple the
upper and lower components of the two interacting valence
quarks, respectively. Based on this fact we can derive the
selection rules for the quantum numbers of the baryon states
with the fixed orbital configuration.
Let us to fix the orbital configuration as ð1S1=2Þ2ðnljÞ,

with the intermediate spin coupling ~S0 ¼ ~S1 þ ~S2 ¼ 1=2

! þ

1=2

!

of the two 1S-valence quarks, where the last valence
quark (nlj) can be in the ground or an excited state. The
upper and lower Dirac components of the last excited
valence quark have orbital momenta l and l0 ¼ l� 1,
respectively. Our choice of the above orbital configuration
is close to the limitation in the diquark-quark models
[42,43], where some of the degrees of freedom are “frozen.”
The corresponding baryon states are different from mem-
bers of the SUð6Þ ⊗ Oð3Þ multiplets in the constituent
quark models.
The first two selection rules come from the coupling of

the three valence quarks into the SU(2) baryon state with
total momentum J and isospin T:

~S0 þ ~j ¼ ~J;

~T0 þ 1=2

! ¼ ~T;

T0 ¼ S0; ð65Þ

g g

q1 q2 q3

q1 q2 q3

q2 q1 q3

q1 q2 q3

FIG. 4. Second order gluon-exchange diagrams.

SPECTRUM OF THE EXCITED N� AND Δ� … PHYSICAL REVIEW D 90, 074015 (2014)

074015-9



where the symmetry property of the two S-quarks coupling
was used. The third rule comes from the pion exchange
mechanism between the excited valence quark and the 1S
quark. This mechanism couples the upper (lower) compo-
nent of the 1S valence quark with the lower (upper)
component of the excited (nlj) valence quark. Since the
upper component of the S-quark has zero orbital momen-
tum, then for the orbital momentum of the exchanged pion
we derive the equation

Lπ ¼ l0 ¼ l� 1: ð66Þ

The final selection rule is based on the assumption that
the coupling of the last valence quark with quantum
numbers (nlj) to the 1S quark plus pion is the main
component of the strong coupling of the excited baryon
state to the Nð939Þ þ π:

~Lπ þ 1=2

! ¼ ~J: ð67Þ

With this assumption, Eq. (66) can be used for the identi-
fication of the baryon resonance in the πN-scattering process.
Namely, when l0 ¼ 0 we have S-wave nucleon and delta
resonances, when l0 ¼ 1 we have P-wave resonances, etc.
An important consequence of the obtained selection

rules is that all the N� and Δ� resonances appearing in
the πN scattering process and coupled strongly to the πN
channel are identified with the orbital configurations
ð1S1=2Þ2ðnljÞ with two valence quarks in the ground state
and a single valence quark in an excited state. A baryon
resonance corresponding to the orbital configuration with
two valence quarks in excited states ð1S1=2ÞðnljÞ1ðnljÞ2
couples strongly to the ππN-channel, but not to the πN
channel.
Using the obtained selection rules it is very natural to

analyze schematically the excited nucleon and delta spec-
trum. For the fixed orbital configurations ð1S1=2Þ2ðnljÞ
with the intermediate spin coupling of the two S—wave
quarks S0 ¼ 0 (the so-called instanton channel), Eq. (65)
allows only a single N� state with J ¼ j and no any Δ�
resonances.
Except the case, when the last valence quark is in the

P1=2 orbit, the intermediate coupling S0 ¼ 1, due to the
selection rule Eq. (67) yields two resonances in the both
nucleon and delta sectors with the total momentum
J ¼ Lπ � 1=2. In this way one of the N� resonances
defined by the selection rules in Eq. (65) with J ¼ jþ 1
or J ¼ j − 1 is ruled out. When the last valence quark is in
the P1=2 orbit, i.e., has the lower S-component, the selection
rules yield Lπ ¼ 0 and J ¼ 1=2, and consequently, only
single S-wave resonances in the both nucleon andΔ sectors
are allowed.
Thus, for the fixed ð1S1=2Þ2ðnljÞ orbital configuration

with ðnljÞ ≠ ðnP1=2Þ there must be a band of three N� and
two Δ� resonances. The lightest N� state corresponds to the

intermediate spin coupling S0 ¼ 0 due to strong attraction
in this “instanton channel.” The other two N�, as well as the
two Δ� resonances correspond to the spin coupling S0 ¼ 1
and must be close each to other.
In the case when the last quark is in the P1=2 orbit, there

is a band of two N� states (not close each to other) and a
single Δ� resonance appearing in the S-wave of the πN
scattering data.

III. NUMERICAL RESULTS

A. Condition of the calculations

In order to account for the finite size effect of the pion,
we introduce a one-pion vertex regularization function in
the momentum space, parametrized in the dipole form as

Fπðp2Þ ¼ Λ2
π −m2

π

Λ2
π þ p2

:

We fix Λπ ¼ 1 GeV in our calculations from Ref. [21]
which was averaged between NN-scattering data
(1–1.5 GeV) [44] and quark model studies (0.7–1 GeV)
[11]. Contrary to the bag-model calculations, the above
regularization is used not for the solution of the conver-
gence problem of the quark self-energy. This was explicitly
shown in Ref. [20] and [18] for the lowest valence quark
states. As is known from Ref. [13], the convergence of the
quark self-energy is a serious problem in the bag models
and needs a a strong regularization procedure.
As was noted above, the strength c ¼ 0.16 GeV2 and

Coulomb α ¼ π=12 ≈ 0.26 parameters of the Cornell
potential are fixed from the flux-tube study [36] and lattice
calculations [31,32]. However, it is useful to note that the
above value of the strength parameter was already probed
long times ago in Ref. [21]. The only free parameter of the
model, m of the confining potential was chosen as m ¼
60 MeV to reproduce the correct axial charge of the proton
gA ¼ 1.26 (and the empirical pion-nucleon coupling con-
stant G2

πNN=4π ¼ 14 via the Goldberger-Treiman relation).
It yields a reasonable value for the quark core RMS radius
of the proton 0.52 fm (see [21]). The strong coupling
constant g2s ¼ 4παs with the value αs ¼ 0.65.
In Ref. [21] by examining the different model parameters

the sensitivity of the nucleon energy on the description of
the static properties of the proton has been examined. It was
found that a larger value of the strength parameter c of the
confining potential yields a smaller value for the proton
RMS radius.
Stating that the Coulomb like term of the Cornell

potential VðrÞ ¼ −α=r is actually due to the color electric
component of one-gluon exchange mechanism, we need to
avoid a double counting of these components in the
calculations of gluon loop corrections to the baryon mass
spectrum. This is why we have restricted our study to the
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color-magnetic component of the one-gluon exchange
forces together with one-pion loop corrections.

B. Ground state nucleon spectrum

In Table I we give the mass values for the g.s. N(939)
with and without CM correction in three different methods:
the R ¼ 0, [39], P ¼ 0 [40], and LHO [41]. All these
methods were firstly examined in Ref. [38]. As we can see
from the table, they agree within 50 MeV for the ground
state nucleon.
The pion loop diagrams yield positive contribution to

the baryon mass-spectrum due to self-energy term. For the
ground state nucleon it is 200 MeV.
For the gluon field contributions we probe two different

ways. In the first case we include the contribution of all the
intermediate quark and antiquark states up to convergence
with j ¼ 25=2. The corresponding results are given in the
3-row of Table I, they increases the nucleon mass by
109 MeV. In the second case a restriction of the inter-
mediate states to the ground 1S quark state is used when
estimating the self-energy (I ¼ 0). The second approxima-
tion is based on the short-range character of one-gluon
exchange forces. The corresponding energy shift for the
ground state nucleon is now negative (−127 MeV).
However, after including the center of mass corrections,
the nucleon mass is still overestimated by about 100 MeV.
In principle, we can fit the strong coupling constant αs to
reproduce the N(939) mass value, but first we have to check
the excitation spectrum of the SU(2) flavor baryons. Thus,
from the results in Table I we can conclude, that the second
way, when the short-range character of one-gluon exchange
forces is taken into account, is most favorable.
We note that the agreement within 50 MeV of the three

R ¼ 0 [39], P ¼ 0 [40], and LHO [41] methods for the CM
correction is reasonable. Moreover, these three methods
always give corrections with systematic differences.
Namely, the LHO method always yields correction larger
than the P ¼ 0 method, but smaller than the R ¼ 0 method
(see Ref. [17]). Thus, we can fix one of these methods
(R ¼ 0) and go to the excited sector.

C. Spectrum of the SU(2) flavor baryons

In Table II we compare our numerical estimations of the
excited N� and Δ� spectrum within the developed sche-
matic periodic table with the last experimental data from [1]
and [45]. The calculations were done up-to and including

F-wave baryon resonances in the frame of the developed
chiral quark model. In the table we give the center of mass
(CM) corrected quark core results (zero order estimation)
(second column) together with the second order pion field
contributions corresponding to the self energy (3rd column)
and exchange diagrams (4th column).
In order to reproduce the ground state nucleon and delta

quark core energy value, the parameter of the effective
Coulomb-like vector potential for the diquark in Eq. (39) is
slightly modified:

V̂ð~rÞ ¼ −
5α

r
; ð68Þ

while keeping other parameters of effective potentials in
Eq. (39) as before. In this way the scalar diquark energy
value decreases from 632 MeV to the reasonable value of
520 MeV as estimated with the help of Eq. (29). The
estimated 1S1=2 single quark energy value is 420 MeV as
found from the solution of Eq. (33) with the modified
potentials from Eq. (39), that yields for the total quark-core
energy of the ground state nucleon an estimation 940 MeV,
consistent with the results of the R ¼ 0 method (see
Table I). At the end, by using these effective potentials
we have estimated the quark-core energy values of the
excited N� and Δ� resonances on the basis of those
developed in the Sec. II C method.
The 5th column of the Table II contains results for the

quark core plus pion loop corrections. Next the 6th and 7th
columns correspond to the contributions of the self-energy
and exchange terms of the color-magnetic one-loop dia-
grams. The final theoretical estimations are given in the
8-column with the strong coupling constant αs ¼ 0.65.
As was argued above, due to the short range character of
the gluon exchange forces between valence quarks, we
restrict our calculations of the color-magnetic self-energy
terms to the case, where the intermediate quark is the same
initial and final quark.
Based on obtained selection rules first we will show the

assignment of the excited baryon states presented in the
data from Ref. [1] with corresponding orbital configura-
tions. Let us fix the orbital configuration ð1S1=2Þ2ðnS1=2Þ.
In the data there are four N� with Jπ ¼ 1=2þ (P11

resonances) and two N� with Jπ ¼ 3=2þ (P13 resonances).
With the above rules, we can find easily that N�ð1440Þ,
N�ð1710Þ, and N�ð1720Þ resonances belong to the orbital
configuration ð1S1=2Þ2ð2S1=2Þ with the radially excited

TABLE I. The mass value of the g.s. nucleon in MeV with and without center of mass (CM) correction.

No CM R ¼ 0, [39] P ¼ 0, [40] LHO, [41]

EQ 1715 940 985 966
EQ þ ΔEðπÞ 1915 1140 1185 1166
EQ þ ΔEðπ þ gÞ 2024 1249 1294 1275
EQ þ ΔEðπ þ gÞ, I ¼ 0 1788 1013 1058 1039
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2S valence quark state, while the other three N�ð1880Þ,
N�ð1900Þ, and N�ð2100Þ resonances correspond to the
orbital configuration ð1S1=2Þ2ð3S1=2Þ. In the Δ sector there
are two resonances with Jπ ¼ 3=2þ at 1600 MeV and
1920 MeV, and two states with Jπ ¼ 1=2þ at 1750 MeV
and 1910 MeV which belong to the orbital configuration
with the radially excited valence quark in consistence with
our results.
The orbital configuration ð1S1=2Þ2ð1D3=2Þ is not pre-

sented in the data, since it would give two N� resonances
with Jπ ¼ 3=2þ and a single N� resonance with Jπ ¼ 1=2þ.
For the orbital configurations ð1S1=2Þ2ðnP1=2Þ there are

four nucleon and three delta resonances with Jπ ¼ 1=2−

and they are not close each to others. Each of the nucleon
bands n ¼ 1 and n ¼ 2 contains two resonances, while Δ�
resonances correspond to the three bands including n ¼ 3.
The orbital configuration ð1S1=2Þ2ðnP3=2Þ with n ¼ 1

yields three N� resonances 3=2−ð1520Þ, 5=2−ð1675Þ, and
3=2−ð1700Þ, the first of which is less than other two states
in accordance with our prediction. The band with n ¼ 2

yields next group of the D-wave nucleon resonances
3=2−ð1860Þ, 3=2−ð2080Þ and 5=2−ð2200Þ.
In the delta sector there are four D-wave resonances,

however only two of them Δð5=2−Þð1930Þ and Δð3=2−Þ
ð1940Þ are close each to other. Since other D-wave
resonances Δð3=2−Þð1700Þ and Δð5=2−Þð2350Þ are far
from each other, then we can predict a possible existence
of new Δ�ð5=2−Þ (around 1700 MeV) and Δ�ð3=2−Þ
(around 2350 MeV) resonances.
The F-wave N� resonances N�ð5=2þÞð1680Þ, N�ð5=2þÞ

ð1870Þ, and N�ð7=2þÞð1990Þ belong to the orbital con-
figuration ð1S1=2Þ2ðnD5=2Þ with n ¼ 1 together with delta
states Δ�ð5=2þÞð1905Þ and Δ�ð7=2þÞð1950Þ, while the
Δ�ð5=2þÞð2000Þ and Δ�ð7=2þÞð2390Þ belong to the n ¼ 2
band.
We can continue our analysis at higher energies

and predict in summary seven new N� resonances with
Jπ ¼ 7=2− (2000 MeV), 9=2þ (2100–2300 MeV), 11=2þ
(2100–2300 MeV), 11=2− (2500–2700 MeV), 13=2−

(2500–2700 MeV), 13=2þ (2600–2800 MeV), 15=2þ

TABLE II. Estimations for the energy values of the N� and Δ� resonances in MeV.

SU(2) baryon state EQðCMcorÞ ΔEs:e:
π ΔEex

π EQ þ ΔEπ ΔEs:e:
g ΔEex

g E(theor) E(exp.)[1]

Nð939Þð1=2þÞðP11Þ ð1SÞ3 940 380 −180 1140 −95 −32 1013 938 ÷ 939
Nð1440Þð1=2þÞðP11Þ ð1SÞ2ð2SÞ 1289 603 −113 1750 −70 −24 1685 1430 ÷ 1470
Nð1710Þð1=2þÞðP11Þ ð1SÞ2ð2SÞ 1289 603 −66 1797 −70 −10 1746 1650 ÷ 1750
Nð1720Þð3=2þÞðP13Þ ð1SÞ2ð2SÞ 1289 603 1 1864 −70 10 1833 1700 ÷ 1760
Nð1880Þð1=2þÞðP11Þ ð1SÞ2ð3SÞ 1528 788 −110 2166 −66 −28 2112 1840 ÷ 1940
Nð2100Þð1=2þÞðP11Þ ð1SÞ2ð3SÞ 1528 788 −39 2237 −66 −1 2210 2000 ÷ 2200
Nð1900Þð3=2þÞðP13Þ ð1SÞ2ð3SÞ 1528 788 −3 2273 −66 11 2256 1900 ÷ 2000
Nð1535Þð1=2−ÞðS11Þ ð1SÞ21P1=2 1186 501 −119 1541 −79 −13 1476 1528 ÷ 1548
Nð1650Þð1=2−ÞðS11Þ ð1SÞ21P1=2 1186 501 46 1706 −79 −49 1605 1640 ÷ 1680
Nð1905Þð1=2−ÞðS11Þ ð1SÞ22P1=2 1440 713 −111 2004 −69 −27 1946 1850 ÷ 1950
Nð2090Þð1=2−ÞðS11Þ ð1SÞ22P1=2 1440 713 24 2139 −69 −13 2095 2100 ÷ 2260
Nð1520Þð3=2−ÞðD13Þ ð1SÞ21P3=2 1165 515 −126 1508 −91 −27 1436 1518 ÷ 1526
Nð1700Þð3=2−ÞðD13Þ ð1SÞ21P3=2 1165 515 −79 1555 −91 −9 1501 1675 ÷ 1775
Nð1675Þð5=2−ÞðD15Þ ð1SÞ21P3=2 1165 515 11 1645 −91 29 1629 1670 ÷ 1680
Nð1860Þð3=2−ÞðD13Þ ð1SÞ22P3=2 1437 713 −111 1983 −73 −29 1937 1810 ÷ 1890
Nð2080Þð3=2−ÞðD13Þ ð1SÞ22P3=2 1437 713 −31 2063 −73 −1 2045 2045 ÷ 2155
Nð2200Þð5=2−ÞðD15Þ ð1SÞ22P3=2 1437 713 4 2098 −73 20 2101 2075 ÷ 2245
Nð1680Þð5=2þÞðF15Þ ð1SÞ21D5=2 1324 638 −114 1785 −89 −30 1729 1680 ÷ 1690
Nð1870Þð5=2þÞðF15Þ ð1SÞ21D5=2 1324 638 −37 1862 −89 2 1838 1840 ÷ 1960
Nð1990Þð7=2þÞðF17Þ ð1SÞ21D5=2 1324 638 12 1911 −89 27 1912 1860 ÷ 2100
Δð1232Þð3=2þÞðP33Þ ð1SÞ3 940 380 −36 1284 −95 32 1221 1230 ÷ 1234
Δð1600Þð3=2þÞðP33Þ ð1SÞ2ð2SÞ 1289 603 −23 1841 −70 34 1833 1535 ÷ 1695
Δð1750Þð1=2þÞðP31Þ ð1SÞ2ð2SÞ 1289 603 1 1865 −70 8 1831 1710 ÷ 1780
Δð1910Þð1=2þÞðP31Þ ð1SÞ2ð3SÞ 1528 788 −3 2273 −66 23 2270 1845 ÷ 2025
Δð1920Þð3=2þÞðP33Þ ð1SÞ2ð3SÞ 1528 788 −18 2258 −66 8 2240 1880 ÷ 2020
Δð1620Þð1=2−ÞðS31Þ ð1SÞ21P1=2 1186 501 −24 1636 −79 45 1629 1603 ÷ 1649
Δð1900Þð1=2−ÞðS31Þ ð1SÞ22P1=2 1440 713 −24 2091 −69 12 2072 1860 ÷ 1960
Δð1700Þð3=2−ÞðD33Þ ð1SÞ21P3=2 1165 515 −18 1616 −91 8 1579 1670 ÷ 1770
Δð5=2−ÞðD35Þ ð1SÞ21P3=2 1165 515 −35 1599 −91 35 1589 � � �
Δð1940Þð3=2−ÞðD33Þ ð1SÞ22P3=2 1437 713 −9 2085 −73 9 2077 1935 ÷ 2055
Δð1930Þð5=2−ÞðD35Þ ð1SÞ22P3=2 1437 713 −22 2072 −73 28 2083 1900 ÷ 1960
Δð1905Þð5=2þÞðF35Þ ð1SÞ21D5=2 1324 638 −12 1887 −89 7 1868 1860 ÷ 1940
Δð1950Þð7=2þÞðF37Þ ð1SÞ21D5=2 1324 638 −27 1872 −89 29 1875 1915 ÷ 1960
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(2600–2800 MeV) and four Δ� resonances with Jπ ¼
5=2− (around 1700 MeV), 3=2− (2350 MeV), 11=2−

(2750 MeV), 13=2þ (2950 MeV). These resonances are
expected to be observed in future experiments.
It is clear now that the remaining “missing N� and Δ�

resonances” predicted by the constituent quark models
must appear in the ππN strong coupling sector, if they exist.
As we have argued above, they will be assigned with the
orbital configuration ð1S1=2ÞðnljÞ1ðnljÞ2 with two excited
valence quarks and a single ground state valence quark.
Now we can analyze the numerical values within our

model in comparison with the experimental data from
Ref. [1]. In Figs. 5 and 6 we give the theoretical estimations
and experimental data in a convenient diagrammatic way.
Table II contains information about orbital configurations for
each baryon resonance, as well as separate contributions
from self-energy and exchange diagrams dueto pion- and
color-magnetic gluon fields. As can be seen from the Table
and figures, the mass spectrum of the nucleon and Δ is
described reasonably well in the relativistic chiral quark
model with a single free parameter of the confining potential.
For the test of the results we can check the consistence

of our results with the results of the cloudy bag model [10].
The pion exchange diagrams contribute about 144 MeV to
the energy difference between Nð939Þ and Δð1232Þ, while
the gluon exchange forces yield 64 MeV for the strong
coupling constant value αs ¼ 0.65. The value αs ¼ 1.51
increases the gluon field contribution up to 149MeV, which
is consistent with the cloudy bag model results. However, as
one can see from the table, this way strongly moves down
almost all the baryon states includingNð939Þ andΔð1232Þ.
Another very important issue is the self-energy terms.

From Table II the self-energy contributions to the baryon
spectra seem too large and hardly under control. However,
the numbers standing in the table for the self-energy terms

are in fact the sums of the contributions of all intermediate
quark and antiquark states to the fixed baryon spectrum.
Each intermediate quark and antiquark states yields small
enough contributions and can be estimated perturbatively.
The total momentum of the intermediate quark and

antiquark states increases from j ¼ 1=2 up to j ¼ 25=2,
while their radial quantum number grows up to n ¼ 20 in
order to reach convergent results. The total number of
the self energy diagrams contributing to the fixed valence
quark self-energy is 13 � 20 � 2 ¼ 520. A single self-
energy diagram yields a negative contribution when inter-
mediate state is a quark, and a positive contribution when
intermediate state is an antiquark. These values are not so
large, although their sum is a large number.
The most important contributions to the 1S (ground)

state valence quark come from the intermediate 1S quark
(−54 MeV) and 1P1=2 antiquark (88 MeV) states. All the
intermediate states with j ¼ 1=2 contribute 46 MeV,
decreasing with the value of j. In practice, the intermediate
states with j > 13=2 give no contribution to the 1S valence
quark self-energy. The final summary contribution of all
intermediate states to the 1S valence quark self-energy is
126.5 MeV, which yields an estimation about 380 MeV for
the N(939) g.s. self-energy. In the case of the 1P3=2 valence
quark, the most important contributions come from the
intermediate 1P3=2 quark (−37 MeV) and 1D3=2 antiquark
(100 MeV) states. In summary, the contribution of all
intermediate quark and antiquark states with the total
momentum j ¼ 3=2 to the 1P3=2 valence quark self-energy
is 75 MeV. The intermediate states with j > 21=2 give
about 1 MeV contribution to the 1P3=2 valence quark self-
energy. The total contributions of intermediate quark and
antiquark states to the 1P3=2 valence quark self-energy is
about 262 MeV.
As was noted in the literature [46], the convergence of

the self-energy is mostly due to the strong interference of

FIG. 6. Spectrum of the delta states (notations are the same as in
Fig. 5).

FIG. 5. Spectrum of the nucleon states. Theoretical estimations
(solid lines) in comparison with experimental data (boxes) from
Ref. [1].
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the positive and negative energy states. Th. Gutsche and
D. Robson for the first time have shown [20,21] that the g.s.
baryon self energy is positive and convergent in the chiral
quark potential model. In Ref. [18] we have demonstrated
explicitly a convergence of the self-energy for the valence
quarks in the lowest 1S, 2S, 1P1=2, 1P3=2 orbits induced by
the pion and color-magnetic gluon fields. We have obtained
convergence of the self-energy also for the excited valence
quark states in the orbits 3S, 2P1=2, 2P3=2, 1D5=2, which are
included into the structure ð1SÞ2ðnljÞ of the excited
baryons in present study.
By summing the self energies of the three valence quarks

in the excited ð1SÞ2ðnljÞ nucleon and delta states, we can
estimate the contribution of self-energy terms to the
excitation spectrum of the SU(2) flavor baryons.
The ab initio lattice QCD studies in Ref. [5] have

demonstrated that the dynamical and quenched QCD sim-
ulations yield very close results for the mass spectrum of
the lowest negative parity resonance Nð1535Þð1=2−Þ in the
heavy quark-mass region. However, in the light quark-mass
regime the results are significantly different due the impor-
tant contribution of the light sea quarks which is nothing but
the self-energy contribution due to the pion field. One can
find from Fig. 2 of this work that this contribution must be
about 500 MeVat the physical pion mass value 140 MeV in
full consistence with our numerical result for the self-energy
term of this resonance presented in Table II. This comparison
justifies the large and positive self-energy contribution to the
baryon spectra in our studies.
The next important observation is that one needs an

additional exchange mechanism for the lowering the
ground state Nð939Þ and resonances Nð1440Þ (Roper),
N�ð1720Þð3=2þÞ, N�ð1880Þð1=2þÞ, and N�ð1900Þð3=2þÞ.
On the other hand, two of the radially excited nucleon
resonances, N�ð1710Þð1=2þÞ and N�ð2100Þð1=2þÞ are
inside the corresponding error boxes.
The close situation is in the Δ sector. The ground state

Δð1212Þ is well reproduced. However, the first radial
excitation band is slightly overestimated [Δð1600Þ3=2þ
and Δð1750Þ1=2þ], while the second radial excitation band
is overestimated strongly.
To the contrary, the first band of orbitally excited N�

resonances with a negative parity are mostly underesti-
mated. The second band is inside or close to the exper-
imental box. The situation in the Δ� sector is close. The
orbitally excited Δ� states corresponding to the lowest
radial quanta n ¼ 1 are slightly underestimated or inside
the experimental box, while negative parity Δ states
corresponding to the radial quantum number n ¼ 2 are
mostly overestimated.
The orbitally excited nucleon and delta resonances with

the positive parity are reproduced quite well in the
developed model.
It is relevant to compare the obtained estimations for the

excited N� and Δ� spectrum with the results of the

relativized constituent quark model [8]. A comparison of
the results presented in the Figs. 5 and 6 with the results
presented in Fig. 9 and Fig. 10 of the above-mentioned
work indicates that the two methods describe the excited
baryon spectrum approximately at the same level. However,
the present model does not have any fitting parameters, and,
additionally, unlike CQM, it does not predict many missing
nonobserved resonances.
The analysis shows that one needs an additional

exchange mechanism between valence quarks to reproduce
the whole SU(2) baryon spectrum. The new exchange
forces must depend on the spin and flavor of valence quarks
as well as on the quantum numbers of the baryon state. Of
course, a large part of the interaction comes from two-pion
exchange mechanism.
A serious question is whether the two-pion loop cor-

rections to the baryon energy spectrum are small enough
and under control? Consistent complete estimations can be
obtained only when including all fourth order (two loop)
corrections induced by the pion field to the baryon mass
spectrum. This study requires much more effort than for the
second order corrections in the present manuscript. They
are a subject of very extensive studies in the future.
In order to check whether the next fourth order correc-

tions due to the pion field are reasonably small and under
control, we have done test calculations for the correlated
two-pion loop corrections to the excited baryon resonances
spectrum. Namely, we estimated the second order correc-
tions corresponding to the self-energy and exchange dia-
grams induced by the scalar sigma- and vector rho-meson
fields. The results indicate that these corrections are under
control. For example, the both self energy and exchange
diagrams due to the sigma meson fields yield negative
contributions to the baryon energies (up to −50 MeV and
−30 MeV, for the self-energy and exchange terms, respec-
tively). The corresponding contributions from the self-
energy diagrams due to rho-meson fields are positive (up to
50 MeV), while exchange terms are negative for the
nucleon states (of order −10 MeV) and positive for the
delta states (of the same order).
These test calculations present only a part of the

complete fourth order corrections induced by the pion
field, which must be derived from Eq. (14). This is why we
did not include the results of these test calculations to the
final results.
The numerical results given in Tables I and II, and

Figs. 5 and 6 present the final estimations for the baryon
energy spectrum at the second order level.

IV. CONCLUSIONS

In summary, we have derived selection rules for the
excited baryon state, assuming that it’s orbital configuration
is of the form ð1SÞ2ðnljÞ with two valence quarks in the
ground state and a single excited quark. These selection
rules were derived on the basis of the one-pion exchange
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mechanism between valence quarks in the frame of the
relativistic chiral quark model. An important consequence
of the obtained selection rules is that all the N� and Δ�
resonances appearing in the πN scattering process and
strongly coupled to the πN channel are identified with the
orbital configurations ð1S1=2Þ2ðnljÞ. Baryon resonances
corresponding to the orbital configuration with two valence
quarks in excited states couple strongly to the ππN-
channel, but not to the πN channel.
Based on obtained selection rules, we have constructed a

schematic periodic table and calculated the energy spec-
trum of the excited N� and Δ� baryons within the field-
theoretical framework including one-pion and one-gluon
loop corrections. The zero-order energy values of the SU(2)
flavor baryons are estimated including the center of mass
corrections in a new method, based on the separation of
the three-quark core Hamiltonian into three parts, corre-
sponding to the Jacobi coordinates. The obtained numerical
estimations for the energy positions of baryon resonances
(up to and including F-wave) yield an overall good
description of the experimental data. However, nucleon
ground state and most of the radially excited nucleon
resonances (including Roper) are overestimated. To the
contrary, the first band of the orbitally excited N� reso-
nances with a negative parity are underestimated, while the
second band is close to the experimental boxes. The
positive parity nucleon resonances with J ¼ 5=2þ and
7=2þ are within or close to the experimental boxes. In the
Δ sector we have a similar situation, however, the second
excitation band (n ¼ 2) of the orbitally excited Δ states
with a negative parity are mostly overestimated. At the
same time, the ground state Δð1232Þ is well reproduced.
The important observation is that one needs an additional

exchange mechanism for the lowering both the ground state
Nð939Þ and the radially excited N� and Δ� resonances,

including the Roper resonance Nð1440Þ. Of course, the
two-pion exchange forces are expected to contribute
essentially to the excited baryon spectrum.
A comparison of the obtained results with the results of

the relativized constituent quark model indicates that they
describe the excited baryon spectrum approximately at
the same level. This level of description in our model was
achieved without any fitting parameters. Moreover, unlike
CQM, our model does not yield many nonobserved
resonances at the lower excitation spectrum. The only
Δð5=2−Þ resonance is expected to be observed at energy
scale around 1600–1800 MeV.
At higher energies, where the experimental data are poor,

we can extend our model schematically and predict the
existence of seven new N� and four Δ� states with larger
spin values. Of course, the number of “missing resonances”
in our model is strongly suppressed due to restriction of the
configuration space to the orbits ð1S1=2Þ2ðnljÞ. However,
as we have shown above, at lower energies this construction
works reasonably well.
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