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Transfering spin into an extended π orbital of a large molecule
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By means of low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS), we have
investigated the adsorption of single Au atoms on a PTCDA monolayer physisorbed on the Au(111) surface.
A chemical reaction between the Au atom and the PTCDA molecule leads to the formation of a radical that
has an unpaired electron in its highest occupied orbital. This orbital is a π orbital that extends over the whole
Au-PTCDA complex. Because of the large Coulomb repulsion in this orbital, the unpaired electron generates
a local moment when the molecule is adsorbed on the Au(111) surface. We demonstrate the formation of the
radical and the existence of the local moment after adsorption by observing a zero-bias differential conductance
peak that originates from the Kondo effect. By temperature dependent measurements of the zero-bias differential
conductance, we determine the Kondo temperature to be TK = (38 ± 8) K. For the theoretical description of
the properties of the Au-PTCDA complex we use a hierarchy of methods, ranging from density functional
theory (DFT) including a van der Waals correction to many-body perturbation theory (MBPT) and the numerical
renormalization group (NRG) approach. Regarding the high-energy orbital spectrum, we obtain an excellent
agreement with experiments by both spin-polarized DFT/MBPT and NRG. Moreover, the NRG provides an
accurate description of the low-energy excitation spectrum of the spin degree of freedom, predicting a Kondo
temperature very close to the experimental value. This is achieved by a detailed analysis of the universality of
various definitions of TK and by taking into account the full energy dependence of the coupling function between
the molecule-metal complex and the metallic substrate.
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I. INTRODUCTION

Interest in magnetic properties of nanoscale structures has
been growing rapidly for the last few years. Understanding
and gaining control over their properties might open a route
to nanospintronics and quantum computing [1]. Since molec-
ular compounds demonstrate a remarkable tendency to self-
assemble, the idea of combining the molecular pathway with
magnetism is now attracting more attention [2,3]. Therefore
it is crucial to obtain a better understanding of spin and
charge transfer processes between molecules, surfaces, and
even single atoms.

One of the interesting possibilities to tune the magnetic
properties of molecules is by controlled charge transfer from
other molecules or metal surfaces. For example, it has been
shown that the electron-acceptor molecule TCNQ on a gold
surface can be manipulated reversibly between two integer
charge states by gating the local electric field with the tip
of a scanning tunneling microscope and therefore inducing
charge transfer from the adjacent donor molecule TMTFF
[4]. A further example is provided by our previous work, in
which we have demonstrated that the controlled cleavage of the
π -conjugated molecule PTCDA from a Ag(111) surface grad-
ually de-hybridizes the molecule from the metal substrate and
tunes the molecule into a magnetic state, which then undergoes
the Kondo effect with itinerant electrons in the metal [5–8].

Another interesting approach to adjust the magnetic prop-
erties of molecules is the on-surface chemical modification
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of individual molecules. Here, the reversible on- and off-
switching of the Kondo resonance of a MnPc molecule through
attachment and detachment of a single hydrogen atom [9] can
be cited as an illustrative example. Also, a temperature-induced
stepwise intramolecular ligand reaction of a gold adsorbed
porphyrin molecule which induces changes in its magnetic
fingerprint [10] falls in this category. Finally, it has been shown
that the ligand and metal orbitals of metal phthalocyanines on
a metal substrate can be selectively charged by site-dependent
doping with one or more Li dopants [11].

In this work, we construct a metal-molecule complex that is
a paramagnetic radical and in which, unlike in common molec-
ular magnets where the spin usually resides in a d or f orbital
of a metal ion that is shielded by organic ligands, the spin is
carried by a π orbital that extends over the whole molecule.
The advantage of such an extended radical lies in its propensity
to interact magnetically with its neighbours, offering the
potential to harness this coupling. In our experiments, we
form chemically bonded metal-molecule complexes by react-
ing 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA)
molecules, adsorbed on the inert Au(111) surface, with single
Au atoms. We investigate these Au-PTCDA complexes by
means of scanning tunneling microscopy (STM). While the
reversible bond formation of a single PTCDA molecule and
an Au atom on a thin insulating film has been demonstrated
before [12], we here investigate the Au-PTCDA complex
on a metal substrate by scanning tunneling spectroscopy
(STS). By demonstrating the Kondo effect, we prove that
this metal-molecule complex indeed has an unpaired electron,
which generates a local moment in the π orbital due to the
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large Coulomb interaction compared to the electron-substracte
coupling energy.

Complementary to our experimental investigation of this
magnetic metal-molecule complex, we use density functional
theory (DFT) including a van der Waals correction to calcu-
late the structure of the Au-PTCDA complex, in excellent
agreement with experiment, as revealed, for example, by
calculated STM images. Furthermore, we use a spin-polarized
DFT calculation plus many-body perturbation theory (MBPT)
to obtain the high-energy charge excitation spectrum of Au-
PTCDA complexes in the gas phase and adsorbed on Au(111).
A correct physical description of the local moment formation
and the Kondo effect, however, is not possible in a mean-field
approach. Therefore, on top of these calculations, we finally
perform numerical renormalization group (NRG) calculations
to obtain the excitation spectrum of the metal-molecule com-
plex on Au(111) also at low energies. Importantly, we use the
full energy dependence of the coupling function between Au-
PTCDA complex and the metal substrate as provided by the
DFT/MBPT approach. This enables us to achieve a quantita-
tively correct description of its electronic properties, predicting
a Kondo temperature within 1 K of the measured value and
reaching a 0.25 eV accuracy of the high-energy spectrum.

II. METHODS

A. Experiment

An atomically clean Au(111) surface was prepared in
ultrahigh-vacuum (UHV) by repeated cycles of Ar+ sputtering
and annealing at 430 ◦C, followed by a final annealing step
at 180 ◦C for 30 minutes. Using a home-built Knudsen cell,
we deposited a submonolayer film of PTCDA molecules
onto a clean Au(111) surface held at room temperature.
The sample was then transferred into a low-temperature
CREATEC STM with a base temperature of T = 9.5 K. By
heating a thin gold wire, we evaporated gold atoms onto the
PTCDA submonolayer in situ at T = 12 K. The low sample
temperature prevents clustering and single Au atoms are found
on the sample after this processing step.

The electrochemically etched tungsten tip was treated in
UHV by field emission and afterwards in situ by applying
controlled voltage pulses and indentations into the clean gold
surface until the spectroscopic signature of the Au(111) surface
appeared. Differential conductance dI/dV (V ) spectra were
recorded via the conventional lock-in technique with the
feedback loop switched off.

The analysis of the Kondo effect requires recording dif-
ferential conductance spectra at varying temperatures. After
each temperature increase of the STM, we waited 20 h to
obtain equilibrium conditions before recording the dI/dV (V )
spectra. Since broadening effects due to temperature and bias
voltage modulation have a crucial influence on the linewidths
of narrow peaks in scanning tunneling spectroscopy, it is
essential to take these effects into account. Therefore the
measured spectra were deconvoluted appropriately [13].

B. Theory

In addition to the experimental measurements, we have also
studied the system theoretically, computing its geometrical and

electronic structures. The geometrical structure was calculated
with DFT, the electronic structure with DFT, MBPT, and NRG.
While our DFT and MBPT methodologies are explained in this
section, details regarding our NRG approach can be found in
Sec. III D alongside its results.

1. Geometric structure

All DFT calculations concerning the structure are carried
out in the framework of pseudopotentials using the SIESTA

package [14–16]. The wave function is described by a double-
zeta plus polarization basis (DZP) with s, p, and d orbitals
included. We use five orbitals for H, 13 orbitals for C and
O, and 15 orbitals for Au. The representation of quantities on
meshes in reciprocal space is done with a cut-off energy of
250 Ry. For the �k sampling of the freestanding layer, a 2 × 2
mesh in the two-dimensional Brillouin zone is used; if the
surface is included, the sampling is increased to 4 × 6.

For determining the structure of a PTCDA monolayer
on Au(111), the generalized gradient approximation (GGA)
with the PBE functional [17] is used. Two issues have to
be noted here: (1) since an incommensurate layer such as
PTCDA/Au(111) cannot be treated with periodic bound-
ary conditions, we have chosen for our calculations of
PTCDA/Au(111) the commensurate unit cell in which PTCDA
adsorbs on Ag(111) to obtain a system that can be treated
within a supercell approach. On Ag(111), PTCDA forms a
(6,1,−3,5) superstructure that is nearly rectangular with a
size of 18.83 Å × 12.52 Å. As a result, the angle between the
lattice vectors is changed by 1◦ and their lengths are changed
by −2.5% and +0.6% in comparison to the freestanding
PTCDA monolayer. The two PTCDA molecules within the
superstructure unit cell absorb at inequivalent sites. While one
molecule is nearly aligned to the lattice underneath, the second
one is turned by an angle of 16◦ relative to a high symmetry
direction of the lattice. (2) Since the van der Waals interaction
is crucial for weakly bound systems like organic molecules on
metal surfaces, we include it in the formulation of Ruiz et al.
[18] (vdWsurf) for all structure optimizations. As a result of
our PBE + vdWsurf calculation for PTCDA/Au(111) in the
structure of PTCDA/Ag(111) we obtain an average height
of z0 = 3.18 Å for PTCDA on Au(111), in good agreement
with the experimental value 3.27 Å [19]. The substrate is
approximated by three Au layers with ideal atom positions.
We employ this geometry for all calculations unless noted
otherwise.

In order to determine the adsorption site of a single Au atom
on a PTCDA monolayer, we employ a DFT calculation for a
PTCDA layer that includes the interaction between PTCDA
and the substrate by a model potential to facilitate the focussing
on the adsorption of the single Au atom. This model potential
consists of a harmonic potential between the Au surface and
the C and O atoms, with potential parameters chosen such that
the previously obtained physisorption height (z0 = 3.18 Å)

and elasticity (∂2E(z)/∂z2 = 8.4 eV/Å
2

for the entire PTCDA
molecule) result. The potential is then used for the C and O
atoms to describe the interaction between Au-PTCDA and
Au(111). For this calculation, the unit cell is taken from the
(102) plane of the β-PTCDA bulk crystal [20], which contains
two planar PTCDA molecules in a rectangular unit cell of
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19.30 Å × 12.45 Å. To find the optimal adsorption site of the
gold atom, the potential energy surface is evaluated on a dense
mesh of (x,y) points above the PTCDA layer. The height of
the Au atom and the coordinates of the PTCDA monolayer are
optimized for all (x,y) positions of the atom until all forces
are less than 10−4 Ry

aB
.

2. Electronic structure

The calculation of STM images is performed at the level
of the local density approximation (LDA) and within the
Tersoff-Hamann approach [21], employing a spatial extrapo-
lation of the wave function into the vacuum with additional
empty orbitals [22] above the PTCDA monolayer for the
Au-PTCDA/Au(111) structure mentioned above.

For further electronic properties, we employ a hierarchy
of (spin polarized) DFT calculations (LDA, local density
approximation, and LSDA, local spin density approxima-
tion),1 many-body perturbation theory (MBPT) and numerical
renormalization group (NRG) calculations. We perform spin-
polarized DFT calculations to determine the mean-field elec-
tronic structure, as this provides us with an additional estimate
of the Coulomb interaction U within the relevant orbital that
leads to the magnetic moment of 1 μB on the molecule. Strictly
speaking, of course, the intraorbital Coulomb interaction
cannot be modeled as an effective single-particle potential,
see Sec. III C 3 below.

The electronic properties of organic molecules in LDA and
GGA(+vdWsurf) are often nearly identical. Both functionals
suffer from a distinct underestimation of the gap between
the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO). We therefore
apply MBPT to L(S)DA, by which a notable improvement
is achieved, resulting in much more realistic quasiparticle
(QP) energies. The MBPT replaces the XC potential of DFT
by the self-energy operator, for which we employ the GW

approximation [23].
Including the metal substrate in a GW calculation is,

however, a formidable task. Therefore we use a perturba-
tive L(S)DA+GdW approach introduced in Ref. [24] as
a further approximation, which yields reliable QP energies
by employing a model for the dielectric screening due to
the substrate. Here L(S)DA+GdW labels the perturbative
method to calculate QP corrections on top of L(S)DA by
considering the change of the self-energy operator �� =
iG(W − Wmetal) = iGdW . Previous investigations employing
this method for PTCDA on Ag(111) have shown good
agreement with experiment (for details, see Ref. [7]). These
calculations are carried out with a code implemented by our-
selves [24,25]. Here, the representation of the wave function
is done by atom-centered Gaussian orbitals with s, p, d, and
s∗ symmetry with several shells per atom [22,26].

The L(S)DA+GdW [24] approach employs dielectric
model functions. For the PTCDA monolayer, these functions
are explicitly evaluated on the basis of RPA results, while the

1We have convinced ourselves that in LDA as well as in generalized
gradient approximation (GGA) the electronic structure of the bare
Au(111) surface is in good agreement with the result of Ref. [50]

screening due to the Au substrate is considered by an addi-
tional parametrized dielectric function. The L(S)DA+GdW

calculation starts from the L(S)DA result for the freestanding
monolayer in the commensurate structure and at the adsorption
height from GGA+vdW (see Sec. II B 1) and builds up the
dielectric function using both sets of model functions men-
tioned above. Thus, in the calculation of the QP corrections, the
substrate is only included in terms of its dielectric polarization.

To calculate projected densities of state (PDOS), we
follow the method described in Ref. [8]. In particular, three
calculations have to be performed: in the first calculation the
complete system, e.g., (Au-)PTCDA/Au(111), is investigated
and we evaluate all energies En and the corresponding wave
functions |�n〉 in L(S)DA. In the second calculation, the Au
(111) surface is excluded and the wave functions |ϕi〉 for a
few relevant states of the molecular (Au-)PTCDA monolayer
(in the commensurate structure) are computed in L(S)DA.
Finally, the third calculation is a repetition of the second one,
but within L(S)DA+GdW in which the QP corrections �i

are determined; here, the Au(111) surface is incorporated in
the form of model functions [8], as mentioned above. The
spectrum of state |ϕi〉 in the full system is then given by its
projected density of states, i.e.,

ρi(E − �i) =
∑

n

|〈�n|ϕi〉|2δ(E − En − �i), (1)

in which the QP correction �i is employed for the full system.
If �i is set to zero, i.e., many-body effects are neglected, the
above equation reverts to the standard projection operation
within L(S)DA.

The QP shift �i also determines the filling of the orbital,
according to

ni =
∫ EF

−∞
ρi(E − �i)dE (2)

with ρi(E) being the PDOS of orbital i resulting from the
L(S)DA (i.e., �i = 0). The QP shift �i , in turn, depends on
the occupation of the orbital, i.e.,

�i = (1 − ni)�
n=0
i + ni�

n=1
i + 2(ni − nLDA)Ui (3)

The intraorbital Coulomb repulsion in orbital i is calculated as

Ui =
∫

|ϕi(�r)|2W (�r,�r ′)|ϕi(�r ′)|2d3rd3r ′, (4)

were W is the screened Coulomb interaction (which also enters
the GW self-energy). In Eq. (3), �n=0

i and �n=1
i denote

the (fictitious) QP shifts for a completely empty (ni = 0)
or occupied (ni = 1) orbital i, which can be obtained from
L(S)DA+GdW calculations of the monolayer (in which the
substrate is only considered in terms of its polarizability). For
further details see Ref. [8].

NRG calculations allow to incorporate dynamical correla-
tion effects and describe the Kondo effect. Because the NRG
requires a rotationally invariant mean-field density of states,
we use the LDA-GdW as its starting point. Details can be
found in Sec. III D.
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10A°

FIG. 1. (Color online) Constant current STM image (200 Å ×
200 Å) after deposition of single Au atoms on a PTCDA monolayer
on Au(111) (bias voltage V = 50 mV, tunneling current I = 2.8 ×
10−11 A). In the insets the two observed types of Au-PTCDA
complexes are shown.

III. RESULTS AND DISCUSSION

A. The Au-PTCDA complex and its structure

Figure 1 shows the PTCDA layer after deposition of Au
atoms. The PTCDA molecules physisorb on the Au(111)
surface and arrange into the so-called herringbone structure
on Au(111). This structure is incommensurate and does not
lift the herringbone reconstruction of the bare gold surface, as
the brightness modulation of the PTCDA molecules in Fig. 1

Type 2
Type 1
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FIG. 2. (Color online) dI/dV (V ) spectra acquired over the cen-
ter of type 1 (top) and type 2 (bottom) Au-PTCDA complexes. For
clarity, the spectrum of type 1 is shifted by +0.5 nS (bias voltage
and tunneling current at the stabilization point V = 500 mV and I =
4.0 × 10−11 A, lock-in modulation amplitude 5 mV at 713.3 Hz).
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FIG. 3. dI/dV (V ) spectra acquired over the center of different
type 2 complexes (bias voltage and tunneling current at the stabiliza-
tion point V = 360 mV and I = 2.5 × 10−11 A, z-offset = +1.0 Å,
lock-in modulation amplitude 1 mV at 5981 Hz). The spectra are
vertically displaced for clarity.

clearly shows. On the PTCDA layer we observe two different
types of features, both of which are related to single gold atoms.
Type 1 complexes appear circular in the STM images and have
a diameter of ∼10 Å. In contrast, type 2 complexes are smaller
by a factor of ∼1.4 and in addition exhibit a halo next to
the circular disk. Figure 2, in which differential conductance
spectra of type 1 and type 2 complexes are displayed, clearly
shows that the different sizes and shapes of both types go along
with different spectral properties. While both types exhibit a
sharp peak at zero bias, the remaining features indicate a very
different electronic structure. Moreover, a closer look at the
zero-bias peak reveals that the width and shape of this peak
is well defined for type 1 complexes only [see also Fig. 7(b)],
whereas both linewidths and lineshapes vary significantly
among type 2 complexes (Fig. 3).

To understand whether these differences in the electronic
properties result from different Au adsorption positions in type
1 and type 2 complexes, we determine the precise positions
of the Au atoms relative to the PTCDA layer. The analysis is
carried out on the basis of large-scale high-resolution STM
image (200 Å × 200 Å and 1024 pixel × 1024 pixel) by
locating the centres of the respective circular disks in the
PTCDA unit cell. Since the size and shape of the PTCDA
unit cell is well known, we can correct the distortion of the
measured high-resolution image by an affine homography. The
resultant positions of the Au atoms are shown in Fig. 4(a).
Because of the symmetry of the unit cell of the freestanding
PTCDA layer, all data points can be displayed within one of
its quadrants.2 The figure reveals that the centres of both type
1 and 2 complexes are close to either of the two carbon atoms
that are located midway along the long edges of the PTCDA
molecule. Neglecting the environment, this allows for four
equivalent adsorption positions on one PTCDA molecule.

2Although the surface breaks this symmetry, we neglect this effect
because the monolayer is not adsorbed commensurately.
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FIG. 4. (Color online) (a) Experimentally determined centres of
type 1 (blue) and type 2 (red) Au atoms in the PTCDA unit cell
on Au(111). The white, grey, and red circles indicate hydrogen,
carbon, and oxygen atoms of PTCDA. The golden spheres denote
the positions of the Au atoms in the topmost layer of the Au
surface, assuming a commensurate arrangement of the molecules.
(b) Potential energy surface (in eV) for an Au atom adsorbed on a
PTCDA freestanding monolayer.

This experimentally observed adsorption site for Au atoms
is also predicted by a DFT calculation for a PTCDA in which
the interaction between PTCDA and the substrate is described
by a model potential (see method Sec. II B 1 for details).
The resulting potential energy surface for the Au atom on
the PTCDA monolayer is shown in Fig. 4(b). Two nearly
equivalent minima A and B with binding energies of 0.69 and
0.66 eV, respectively, are found. The potential energy above
the center of a PTCDA molecule is approximately −0.25 eV.
Remarkably, near the oxygen atoms the interaction with Au
atoms nearly vanishes. Due to the symmetry of the monolayer
there are four such minima per PTCDA molecule (A, A′, B,
B′), i.e., eight minima per unit cell. At these minima, the Au
atom is located above the C atoms labeled 1, 6, 7 or 12 of the
perylene core, with a height of 2.1 Å above the monolayer
and a distance of 2.2 Å to the nearest carbon atom. This
bonding distance indicates the formation of a covalent bond
between Au and PTCDA, in agreement with the finding in
Ref. [12]. Hence, what at first sight appear to be Au atoms in
Fig. 1 are in fact covalently bonded Au-PTCDA complexes.
Obviously, their images are predominantly formed by the
Au atom, which sticks out of the surface layer (cf. insets in
Fig. 5).

To determine the influence of the metal substrate on the Au
atom bonding, we have carried out a second set of calculations
in which the topmost three layers of the Au(111) surface have
explicitly been included. Although the PTCDA monolayer is
therefore slightly deformed, the Au adsorption sites relative to
the molecule stay the same as in the case of the freestanding
layer. The binding energy in the minima, however, is larger
(0.83 eV), due to the interaction with the surface. Essentially,
the potential energy landscape for the freestanding layer is
shifted rigidly by ∼0.15 eV to larger binding energies. The
distance to the nearest carbon is again 2.2 Å, and the gold
atom is located 5.4 Å above the topmost surface layer.

10 A
11

10

9

8

10 A(a) (b)

FIG. 5. (Color online) Theoretical constant current STM images
of (a) Au on PTCDA/Au(111) and (b) Au on PTCDA/Au(111) with
an additional hydrogen molecule adsorbed on the Au atom. The
green circle denotes the position of the Au atom, the pink circles the
positions of the hydrogen atoms. The tip height is given in angstrom.
The insets below show the structure of the corresponding complexes.

We note that in Fig. 4(a) the STM image centers of type 2
complexes (red) are shifted by ∼1.5 Å from those of the type
1 complexes (blue) towards the gap between the molecules.
At first glance, this might indicate a second adsorption site.
However, such a site is not observed in our DFT calculations.
The key to understanding the nature of type 2 complexes is their
halo which appears in STM images (cf. Fig. 1). In Fig. 5(a), the
simulated STM image of the covalently bonded Au-PTCDA
complex is displayed. The image resembles experimentally
observed type 1 complexes. If we add a hydrogen molecule
in the calculation, both H atoms bind above the Au atom, in
total with a binding energy of 0.35 eV. The distance between
H and Au is 1.86 Å. If we now calculate the STM image of
this complex adsorbed on the Au surface, a halo very similar
to the one observed at type 2 complexes is found [Fig. 5(b)].
We therefore conclude that type 2 complexes in Fig. 1 most
likely correspond to hydrogenated complexes.

This reasoning is corroborated by the observation that after
a bake out of the low-temperature STM, which removes H2

from the chamber, no type 2 atoms are observed any more
(Fig. 6). The fact that in Fig. 4(a) the positions of type 2
complexes are slightly offset from type 1 complexes is an
artefact of the site determination which does not take the
different shapes of the two atoms types into account. Actually,
comparing the simulated images in Fig. 5, it is evident that
the center of the circular disk of type 1 complexes is located
closer to the PTCDA molecule than the center of the (smaller)
disk of type 2 complexes, in agreement with the experimental
finding in Fig. 4(a).

Incidentally, the involvement of an additional H2 molecule
in type 2 complexes also explains the variability of their
electronic structure (Fig. 3). In particular, the symmetric steps
at 
±30 mV in some of the spectra are a strong indication
of the presence of H2. Those steps are known to derive from
inelastic excitations. The observed frequency of 
30 meV fits
well to translational [27,28] or rotational [29–33] modes of the
hydrogen molecule.

B. Scanning tunneling spectra of the Au-PTCDA
complex: Kondo effect

Having established the existence of covalently bonded Au-
PTCDA complexes, we now study their electronic properties
on the Au(111) surface. Thereby, we restrict our attention to
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10A

FIG. 6. (Color online) Constant current STM image (710 Å ×
710 Å) taken after hydrogen decontamination of the low-temperature
STM (bias voltage V = 316 mV, tunneling current I = 2.5 ×
10−11 A). As highlighted in the inset, only type 1 Au-PTCDA
complexes are observed.

type 1 (i.e., hydrogen-free) complexes. In the corresponding
differential conductance spectrum in Fig. 2 we observe a
peak at zero-bias voltage and three peaks at −0.8, +0.5, and
1.2 V. If we compare the peak at zero bias with the other
peaks in the spectrum it is conspicuous that the former is
much sharper and that it has a Lorentzian lineshape. This
suggests that the zero-bias peak does not correspond to
an electronic eigenstate of the Au-PTCDA complex. Since
it is known from earlier work that charge transfer to the
PTCDA molecule may bring forth the Kondo effect [5],
and since the formation of the chemically bonded complex
may well lead to such charge transfer and the formation of
a radical, we conjecture that the zero-bias peak is in fact
a Kondo resonance. This conjecture is corroborated by the
analysis of its full width at half maximum (FWHM) and peak
height [= zero-bias differential conductance dI/dV (V = 0)]
as a function of temperature, as we will now show.

The extracted FWHM of the zero-bias peak are displayed in
Fig. 7(a). The data show the expected temperature dependence
for a Kondo resonance. We extract the Kondo temperature of
the radical by fitting the expression [34]

FWHM =
√

(αkBT )2 + (
2kBT

exp,FWHM
K

)2
(5)

to our data, with α and the Kondo temperature T
exp,FWHM

K
as fitting parameters. We find a Kondo temperature of
T

exp,FWHM
K = (30.7 ± 1.0) K and α = (5.3 ± 0.2), the latter of

which is in good agreement with the theoretical value [35] of
α = 5.4.

In Fig. 7(c) the height of the zero-bias peak is plotted
against the sample temperature. Here it is important to point
out that the data points at all temperatures have been measured
on the same Au atom and with the same tip. Moreover, for
extracting heights of the zero-bias peaks that are directly
comparable between the different temperatures, we always

stabilize the tip above a PTCDA molecule at a fixed set point,
before moving it above the Au-PTCDA complex at constant
height and acquiring the differential conductance spectra there.
Furthermore, we normalize all spectra to the same background
differential conductance. Some spectra which were acquired
with this method are shown in Fig. 7(d).

By using the empirical formula [36]

dI

dV
(V = 0) = G0[

1 + (
21/s − 1

)(
T

T zbc
K

)2]s
(6)

with s = 0.22 for a spin 1/2 system, we obtain from the data
in Fig. 7(c) a Kondo temperature T

exp,zbc
K = (38 ± 8) K (zbc =

zero-bias conductance) and G0 = (4.1 ± 0.3) nS. Changing
the distance between the tip and the Au-PTCDA complex
does not affect the measured Kondo temperature. Within
the error range, this value for T

exp,zbc
K agrees well with the

Kondo temperature which was extracted from the FWHM
measurement series. However, we stress that there is no
unique definition of the Kondo temperature and that different
approaches to determine TK may therefore lead to slightly
different results. This will be discussed in more detail in
Secs. III D 2 and III D 3 below. We can thus conclude that the
Au-PTCDA complex is indeed a spin 1

2 radical, and that this
radical forms a Kondo ground state with the itinerant electrons
of the metal substrate.

C. Electronic properties of the Au-PTCDA complex: density
functional and many-body perturbation theory

Having proven that the Au-PTCDA complex undergoes the
Kondo effect on the Au(111) surface, we now turn to a detailed
analysis of the electronic properties of the molecule-metal
complex. To this end, we carry out many-body perturbation
calculations that are based on the spin-polarized local density
approximation to density functional theory. Initially, we
consider both PTCDA and the Au-PTCDA complex in the
gas phase. We then turn to a PTCDA/Au(111) monolayer
and finally to a monolayer in which one of the two PTCDA
molecules carries an Au atom.

TABLE I. Energies (in eV) for the gas-phase PTCDA and Au-
PTCDA in L(S)DA, GW , and L(S)DA+GdW measured with respect
to EVac. In contrast to the results for PTCDA (top, calculated in
LDA) those of the open-shell Au-PTCDA complex (bottom) are spin
polarized. Due to the odd number of electrons, the LUMO+Au state
is half-filled. For the nomenclature of the states of the Au-PTCDA
complex see Table II and Fig. 8.

Level L(S)DA GW L(S)DA+GdW

HOMO −6.15 −7.35 −7.82
LUMO −4.71 −2.75 −3.01
LUMO+1 −3.39 −1.15 −1.31
Gap 1.44 4.60 4.81

HOMO+Au −7.25, −7.22 −8.44, −8.32 −8.92, −8.72
LUMO+Au −6.37, −6.25 −7.36, −4.33 −7.77, −4.50
LUMO−Au −5.46, −5.39 −3.60, −3.36 −3.87, −3.50
LUMO+1 −4.37, −4.34 −2.37, −2.28 −2.52, −2.44
Gap 0.12 3.03 3.27
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FIG. 7. (Color online) (a) FWHM of the differential conductance peak at zero bias, measured at different temperatures. Data points include
measurements with different tips and on different Au-PTCDA complexes of type 1. Note that the FWHM after deconvolution to correct for
broadening due to finite temperature and modulation amplitude are plotted. (b) dI/dV (V ) conductance (as measured, not deconvoluted) of
one type 1 Au-PTCDA at T ≈ 5 K. (c) Peak heights of the differential conductance peak at zero bias, measured at different temperatures. All
data points were measured with the same tip on the same Au-PTCDA complex. (d) dI/dV (V ) conductance of the same radical as in (c) at
specific temperatures. (b) and (d) Bias voltage and tunneling current at the stabilization point V = 316 mV and I = 2.5 × 10−11 A, z offset =
+1.0 Å, lock-in modulation amplitude 1 mV at 6100 Hz.

1. Gas-phase molecules

We start with the isolated PTCDA molecule. This system
has been investigated experimentally and theoretically in detail
by Dori et al. [37]. We have performed calculations within
LDA, the GW approximation and the simplified LDA+GdW

method for this system. In the top part of Table I the energies
for a single PTCDA molecule are listed. We note that replacing
the LDA by the LSDA for isolated PTCDA yields the same
result, due to its closed-shell singlet ground state. For PTCDA,
a HOMO-LUMO gap of only 1.4 eV is observed in LDA.
Using the GW approximation, the HOMO is shifted −1.2 eV
downward, while the LUMO is moved almost +2 eV upward
from the LDA value. This leads to a gap of 4.6 eV (compared
to 4.9 eV in Ref. [37]). Compared to the GW approximation,
in LDA+GdW the HOMO is moved downward slightly
more, while the LUMO is moved upward less strongly;
the gap, although moderately increased to 4.8 eV, is still
in good agreement with the GW approximation. Similarly,
the LUMO+1 state is shifted upward by +2.2 eV (GW ) or
+2.1 eV (LDA+GdW ) with respect to LDA.

Next, we consider the gas-phase Au-PTCDA complex. The
isosurfaces of its frontier wave functions are shown in Fig. 8
in comparison with those of the free PTCDA molecule. The
LUMO of bare PTCDA hybridizes strongly with the Au 6s

level, forming a bonding (LUMO+Au) and an antibonding
(LUMO−Au) combination. Table II reveals that in addition

TABLE II. Orbital composition of the three most important
states of the gas-phase Au-PTCDA complex in terms of projection
amplitudes onto states of the Au atom (6s,6p) and the PTCDA
molecule (HOMO, LUMO, LUMO+3). The states of the Au-
PTCDA complex are labeled according to their dominant character
as HOMO+Au, LUMO+Au, and LUMO−Au. Only the most
significant contributions are listed.

Au6s Au6p HOMO LUMO LUMO+3

HOMO+Au 0.14 0.00 0.74 0.01 0.00
LUMO+Au 0.29 0.07 0.16 0.31 0.03
LUMO−Au 0.12 0.07 0.01 0.64 0.07
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PTCDA
HOMO

LUMO

HOMO+Au

Au–PTCDA

LUMO+Au

LUMO–Au

FIG. 8. (Color online) Wave functions of PTCDA (left) and Au-
PTCDA (right) for orbitals around EF calculated within LDA. Green
indicates the positive isosurface, red the negative one.

to the Au 6s level, the PTCDA HOMO and PTCDA LUMO
states, also the Au 6p and the PTCDA LUMO+3 contribute to
the frontier orbitals of the Au-PTCDA complex (The numbers
in each line of Table II do not sum up to one, because
many other states contribute to a smaller extent). The most
notable observation reported in Table II is that there is a
sizable admixture of the PTCDA HOMO into the bonding
combination of LUMO and Au 6s.

The Au-PTCDA complex has an odd number of electrons
(Au 6s1). Hence its highest occupied level is half filled.
This turns out to be the LUMO+Au state. Within LSDA, all
Au-PTCDA levels are spin split by only ∼0.1 eV (see Table I).
However, the GW approximation gives similar QP corrections
for the Au-PTCDA complex as for the pure PTCDA. In
particular, it opens a gap of 3.0 eV between the LUMO + Au ↑
and LUMO + Au ↓ states. This is a consequence of the
fact that the orbital is half-filled and its two spin channels
are separated by the Coulomb interaction U . The physical
significance of the splitting will be further discussed below
(Sec. III C 3) [38]. Note that for empty or doubly occupied
orbitals such as HOMO+Au, LUMO−Au, or LUMO+1, QP
corrections do not affect the spin-splitting significantly. For
example, the fully occupied HOMO+Au state shifts down by
more than −1 eV, while the unoccupied levels are moved up
by +2 eV.

2. PTCDA on the Au(111) surface

In the following, we discuss the PTCDA monolayer on
Au(111), which we model as a commensurate monolayer in
order to be able to apply periodic boundary conditions (see
Sec. II B 1 for more details). In DFT-LDA as well as DFT-
GGA, we obtain nearly identical spectra for the monolayer,
which, however, deviate strongly from the experimental find-

LDA

LDA
+GdW

LUMO

E [eV]

P
D

O
S

 [1
/e

V
]

HOMO

0

5

–2 –1 0 1 2

10

FIG. 9. (Color online) Projected density of states of a commen-
surate PTCDA monolayer adsorbed on Au(111) with two PTCDA
molecules in the unit cell. The PDOS was obtained within the LDA
(dashed blue, vertically shifted for clarity) and the LDA+GdW

(black). The energies are given relative to the Fermi level of the
Au(111) substrate.

ing that on Au(111) the PTCDA LUMO is not occupied [39].3

Therefore we once again turn to the LDA+GdW approach,
which has produced very realistic spectral results for the
gas-phase PTCDA (see Table I) and for PTCDA/Ag(111) [7].

In Fig. 9, the corresponding PDOS as calculated in LDA
and LDA+GdW is shown. Again, replacing LDA by LSDA in
these calculations gives the same result, without spin-splitting.
The two inequivalent adsorption sites in the commensurate
unit cell (see Sec. II B 1) lead to different spectral line shapes
of the PTCDA LUMO, with a stronger broadening for the
PTCDA molecule that is aligned to the Au(111) lattice.
The figure clearly illustrates the QP corrections as shifts of the
corresponding peaks between the LDA and the LDA+GdW

spectra (−0.4 eV for both HOMO peaks at −1.5 and −1.45 eV,
and +0.5 eV for both LUMO peaks at 0.75 and 0.9 eV). Note
that only the QP corrections lead to the prediction of the LUMO
as being nearly empty (while in LDA the LUMO is occupied
by 0.3 electrons), in agreement with the experimental finding.

As a consequence of the QP shifts, the HOMO-LUMO
gap increases from 1.3 eV in LDA to 2.2 eV in LDA+GdW

(Fig. 9). We note that for a PTCDA monolayer calculated in
the same unit cell as considered here for PTCDA/Au(111) but
without substrate, the QP shifts are distinctly larger (−1.0 for
the HOMO and +1.1 eV for the LUMO). This can be explained
by the absence of substrate screening. Yet, the HOMO-LUMO
gap of this free-standing PTCDA monolayer (3.4 eV) is still
smaller than the one of gas-phase PTCDA molecules (4.8 eV).
Although the PTCDA molecules are only weakly bound
through hydrogen bridges, they contribute environmental po-
larizability and this leads to a decreased gap. On the other hand,
placing a single PTCDA molecule on the metal surface leads to
a gap of 2.6 eV, showing that, as expected, the increase of the
environmental polarizability by the metallic Au(111) substrate
is much stronger than by adjacent molecules. Nevertheless, we

3We have performed calculations with six layers of Au instead of
three. The charge transfer is the same as for three Au layers.
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FIG. 10. (Color online) Projected density of states for the PTCDA molecule and the Au-PTCDA complex in the monolayer, adsorbed on
Au(111). The PDOS was evaluated from LDA+GdW energies. The projection on the states of the Au-PTCDA complex is shown in shades
of red (solid), while projections on the PTCDA molecule are shown in shades of blue (dashed). The yellow curve marks the projection on the
states of the Au atom (6s and 6p) only. In addition the wave functions of some of the involved levels are plotted in corresponding colors. The
energies are given relative to the Fermi level of the Au(111) substrate.

can conclude that both neighboring molecules and the Au(111)
surface are instrumental for reducing the HOMO-LUMO gap
below the value of the free molecule. Clearly, the effects of the
metal substrate and the molecular environment on the gap are
not additive.

3. Au-PTCDA on the Au(111) surface

Next, we perform spin-polarized electronic structure calcu-
lations (LSDA+GdW ) for the Au-PTCDA complex adsorbed
on the Au surface, in order to simulate the effect of the
local Coulomb interaction in the LUMO+Au orbital at the
mean-field level. While this treatment, which implies a rigid
spin orientation, cannot describe the spin degree of freedom
and thus fails to predict the correct low-energy spectrum [38],
it can be used to gain insight into the high-energy spectrum
that is dominated by the electronic degrees of freedom. Again
a commensurate unit cell is employed, as discussed in the
Sec. II B 1, with one PTCDA molecule and one Au-PTCDA
complex per unit cell.

In Fig. 10, the LSDA+GdW projected density of states
of this system is shown. The unit cell contains two PTCDA
molecules, with an Au atom attached to one of them.
Concomitantly, the system exhibits five molecular states in the
energy range of Fig. 10, i.e., the HOMO and LUMO of the bare
PTCDA, as well as HOMO+Au, LUMO+Au and LUMO−Au
of Au-PTCDA. All states occur as spin-up and as spin-down.
The projection onto the bare PTCDA molecule (blue) shows
the HOMO at an energy of −1.6 eV (QP correction: −0.4 eV)
and the LUMO at 0.8 eV (QP correction: +0.5 eV). Both
levels are nearly spin-degenerate, confirming the expectation
that the physics of PTCDA (cf. the discussion of the pure
PTCDA/Au(111) monolayer in the previous Sec. III C 2) is
not changed by a neighboring Au-PTCDA complex.

Regarding the projections onto the Au-PTCDA complex
(red), we observe two types of behavior: on the one hand,
the HOMO+Au of the Au-PTCDA complex is located at
essentially the same energy as the HOMO of bare PTCDA,
with a minor spin-splitting of 0.15 eV only, which is caused
by slightly different QP corrections of −0.40 and −0.55 eV
for spin-up and spin-down electrons, respectively. On the
other hand, the LUMO-derived states of the Au-PTCDA
complex show a strong spin splitting, amounting to 1.1 eV
for the bonding LUMO+Au and 0.3 eV for the antibonding
LUMO−Au orbital. As for the gas-phase complex, these
splittings arise from quasiparticle corrections (−0.4 eV for
the LUMO+Au ↑, +0.7 eV for the LUMO+Au ↓, +0.5 eV
for the LUMO−Au ↑, and +0.8 eV for the LUMO−Au ↓).
Because of the large splitting, only the spin-up state of the
LUMO+Au orbital is found below the Fermi energy. The
LUMO+Au is therefore a singly occupied molecular orbital
(SOMO) with a nearly fully occupied majority spin state at
−0.5 eV and a nearly empty minority spin state at 0.6 eV.
Integrating the PDOS, we find that the LUMO+Au orbital is
occupied with about one electron (n = 0.5).

Comparing the theoretical spectrum in Fig. 10 to the
experimental spectrum in Fig. 2, it is tempting to as-
sign the state measured at −0.8 eV to the LUMO+Au ↑
(theoretical value −0.5 eV) and the state measured at 0.5 eV
to LUMO+Au ↓ (theoretical value 0.6 eV). The strong peak
measured at 1.2 eV can be ascribed to a superposition of
both spin channels of the antibonding LUMO−Au (theoretical
values 1.2 and 1.5 eV). The latter assignment is consistent
with the larger experimental FWHM of this peak (0.5 eV) as
compared to the other electronic levels in the spectrum.

These assignments are further supported by the fact that all
levels in the range −2.0 to +1.5 eV have in the calculation
a substantial projection on the states of the Au atom (shown
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in yellow in Fig. 10). This is a prerequisite for being able
to see these states in STS spectra, because in experiment the
spectrum is measured when the tip is above the Au atom and
thus states localized there are approximately 2 Å closer to the
tip than those localized on PTCDA. Because the wave function
decreases roughly by one order of magnitude per angstrom
[22], states without a contribution from Au are reduced in
amplitude by two orders of magnitude and are expected to be
invisible.

We note that the spin-splitting between LUMO + Au ↑
and LUMO + Au ↓ that is obtained in LSDA+GdW for
Au-PTCDA on Au(111) is substantially smaller than the
corresponding value of 3.27 eV in the gas-phase complex
(Table I). As discussed in the previous Sec. III C 2 for the
PTCDA molecule, the reduction of the gap is caused by
the increased environmental polarizability, both due to the
Au(111) surface and the surrounding PTCDA molecules and
Au-PTCDA complexes.

The LSDA+GdW calculation can be used to evaluate the
Coulomb repulsion U in the LUMO+Au orbital, using Eq. (4).
This yields a value of 1.3 eV for the Au-PTCDA complex in
a mixed PTCDA/Au-PTCDA monolayer on Au(111). In first
order, this Coulomb repulsion can also be obtained as the
energy difference between the fully occupied LUMO + Au ↑
and the completely empty LUMO + Au ↓ orbital. Note,
however, that this difference (1.1 eV) is slightly smaller than
the U obtained from Eq. (4). The origin of this discrepancy are
QP renormalizations. The single-particle spectrum therefore
shows an effective U . We will observe a similar behavior for
the NRG calculation (see Sec. III D 1).

Next, we would like to include the low-energy region of
the spectrum in Fig. 2 (i.e., the energy range around the Fermi
level at E = 0) into our consideration. As mentioned above,
this requires explicit accounting for the U -induced dynamical
intraorbital correlations that create the spin degree of freedom.
Moreover, the local spin scatters the conduction electrons,
which in turn leads to a screening of the local moment that
is characteristic of the Kondo ground state whose spectral
signature can be found in the low-energy part of Fig. 2.

The dynamical correlations can be taken into account by
performing an NRG calculation. In the present case, we
use realistic input parameters for the level position of the
LUMO+Au state (taken from the MBPT spectral function), its
intraorbital Coulomb repulsion [taken, e.g., from Eq. (4)], and
the coupling between the electrons in LUMO+Au state and the
conduction electrons (taken from MPBT). However, the spin-
polarized calculation is not feasible for this purpose. For a spin-
rotationally invariant solution, we have to resort to a starting
point given by an unpolarized LDA+GdW calculation.

The spectral function resulting from the LDA+GdW

calculation is shown in the middle of Fig. 11, in comparison
to the corresponding function from the LSDA+GdW

at the top (replotted from Fig. 10). As expected from
the partial occupancy of the LUMO+Au state in the
spin-polarized calculation, the LUMO+Au level is found
around the Fermi energy in the unpolarized calculation. Its
occupancy can be calculated by Eqs. (2) and (3) from the
quasiparticle shifts for fictitious zero/complete occupation
(�n=0 = +0.64 eV/�n=1 = −0.37 eV), the filling within
LDA (nLDA = 0.68), and the Coulomb interaction U , which is

0.51 . 1

LSDA+GdW
LDA+GdW

E [eV]

P
D

O
S

/
 [a
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.]

LDA+GdW+NRG

0 0.5

FIG. 11. (Color online) Projected density of states of the
LUMO+Au orbital from an unpolarized LDA+GdW calculation
(black) in comparison to the spin-polarized LSDA+GdW result (red
dashed) of Fig. 10. In addition, the LDA+GdW+NRG result is
included (T = 0 K and U = 1.2 eV, see Sec. III D).

calculated according to Eq. (4) and amounts to U = 1.3 eV for
this unpolarized calculation. We find a resulting occupation of
n = 0.71 and an overall QP correction of �GdW = −0.01 eV.
We note that it is purely coincidental that we obtain a nearly
negligible QP shift for the present situation.

Before turning to the NRG calculations and their detailed
analysis in the next Sec. III D, we comment on the accuracy
of the input parameters to the NRG, which are taken from
LDA+GdW . First of all, there are structural uncertainties:
a commensurate PTCDA monolayer is used in our DFT
calculations, while point-on-line epitaxy is observed for
PTCDA/Au(111) in experiment, and we find slightly different
adsorption heights of PTCDA in our GGA + vdWsurf calcula-
tion as compared to experiment (difference of the order 0.1 Å).
Clearly, this may also influence the level positions with respect
to the Fermi energy of the substrate, both for the bare PTCDA
molecule and evidently also for the Au-PTCDA complex. We
estimate this uncertainty to be of order 0.2 eV. Furthermore,
the accuracy of GW and LDA+GdW calculations depends on
the starting point (Hartree-Fock, LDA, . . .). We use a scissor
operator to anticipate the opening of the gap and therefore
to reduce this dependency. The scissor operator is applied
to the LDA spectrum before calculating G, W and thus �.
This procedure approximately anticipates the finally resulting
QP shifts and accelerates their self-consistent determination.
Note that different QP shifts are obtained for all individual
states. Nevertheless, errors of the QP corrections in GW cannot
be reduced to less than 0.1 eV. The error of LDA+GdW is
expected to be of the same size. As a consequence of these
inaccuracies, and additionally because a finite �k point mesh and
a finite broadening for the calculation of the PDOS have been
employed, we cannot exclude an uncertainty of �n = 0.05 in
the occupation of LUMO+Au state. This will affect the level
position ε0 and the hybridization in the same order. Finally,
the Coulomb repulsion U slightly differs for different Au atom
positions in the unit cell (positions A, A′, B, B′ in Fig. 4) in
the range of 0.1 eV.
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FIG. 12. The full energy-dependent hybridization function 
(E)
obtained from the LDA+GdW PDOS. 
(E) is independent of the
Coulomb interaction U and therefore always the same for every NRG
calculation in which an energy-dependent hybridization function is
used.

D. Electronic properties of the Au-PTCDA complex:
Numerical renormalization group

1. Combining the LDA+GdW and the numerical
renormalization group

We now discuss NRG calculations to incorporate dynamical
correlation effects into the spectrum of the Au-PTCDA
complex on the Au(111) surface. We employ the procedure
outlined in Ref. [8]. In this approach, the LDA+GdW result
is mapped onto a single-orbital Anderson model, which is
then solved using the NRG approach, in order to incorporate
the Kondo effect that is experimentally observed in the type 1
dI/dV spectrum of Fig. 2. Because only the LUMO+Au state
shows a significant contribution to the spectral function around
EF , a single-orbital Anderson model is used to model the
dynamical coupling of the LUMO+Au orbital to the substrate.

By treating the projected DOS obtained by the LDA+GdW

as an effective mean-field spectrum ρGdW (E), we are able to
extract the bare level position ε0 and the complex coupling
functions �(E) between the Au-PTCDA complex and the
substrate by equating

ρGdW (E) ≡ lim
δ→0+

� 1

π

1

E − iδ − ε0 − nU − �(E − iδ)
. (7)

Here, U denotes the estimated intraorbital Coulomb interac-
tion, and n the occupation number of the energy level consis-
tent with ρGdW (E). Since the LDA+GdW and LSDA+GdW

predict slightly different values of U (see discussions above),
we take U as a model parameter and vary the interaction within
the predicted bounds: the LDA+GdW gives U = 1.3 eV and
an occupancy n = 0.71, while the LSDA+GdW spectrum
with an occupation of n = 0.50 yields U = 1.1 eV. The
parameters U , ε0 and the complex function �(z) enter an
NRG [40,41] calculation, where 
(E) = limδ→0+ ��(E − iδ)
defines the hybridization strength between the Au-PTCDA
complex and the substrate. As we will see below, it is crucial
to retain the full energy dependence of the hybridization
function 
(E), which is plotted in Fig. 12, in our NRG
calculation. Following Eq. (7), we find that ε0 ranges from ε0 =

−0.88 eV for U = 1.1 eV, ε0 = −0.95 eV for U = 1.2 eV to
ε0 = −1.02 eV for U = 1.3 eV.

The resulting NRG spectrum for U = 1.2 eV (lower curve
of Fig. 11) indeed shows the Kondo peak and two charge
excitation peaks at −0.9 and 0.2 eV. The latter correspond
to the two LUMO + Au ↑ and LUMO + Au ↓ levels of the
spin-polarized LSDA+GdW mean-field spectrum at the top
of Fig. 11 (located at −0.45 and 0.55 eV). Note that the charge
excitation peaks of the NRG are shifted nearly rigidly with
respect to the ones of the LSDA+GdW ; in fact, they are
found reasonably close to the experimental positions (−0.8
and 0.5 eV). The NRG calculation and experiment thus agree
in showing a more particle-hole asymmetric situation than the
LSDA+GdW calculation. Given the uncertainties of the input
parameters into the NRG, a correspondence with experiment
regarding the charge excitations to within 0.25 eV is an
excellent result, showing that our modeling is describing the
system at a quantitative level. Similar to the LSDA+GdW , we
also observe in the NRG a slight reduction of the “effective U ,”
defined as the difference between the two charge excitation
peaks (1.1 eV for the spectrum in Fig. 11), below the input
value going into the calculation (1.2 eV).

To illustrate the effect of the above mentioned uncertainty
of the input parameter U , NRG spectra of the LUMO+Au
state on Au(111) are shown in Fig. 13(a) for different
interactions U and T = 5 K. With increasing interaction U

one observes a narrowing of the Kondo peak and thus a
decreasing of the Kondo temperature as expected from the
analytical estimate of the Kondo temperature stated in Eq. (10)
below.

We finally note in passing that for half-filling and absent
orbital-substrate interaction the spin-polarized LSDA+GdW

spectrum after averaging over the two spins and the high-
energy part of NRG spectrum in Fig. 11 would be qualitatively
very similar. Moreover, the local moment approach of Glossop
and Logan [42] uses the spin-polarized mean-field solution as
starting point: first, the mean-field spectrum is symmetrized
to restore the rotational invariance in the spin space and
then the missing Kondo resonance is calculated by including
the low-energy two-particle corrections of a random phase
approximation.

2. Results for the Kondo temperature

We now turn to a detailed analysis of the Kondo tem-
peratures resulting from the NRG calculations. Since the
Kondo temperature depends extremely sensitively on the
physical parameters (molecule-metal coupling, energy level
position, and Coulomb interaction), the comparison of the
LDA+GdW+NRG-predicted to the experimental Kondo
temperature is a very sensitive gauge of the accuracy of our
first-principles DFT/MBPT analysis.

Since the Kondo energy scale is a crossover rather than a
transition scale, there is, however, no unambiguous definition
of the Kondo temperature. We therefore employ three different
approaches to obtain the Kondo temperature, namely, (a) a
fit to the T dependence of the zero-bias conductance, which
should be a universal function of T/TK. This leads to a
Kondo temperature which we denote by T zbc

K (zbc = zero-bias
conductance). (b) The evaluation of the analytic formula
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FIG. 13. (Color online) Results of the NRG calculations based on the LDA+GdW for the Au-PTCDA complex on Au(111). (a) Spectra
for three different values U = 1.1,1.2,1.3 eV and T = 5 K. The Kondo temperature is increasing with decreasing U . (b) Spectra for different
temperatures for U = 1.2 eV. (c) The temperature dependent differential conductance for different interactions U as a universal function of
T/T zbc

K . (d) Zero-temperature spectra for the interactions U = 1.1 and 1.3 eV and their Fano fits to extract the FWHM. For more details see
main text.

for the Kondo temperature of the particle-hole asymmetric
Anderson model, in which the same orbital parameters from
our ab initio DFT/MBPT calculations that are used as input
for the NRG enter, but where the full energy-dependent
hybridization strength 
(E) is replaced by its value at the
Fermi energy, i.e., 
 = 
(0). This leads to an analytic estimate
of the Kondo temperature which we denote by TK(
,ε0,U ).
(c) The analysis of the FWHM of the zero-temperature spectral
function around the chemical potential (i.e., of the Kondo
resonance) provides T FWHM

K .
a. Kondo temperature T zbc

K from zero-bias conductance.
Figure 13(b) displays the calculated LDA+GdW+NRG
orbital spectral functions ρNRG(E) for the LUMO+Au orbital
at fixed U = 1.2 eV and at three different temperatures. The
spectra are in a good agreement with the corresponding ex-
perimental results for the differential conductance dI/dV (V )
as depicted in Fig. 7(d), with the exception of the peak
asymmetry, see below. The temperature dependent spectral
function ρNRG(E) enters the calculation of the differential
conductance [43,44] in the tunneling regime,

dI

dV
(V ) = G0

∫
dE π
(E)ρNRG(E)(−f ′

tip(E,V )), (8)

where the reference conductance G0 is given by [43]

G0 = 2e2

h

4
tip(0)
(0)

(
tip(0) + 
(0))2
. (9)

Note that G0 depends only on 
(0) and 
tip(0), the charge
fluctuation scales at the chemical potential, induced by the
coupling to the substrate and the tip, respectively. ftip(E,V )
denotes the Fermi function of the STM tip and also includes the
bias voltage V . For an STM tunneling contact, 
tip(0) → 0,
hence G0 → (2e2/h)(4
tip(0)/
(0)) and the tunnel current
is strongly suppressed. For low temperatures, −f ′

tip(E,V ) →
δ(E − eV ) and dI/dV (V ) becomes πG0
(eV )ρNRG(eV ).

Fitting the zero-bias conductance, Eq. (8), obtained from
our LDA+GdW+NRG calculation with Eq. (6) yields Kondo
temperatures ranging from T zbc

K = 27.4 K for U = 1.3 eV to
T zbc

K = 60.3 K for U = 1.1 eV. These values are perfectly
bracketing the experimentally estimated Kondo temperature
of T

exp,zbc
K = (38 ± 8) K, and the best agreement with the

experimental fit in Fig. 7(c) requires U = 1.2 eV, for which we
obtain T zbc

K = 37.0 K (Table III). In Fig. 13(c), the calculated
differential conductance, normalized to G0, is shown as a
universal function of T/T zbc

K , employing the fitted Kondo
temperatures.
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TABLE III. Experimental and calculated Kondo temperatures in
K. For the calculated T zbc

K and T FWHM
K we have used the full energy-

dependent 
(E), while for TK(
,ε0,U ), Eq. (10) has been evaluated
for 
 = 
(0) = 86 meV. For further details, cf. main text.

U

Exp. 1.1 eV 1.2 eV 1.3 eV

T zbc
K 38 ± 8 60.3 37.0 27.4

TK(
,ε0,U ) n/a 41.7 28.4 19.5
T FWHM

K 30.7 ± 1 51.0 42.9 30.2

b. Analytic Kondo temperature TK(
,ε0,U ) from the asym-
metric Anderson model. In general, the Kondo temperature is
defined as the universal energy scale governing the excitation
and the thermodynamic response at low temperatures. Physical
properties, however, also depend on the degree of particle-hole
symmetry breaking. This degree enters (i) not only the analytic
expression for TK and (ii) governs the asymmetric shape of
the spectral function [see Figs. 13(a), 13(b), and 13(d)] and,
therefore, (iii) is also responsible for the asymmetric dI/dV

at small bias voltages.
Krishna-murthy et al. [40] have shown that the Kondo

temperature of the asymmetric Anderson model with a
constant hybridization function 
(E) = const. is given by

TK(
,ε0,U ) = 0.182|E∗
0 |

√
ρJeff exp

(
− 1

ρJeff

)
(10)

for the regime where double occupation is energetically sup-
pressed and the orbital remains close to integer valence. E∗

0 is
the self-consistent solution of E∗

0 = ε0 + (
/π ) ln(−U/E∗
0 ),

describing the renormalization of the bare level due to
high-energy charge fluctuations. ρJeff = ρJ [1 + (πρK)2]−1

contains not only the dimensionless Kondo coupling

ρJ = 2


π

(
1

|E∗
0 | + 1

ε0 + U

)
, (11)

but also a modification by the degree of particle-hole symmetry
breaking

ρK = 


2π

(
1

|E∗
0 | − 1

ε0 + U

)
, (12)

both obtained from the Schrieffer-Wolff transformation [45].
At particle-hole symmetry, ρK vanishes, and for weak
coupling E∗

0 ≈ ε0.
Since the Kondo effect is dominated by the low-energy

excitations, we use in Eq. (10) the value 
(E = 0) ≈ 86 meV
extracted from the energy-dependent hybridization function
as provided by the LDA+GdW approach and depicted in
Fig. 12. For U = 1.2 eV, ε0 = −0.95 eV, and 
(E = 0) =
86 meV, we obtain TK(
,ε0,U ) = 28.4 K, which agrees well
with the numerical fit to the differential conductance presented
in Fig. 13(c) (T zbc

K = 37.0 K for U = 1.2 eV). The TK(
,ε0,U )
for the other values of U can be found in Table III.

When obtaining T zbc
K from the temperature dependence of

the LDA+GdW+NRG zero-bias conductance, we found that
a decreasing U yields an increasing Kondo temperature. This
behavior can be analytically understood with the exponential
dependence of TK on ρJ , the latter given by Eq. (11). TK has

a minimum at particle-hole symmetry ε0 = −U/2 and two
maxima, one at ε0 = 0 and the second at ε0 = −U . In the
present case, with decreasing U , we move further away from
the particle-hole symmetric point towards the mixed valence
regime where ε0 ≈ −U and, therefore, the Kondo temperature
is rising.

We have to bear in mind, however, that this analytical
Kondo temperature neglects effects stemming from the energy
dependency of 
(E). Therefore TK(
,ε0,U ) can only serve
as a preliminary estimate, needing modification by our full
LDA+GdW+NRG approach for modeling of the experiment.

c. Kondo temperature T FWHM
K from the width of the

Kondo peak in the zero-temperature spectral function. Using
Eq. (5), the Kondo temperature has been extracted from
the experimental data [Fig. 7(a)]. We now apply the same
procedure to the LDA+GdW+NRG data in Fig. 13(a). The
result is shown in Fig. 13(d).

Since the NRG is able to reach arbitrarily small tempera-
tures, a temperature dependent fit is not required, and Eq. (5)
simplifies to

FWHM(T = 0) = 2kBT FWHM
K . (13)

Furthermore, dI/dV (V ) ∝ ρ(E = eV ) in the tunneling
regime for T → 0, and T FWHM

K can be estimated directly
from the spectral function. However, away from particle-hole
symmetry, the spectra and, therefore, the dI/dV curves are
asymmetric. It is apparent in Fig. 13(a) that at energies
|E| > kBTK the spectra are modified by the charge scattering
term ρK , as defined in Eq. (12). Given this asymmetry, three
questions arise, namely (i) how to extract T FWHM

K , (ii) do the
different fit procedures yield comparable values, and (iii) how
do the various T FWHM

K compare with the other estimates of the
Kondo temperature, namely T zbc

K and TK(
,ε0,U )?
The simplest approach would be to take the definition for

the full width at half maximum (FWHM) literally. However,
in addition to the Kondo peak, the spectra also contain broad
charge-excitation peaks at higher energies that invalidate such
a procedure. Due to this background, the estimates of T FWHM

K
are typically double the value of those obtained by the fit
function (6).

To allow for an asymmetry [46,47] in the fitting process,
we employ here a Fano-resonance line shape of the form
ρ(E) = ρ0 + A

(q+ε)2

1+ε2 with ε = (E − E0)/
 for the Kondo
peak to extract its FWHM. E0 determines the location of the
resonance, which is shifted slightly away from the chemical
potential in accordance with the Friedel sum rule [48]. While
q parametrizes the asymmetry of the spectrum, the width

 defines the fit for T FWHM

K . Figure 13(d) shows the zero-
temperature spectra for two different interactions, U = 1.1
and 1.3 eV, and the corresponding Fano fits. Depending on
the interaction U , we find Kondo temperatures extracted
from our NRG spectra ranging from T FWHM

K = 30.2 to 51.0 K
(Table III), which again brackets the measured T

exp,FWHM
K =

(30.7 ± 1.0) K.
We stress again that when using Eq. (5) in highly

particle-hole asymmetric cases, one should bear in mind
that the extracted T FWHM

K depends on the fitted function,
which requires significant modifications from a symmetric
Lorentzian. Furthermore, as we show in the next paragraph,
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TABLE IV. Experimental and calculated Kondo temperatures in
K, here for a constant 
 = 86 meV. For details, cf. Sec. III D 3.

U

Exp. 1.1 eV 1.2 eV 1.3 eV

T zbc
K 38 ± 8 98.0 63.0 42.8

TK(
,ε0,U ) n/a 41.7 28.4 19.5
T FWHM

K 30.7 ± 1.0 74.8 57.0 42.9
T

μ

K n/a 49.9 34.2 23.9

TK(
,ε0,U )/T
μ

K – 0.836 0.830 0.810
TK(
,ε0,U )/T zbc

K – 0.426 0.450 0.456
TK(
,ε0,U )/T FWHM

K – 0.577 0.498 0.455

T FWHM
K can only give the correct order of magnitude of the

Kondo temperature, since its value is definition-dependent and
does not need to coincide with the Kondo temperature defined
in Eq. (10) that has been derived from the screening of the
local spin moment. We have summarized the experimentally
obtained and the calculated Kondo temperatures in Table III.

3. Comparison of Kondo temperatures

We now turn to a comparison of the various calculated
Kondo temperatures among each other in order to provide a
guideline for a reliable extraction of TK from the experiment. In
Sec. III B, we have extracted experimental Kondo temperatures
from the FWHM of the spectral function, Eq. (5) and Fig. 7(a),
and from the zero-bias conductance using the fit function
Eq. (6) [see Fig. 7(c)]. Since the Kondo temperature is only a
crossover scale, it is only defined up to an arbitrary constant
of the order one. The question arises whether T

exp,zbc
K and

T
exp,FWHM

K should indeed be expected to be identical up to a
universal scaling constant.

The NRG provides optimal tools to systematically inves-
tigate the difference between the various definitions of the
Kondo scale. In order to exclude an influence of the energy
dependent hybridization function on this comparison, we have
repeated the NRG calculations with a constant 
 = 86 meV
and extracted new values of T zbc

K and T FWHM
K from these

calculations. These new values, which can now be directly
compared to the analytic estimate TK(
,ε0,U ), are summarized
in the upper part of Table IV. The table also contains values
for T

μ

K , determined again for constant 
 = 86 meV. Wilson
[40,41] has defined the Kondo temperature as the temperature
T

μ

K at which the local moment is reduced to approximately
26% of the original value, by screening through the conduction
electrons. (At T = 0, i.e., in the Kondo singlet ground state,
the effective moment is zero.) Hence T

μ

K follows from the
implicit equation

μ2
eff = T

μ

K χ
(
T

μ

K

) = 0.07, (14)

where μ2
eff is the effective local magnetic moment and χ (T )

its isothermal magnetic susceptibility. Note that this screening
has also entered the analytical estimate TK(
,ε0,U ) in Eq. (10)
in Sec. III D 2 b.

Calculating the ratios TK(
,ε0,U )/T
μ

K and TK(
,ε0,U )/
T zbc

K for each of the three different values of U =

1.1, 1.2, 1.3 eV, corresponding to E0 = −0.88,−0.95,

−1.02 eV, we found nearly constant ratios TK(
,ε0,U )/T
μ

K ≈
0.83 and TK(
,ε0,U )/T zbc

K ≈ 0.45. Consequently, all three
definitions T

μ

K , TK(
,ε0,U ) and T zbc
K are fully equivalent and

connected by universal scaling factors.
This should be contrasted with the situation regarding

T FWHM
K ; Table IV shows that the ratios TK(
,ε0,U )/T FWHM

K
are not constant and U dependent, varying over a range from
≈0.58 to ≈0.46. This state of affairs does not change if
the fitting procedure of the zero-bias conductance peak is
changed. In particular, we tested three different procedures:
(i) a Lorentz-fit to the symmetrized spectrum ρsym(ω) =
0.5(ρ(ω) + ρ(−ω)), (ii) a Lorentz-fit to the low-energy part
of the spectrum, and (iii) a fit using the Fano line shape as
described above. All three fitting procedures yield roughly
the same estimate for T FWHM

K . We therefore conclude that the
scale T FWHM

K is nonuniversal and depends on the degree of
particle-hole symmetry breaking. In particular, for small U ,
we find a T FWHM

K that is smaller than the fit to the zero-bias
conductance, while it approaches T zbc

K for U = 1.3 eV where
the spectrum is narrower and significantly more symmetric.

The above discussion shows that the difference between
T

exp,zbc
K and T

exp,FWHM
K is due a nonuniversal scaling constant.

Therefore, the most reliable way of extracting TK from
experiments remains the fit of the temperature-dependent
zero-bias conductance (T zbc

K ), since at any temperature only
excitations of the order of T enter, while T FWHM

K measured at
T/TK � 1 always contains high-energy excitations in addition
to errors stemming from nonequilibrium effects due to the
finite current through the molecule. However, Table IV shows
that T FWHM

K can still serve as a reasonable estimate for
TK, providing the correct order of magnitude of the Kondo
temperature.

It is interesting to note that the Kondo temperatures calcu-
lated with a constant 
 and listed in Table IV are significantly
different from those obtained with the energy dependent 
(E),
which turned out to match the experimental findings very
well. The Kondo temperatures at constant 
 exceed the ones
for nonconstant 
(E) by up to a factor of two. We can thus
conclude that a combined full LDA+GdW+NRG approach is
needed to explain the experimental data on a quantitative level.
In particular, we achieve a perfect match between experiment
(T exp,zbc

K ≈ 38 K) and theory (T zbc
K = 37 K) for U = 1.2 eV,

which is in the center of the range of U parameters calculated
from DFT/MBPT using Eq. (4).

4. LUMO+Au orbital occupancy n

The NRG also provides information on the occupancy of
the local LUMO+Au orbital. While the LDA+GdW predicts
an occupancy of n = 0.71, the inclusion of correlation effects
by the NRG reduces this value to n = 0.55. Such a reduction
is expected, since the Coulomb repulsion strongly suppresses
double occupancy of the orbital and thus constrains the
filling much closer to half-integer values (note that in our
definition a completely occupied orbital with two electrons
of opposite spin has n = 1). However, the LDA+GdW and
the LDA+GdW+NRG agree in predicting the binding of
an extra fraction of an electron that is drawn from the
substrate (LDA+GdW+NRG: 0.1 electrons, LDA+GdW :
0.4 electrons), in addition to the one electron from the Au
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atom. We note in passing that 0.1 electrons is exactly the
difference of occupation between Au-PTCDA and PTCDA on
the Au(111) surface within LDA.

Furthermore, it is interesting to note in this context that in
comparison to the LDA+GdW the LSDA+GdW occupation
(nLSDA+GdW = 0.50) is closer to that of NRG (n = 0.55).
As expected, this is coupled to a lower U derived from
the LSDA+GdW (U = 1.1 eV) than from the LSDA+GdW

(U = 1.3 eV). However, as argued above, the reduction of the
occupancy in the LSDA+GdW is not occurring for the correct
physical reason.

IV. SUMMARY AND CONCLUSION

In this work, we have shown that when doping a PTCDA/
Au(111) monolayer with single Au atoms, Au-PTCDA com-
plexes are formed by a spontaneous chemical reaction. A DFT
calculation reveals that the Au-PTCDA complex is also stable
in the gas phase. Due to an unpaired electron, drawn from the
Au 6s orbital, this complex is a paramagnetic radical (S = 1

2 ).
Remarkably, the orbital in which the unpaired spin resides
extends over the whole molecule and is related to the LUMO
of free PTCDA. Specifically, it is the bonding combination
of the Au 6s orbital and the LUMO of PTCDA. The split
between bonding and antibonding orbitals in the gas phase
complex amounts to approximately 1 eV if calculated at LDA
level.

On the Au(111) surface, an additional small fraction of
an electron (about 0.1 electrons) is drawn from the substrate
into the bonding orbital of the Au-PTCDA complex. However,
this additional charge transfer is effectively limited by a
rather strong intraorbital Coulomb repulsion U . In fact,
the bonding LUMO+Au orbital remains close to a singly
occupied orbital. In this sense, the Au-PTCDA complex
on Au(111) is intermediate between PTCDA on Au(111),
where no charge transfer takes place [19], and PTCDA on
Ag(111), where nearly two electrons are transferred from the
metal surface to the molecule [49]. Apparently, the coupling
between adsorbate and substrate is much weaker in the case
of Au-PTCDA/Au(111) than in PTCDA/Ag(111), such that
in spite of similar intraorbital repulsions double occupancy is
only suppressed for Au-PTCDA/Au(111). On the other hand,
comparing Au-PTCDA/Au(111) to PTCDA/Au(111), where
the LUMO remains unfilled, we see that the charge transfer
from the Au atom to the π system bypasses the charging
barrier for PTCDA on Au(111) that is caused by the large
work function of Au(111).

As a result of the restriction to single occupancy, the spin
degree of freedom of the complex is retained when it is
adsorbed on the Au(111) surface. The thus stabilized spin of
the complex interacts with conduction electrons of the metal
surface. As a consequence, the Kondo effect unfolds in this
system. In our experimental STS spectra, it reveals itself by
the sharp resonance in the single-particle spectral function
at the chemical potential. Analyzing both the width (FWHM)
and the height (zero-bias conductance) of this resonance
as a function of temperature, we find a behavior that is
consistent with the predicted temperature dependence of
Kondo resonances, yielding Kondo temperatures of ≈38 K
from the zero-bias conductance and ≈31 K from the FWHM,

respectively. The observation of the Kondo effect in the present
system is the unambiguous proof that the Au-PTCDA complex
is indeed a paramagnetic radical with S = 1

2 .
On the theory side, we have a achieved a fully quantitative

description of the Au-PTCDA complex, by applying a hier-
archy of methods, employing density functional theory in the
local density and generalized gradient approximations, includ-
ing van der Waals corrections, as well many-body perturbation
theory in the GW and LDA+GdW approximations, and the
numerical renormalization group approach.

As far as geometric structure is concerned, the “adsorption
site” found by theory, i.e., the site at which the reaction between
the Au atom on the PTCDA molecule occurs, is in agreement
with experiment. This means that the chemical structure of the
complex is correctly predicted. Moreover, STM simulations
allow the identification of some of the experimentally observed
complexes as being contaminated by an adsorbed hydrogen
molecule.

Electronic structure calculations for the gas-phase complex
show the importance of quasiparticle corrections for predicting
the correct excitation spectrum. These increase the gap to
approximately 3 eV. This large gap is, however, reduced
again to approximately 1 eV for the adsorbed complex (in
an ordered monolayer structure), due to screening by the
metal substrate and neighboring PTCDA molecules of the
Au-PTCDA complexes, in good agreement with experiment.
To predict the full excitation spectrum correctly, including
the low-energy region that is shaped by the spin degree
of freedom, we have applied the numerical renormalization
group approach, mapping the MBPT result on the S = 1

2
single-impurity Anderson Hamiltonian. Notably, in doing so,
we take the full energy dependence of the coupling function
into account, a fact that turns out to be crucial for the
quantitatively correct description of the system.

The NRG yields the spectrum of the Au-PTCDA complex
on the Au(111) surface. It consists of two charge excitation
peaks, one below and the other above the chemical potential,
both within 0.25 eV of the corresponding experimental values,
and the Kondo resonance at the Fermi energy as the third fea-
ture. Due to the particle-hole asymmetry of the given system,
the calculated Kondo resonance acquires an asymmetric line
shape. In experiment, however, the asymmetry of the Kondo
peak is less obvious, although the charge excitations peaks
clearly show the particle-hole asymmetry also in the measured
spectra.

In order to provide a guideline how the Kondo temperature
can be extracted reliably from experiment for the present
system and for particle-hole asymmetric systems in general,
we have carried out a careful analysis of the scaling behavior
of various definitions of the Kondo temperature TK. Because
the Kondo temperature defines a crossover scale, Kondo
temperatures that are extracted from an experiment or an NRG
calculation may vary up to a scaling factor. However, for valid
extraction schemes, this scaling factor must be universal. If the
scaling factor turns out to be nonuniversal in the sense that it
depends on parameters of the model, the extraction scheme is
inadequate.

In the present system, we find that Kondo temperatures ex-
tracted from the temperature dependence of both the zero-bias
conductance and the local moment screening scale universally
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with the analytic formula for the particle-hole asymmetric
Anderson model, while the Kondo temperature derived from
the FWHM of the zero-bias peak scales nonuniversally, no
matter how the FWHM is determined. For the experiment,
this means that we need to use the zero-bias conductance
to obtain a Kondo temperature that is not prejudiced by
nonuniversal aspects of the line shape. Applying this procedure
to experiment and NRG, we obtain Kondo temperatures
between 60 and 27 K for U in the range 1.1 to 1.3 eV.
This allows us to narrow down possible U values from
the range calculated in DFT/MBPT to around U = 1.2 eV,
since only for this value the NRG yields a Kondo temperature
(TK = 37 K) close to experiment (TK ≈ 38 K). The other case
where experiment and theory agree, namely, 30.7 versus
30.2 K for the “Kondo temperature” derived from the width of
the zero-bias conductance, can be discarded as coincidental,
because this extracted parameter is nonuniversal and therefore
not a good Kondo scale. Finally, we note that in spite of the fact
that the Kondo effect is determined by low-energy excitation
around the chemical potential, the replacement of the coupling
function 
(E) by its value 
(0) at the Fermi energy is not
sufficient. In the present case, this incurs an error of nearly a
factor of 2 in the Kondo temperatures. Using the full energy

dependence of the coupling function is therefore mandatory,
if an accurate quantitative description of the system is sought.

Finally, we stress that the delocalized character of the
spin-carrying π orbital makes the Au-PTCDA complex an
interesting system in the investigation of spin phenomena
and especially in the study of interactions between “magnetic
molecules.” Because the Kondo temperature depends very
sensitively on molecule-metal coupling, energy-level position,
and Coulomb interaction, the good agreement between exper-
iment and theory, which we report here, proves that these
parameters and, more generally, the structural and electronic
properties of the Au-PTCDA complex are accurately described
by DFT/MBPT. The possibility to predict the properties of a
single complex accurately promises this system to be an ideal
candidate for the quantitative study of interactions between
extended molecular magnets.
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K. J. Franke, and J. I. Pascual, Gating the charge state of single
molecules by local electric fields, Phys. Rev. Lett. 108, 036801
(2012).

[5] R. Temirov, A. Lassise, F. B. Anders, and F. S. Tautz, Kondo
effect by controlled cleavage of a single-molecule contact,
Nanotechnol. 19, 065401 (2008).

[6] C. Toher, R. Temirov, A. Greuling, F. Pump, M. Kaczmarski,
M. Rohlfing, G. Cuniberti, and F. S. Tautz, Electrical transport
through a mechanically gated molecular wire, Phys. Rev. B 83,
155402 (2011).

[7] A. Greuling, R. Temirov, B. Lechtenberg, F. B. Anders, M.
Rohlfing, and F. S. Tautz, Spectral properties of a molecular
wire in the Kondo regime, Physica Status Solidi (b) 250, 2386
(2013).

[8] A. Greuling, M. Rohlfing, R. Temirov, F. S. Tautz, and F. B.
Anders, Ab initio study of a mechanically gated molecule: From
weak to strong correlation, Phys. Rev. B 84, 125413 (2011).

[9] L. Liu, K. Yang, Y. Jiang, B. Song, W. Xiao, L. Li, H. Zhou, Y.
Wang, S. Du, M. Ouyang, W. A. Hofer, A. H. Castro Neto,
and H.-J. Gao, Reversible single spin control of individual
magnetic molecule by hydrogen atom adsorption, Sci. Rep. 3,
1210 (2013).

[10] B. W. Heinrich, G. Ahmadi, V. L. Müller, L. Braun, J. I.
Pascual, and K. J. Franke, Change of the magnetic coupling
of a metal–organic complex with the substrate by a stepwise
ligand reaction, Nano Lett. 13, 4840 (2013).

[11] C. Krull, R. Robles, A. Mugarza, and P. Gambardella, Site-
and orbital-dependent charge donation and spin manipulation
in electron-doped metal phthalocyanines, Nat. Mater. 12, 337
(2013).

[12] F. Mohn, J. Repp, L. Gross, G. Meyer, M. S. Dyer, and M.
Persson, Reversible bond formation in a gold-atom organic-
molecule complex as a molecular switch, Phys. Rev. Lett. 105,
266102 (2010).
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