Metadata, citation and similar papers at core.ac.uk

Provided by Juelich Shared Electronic Resources

FORSCHUNGSZENTRUM JULICH GmbH
Zentralingtitut fir Angewandte M athematik
D-52425 Jilich, Tel. (02461) 61-6402

Interner Bericht

Data Distribution and Communication Schemes
for Solving Spar se Systems of Linear Equations
from FE Applications by Parallel CG M ethods

Achim Basermann

KFA-ZAM-IB-9323

September 1993
(Stand 01.10.93)

Tagungsband des Workshops iiber Parallelverarbeitung, 20.-24. September, Lessach, Osterreich

https://core.ac.uk/display/35034738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Data Distribution and Communication
Schemes for Solving Sparse Systems of
Linear Equations from FE Applications

by Parallel CG Methods

A. Basermann ¢
@ Central Institute for Applied Mathematics

Research Centre Jiilich GmbH, 52425 Jiilich, Germany
email: A.Basermann@kfa-juelich.de

Abstract
For the solution of discretized ordinary or partial differential equations
it is necessary to solve systems of equations with coefficient matrices of
different sparsity pattern, depending on the discretization method; using
the finite element (FE) method results in largely unstructured systems of
equations. Iterative solvers for equation systems mainly consist of matrix-
vector products and vector-vector operations. A frequently used iterative
solver is the method of conjugate gradients (CG) with different precon-
ditioners. For parallelizing this method on a multiprocessor system with
distributed memory, in particular the data distribution and the commu-
nication scheme depending on the used data structure for sparse matrices
are of greatest importance for the efficient execution. These schemes can
be determined before the execution of the solver by preprocessing the sym-
bolic structure of the sparse matrix and can be exploited in each iteration.
In this report, data distribution and communication schemes are presented
which are based on the analysis of the column indices of the non-zero ma-
trix elements. Performance tests of the developed parallel CG algorithms
have been carried out on the distributed memory system INTEL iPSC/860
of the Research Centre Jiilich with sparse matrices from FE models. These
methods have performed well for matrices of very different sparsity pattern.

Keywords: Sparse matrices; Finite element method; Conjugate gradients
method; Parallelization; Distributed memory computer; Data distribution;
Communication scheme.

1 Introduction

For the solution of discretized ordinary or partial differential equations it is nec-
essary to solve systems of equations with coefficient matrices of different spar-

2 THE METHOD OF CONJUGATE GRADIENTS 2

sity patterns, depending on the discretization method; using the finite element
method (FE) results in largely unstructured systems of equations.

Iterative methods for solving linear systems mainly consist of matrix-vector
products and vector-vector operations; the main work in each iteration is usu-
ally the computation of matrix-vector products. Therein, accessing the vector is
determined by the sparsity pattern and the storage scheme of the matrix.

A frequently used iterative solver is the method of conjugate gradients (CG)
with different preconditioners [10] [13]. In 1990, Aykanat e.a. presented a mod-
ified CG algorithm [4] with better parallelization properties than the original
method developed by Hestenes and Stiefel.

For parallelizing iterative solvers on a multiprocessor system with distributed
memory, in particular the data distribution and the communication scheme de-
pending on the data structures used for sparse matrices are of greatest impor-
tance for the eflicient execution. In this context, different reordering strategies of
the sparse matrix have been investigated to reduce waiting times by performing
communication and computation overlapped. Additionally, the reverse Cuthill-
McKee scheme [16] is applied to diminish the bandwidth of the matrix. De-
pending on the sparsity pattern of the matrix, bandwidth reduction results in a
considerable decrease of communication. The data distribution and the communi-
cation scheme are determined before the execution of the solver by preprocessing
the symbolic structure of the sparse matrix and are exploited in each iteration.
Moreover, the schemes are applicable as long as the sparsity pattern of the ma-
trix which is determined by the discretization mesh does not change, i.e. they
can be used in each time step of a time dependent problem or in each iterative
step of a nonlinear problem which is solved by linearization. In this report, data
distribution and communication schemes are presented which are based on the
analysis of the column indices of the non-zero matrix elements.

Performance tests of the developed parallel CG algorithms with precondition-
ing have been carried out on the distributed memory system INTEL iPSC/860
of the Research Centre Julich with sparse matrices from two FE models. The
first FE model comes from environmental science; it simulates the behaviour of
pollutants in geological systems [1] [17]. In the second FE model from structural
mechanics, stresses in materials induced by thermal expansion are calculated by

applying the FE program SMART [2].

2 The Method of Conjugate Gradients

The method of conjugate gradients [10] is an algorithm for solving systems of
linear equations Az = b, particularly for sparse coefficient matrices A. The
method converges for matrices which are symmetric and positive definite.

Aykanat e.a. [4] suggested a modified CG algorithm (see algorithm 2.1) which
has better parallelization properties than the original method.

2 THE METHOD OF CONJUGATE GRADIENTS 3

Algorithm 2.1. The modified CG method

Choose an arbitrary zo € R" ;

g = Azo—b

d = —9go
1=10,1,
 du
T T A4,
5, - JlAd)Ad
’ d¥ Ad;
9hgi1 = 69 g
Tit1 = T+ Yids
git1 = g+ vAd;
dit1 = —giy1 + &id;

until ||giv1|]2 < €.

In each iteration, the vectors z;, g;, and d; are computed. z; approximates the
solution vector, g; is the residue; d; determines the direction in which the next
approximation of the solution vector is searched for. The main work in each itera-
tion consists in the computation of the matrix-vector product Ad;. Furthermore,
two dot products and three vector additions have to be performed. Iteration is
continued until the euclidean norm of the residue is less than or equal to €,. An-
other stopping criterion which uses the maximum scaled absolute difference of the
components of the latest two approximations of the solution vector is determined
as follows: , ,
T — i
max 2—————— < ¢,. (1)
MR

The main difference between the original and the modified CG algorithm is
that in the modified one all dot products are computed directly one after another
without any other operations between. If each iteration is performed in parallel
on a distributed memory system the local values of the dot products can be
included in one message for determining the global values.

In the investigations, algorithm 2.1 has been performed with and without
diagonal scaling [13], a simple preconditioner, which hardly contributes to the
total execution time but usually accelerates the convergence considerably.

3 STORAGE SCHEMES 4

e 7 e
- e -,
e < e
s /’ -
L~ Ve
® TO0—0
L % /
7
7/
s/ /
Ve
- /1
®---0 o oo °
Ve
/ <
/]
7
7
7
e--1e ®

Figure 1: FE discretization mesh

3 Storage Schemes

Storage schemes for large sparse matrices depend on the sparsity pattern of the
matrix, the considered algorithm, and the architecture of the computer system
used. In the literature, many variants of storage schemes can be found [7] [8] [11]
[12] [14] [15].

In FE models, the maximum number of non-zeros per row of the matrix is
given by the geometry and the choice of the elements. The discretization mesh
in figure 1 e.g. consists of hexahedron elements with nodal points in each corner.
The number of rows of the coefficient matrix is given by the number of nodes, the
number of non-zeros per row by the number of nearest neighbours of a node. The
node in the middle of the mesh e.g. has eight neighbours in the middle plane, nine
in the plane below, and nine in the plane above, totally 26 nearest neighbours.
Therefore, the corresponding row of the matrix has 27 non-zeros. Boundary nodes

3 STORAGE SCHEMES 5

have less than 26 nearest neighbours. More nearest neighbours occur in meshes
which consist of more complicated elements, e.g. octahedrons. Furthermore,
different elements in one mesh, more nodes per element and a finer discretization
in parts of a mesh are possible for the FE discretization. Additionally, the number
of free degrees per node can increase if there are rotation axes e.g. besides
the three spatial directions. Therefore, the number of non-zeros per row varies
considerably for irregular dicretization meshes.

In the following, two storage schemes for sparse matrices are presented; these
schemes are frequently used in FE programs.

In the first case, the matrix is stored row-wise in two-dimensional arrays; this
storage scheme is applied in [1]. The scheme is elucidated for matrix (2) in (3).

10 0 0 0 O O O
029 0 0 0 0 O
09 3 10 0 0 0 O
0 0 10 4 11 14 12 18
A= 00 0 11 5 0 17 O (2)
00 0 14 0 6 15 0
00 0 12 17 15 7 O
00 0 18 0 0 0 8
1 0 0 0 0 O 100000
9 2 0 0 0 O 320000
09 3 0 0 O 4 23 000
w 10 4 18 14 12 11 s 3 486 75
A% = 115 17 0 0 0 |’ A" = 4 57000 (3)
15 14 6 0 0 O 746 000
12 17 7 15 0 O 4 576 00
88 0 0 0 O 4 80000

The matrix A is stored in the two-dimensional arrays A¥ and A®. In principle,
the non-zeros of A are shifted to the left. A* contains the values of the non-zeros,
A’ the corresponding column indices. The value 18 e.g. is in A in row 4 and
column 8. The order of the matrix elements per row in A¥ and A’ is different
from that in matrix A since this is usually the case in FE programs caused by
the assembly of the coefficient matrix from the single elements. In (3), many
zeros are stored in A and A® because the number of non-zeros per row varies
considerably. For irregular discretization meshes, the storage requirements of this
scheme are much higher than necessary.

This disadvantage is avoided by storing merely the non-zeros row-wise in
three one-dimensional arrays. The storage scheme considered here can be found
in similar form in e.g. [11]. The principle of the scheme is shown in (4) for matrix

(2).

4 PARALLELIZATION 6

@ = (1/921093[10418141211 1151715146 |1217 7 15|18 8),
@ = (1]32|423|348675|457|746|4576]48), (4)
a® = (1247131619 23 25).

The non-zeros of matrix A are stored row-wise in three one-dimensional arrays.
a¥ contains the values of the non-zeros, a® the corresponding column indices.
In a*, the position of the beginning of each row in a* and a*® is stored. The
subdivisions in a¢” and a® have been added to mark the beginning of a new row.
The value 10 e.g. is in matrix A in column 3 and row 4. This scheme is suitable for
regular as well as for irregular discretization meshes and has usually less storage
requirements than the former. Therefore, merely this scheme is applied in the
following considerations.

4 Parallelization

4.1 Data Distribution

For parallelizing algorithm 2.1 on a distributed memory system, the matrix and
vector arrays must be suitably distributed to each processor. For the considered
data distribution schemes, the arrays a* and a® are distributed row-wise; the
rows of each processor succeed one another. The distribution of the vector arrays
corresponds component-wise to the row distribution of the matrix arrays.

Criteria for the data distribution can be: each processor gets the same number
of rows or so many rows that each processor has nearly the same number of non-
zeros. The number of operations for the computation of the matrix-vector product
is proportional to the number of non-zeros; the remaining vector operations of
one iteration are proportional to the number of rows. Another criterion is that
each processor has to compute nearly the same number of operations. If the
discretization mesh is regular, i.e. the sparsity pattern of the coefficient matrix is
regular, all three criteria result in nearly the same data distribution. If the mesh
is very irregular, the three distributions differ considerably.

The first case, i.e. each processor gets nearly the same number of rows, will
be explained in (5) by distributing the array a* from (4) to four processors. The
distribution of the remaining arrays ensues analogously.

(1]92)
Processor 1: af = (1093|104 18 14 12 11) (5)
Processor 2: ay = (11517 |15 14 6)

(12177 15 | 18 8)

Processor 0: aj

Processor 3: ai =

4 PARALLELIZATION 7

In the second case, a” is distributed according to the criterion "each processor
gets the same number of non-zeros”, see (6).

1/92]1093)

10 4 18 14 12 11) (6)
11517 | 15 14 6)

1217 715 | 18 8)

Processor 0: a =
Processor 1: a} =

Processor 2: a3 =

g
N TN N N

Processor 3: a3 =

In the third case, i.e. each processor has to compute nearly the same number of

operations, processor k, k=20,...,p— 1, gets so many rows until
er +&n 1
o éme =, for ex,mp > 10 (7)
etén T p

is satisfied for the first time, i.e. for the least number of rows possible. The
row distribution is determined by analyzing the array a®. p is the number of
the processors used, e, the number of non-zeros, and n; the number of rows of
processor k. e is the total number of non-zeros and n the order of the matrix. The
parameter ¢ considers the number of vector operations except the operations of
the matrix-vector product and the ratio of the execution times of multiplication,
division etc. operations and the addition operation; it is therefore dependent on
the processor architecture. The numerator in (7) is proportional to the number of
operations of one partial iteration on processor k, the denominator is proportional
to the total number of operations of one iteration. It shall be remarked that for
¢ — 0 each processor gets nearly the same number of non-zeros and for ¢ — oo
nearly the same number of rows. The first case means that the execution time of
all vector-vector operations is neglectable compared with the execution time of
the matrix-vector product. In the second case, the excution time of the matrix-
vector product hardly contributes to the total execution time.

With these considerations, the contribution of the matrix-vector product to
one iteration can be approximated by

e B 1
e—l—fn_ 14+&/m,’

aMvp ~ for e,n > 10. (8)
m, = e/n is the mean number of non-zeros per row. Additionally, (8) provides a
means for measuring €. If ayyp 1s determined by timings an approximation of &
can be computed by

~1). (9)

£~ my(
aMvP

On the INTEL 1860XR, the timings result in an approximative value ¢ of
about 8.3 for the considered CG method.

The data distribution according to criterion (7) is shown in (10) by distribut-
ing the array a* to four processors.

4 PARALLELIZATION 8

1192109 3),

10 4 18 14 12 11 | 11 5 17), (10)
1514 6 | 12 17 7 15),

18 8).

Processor 0: ap =
Processor 1: af =

Processor 2: a; =

g
N TN N N

Processor 3: a3 =

4.2 Communication Scheme

On a distributed memory system, the computation of the matrix-vector product
requires communication because each processor owns only a partial vector. For
the efficient computation of the matrix-vector product, it is necessary to develop
a suitable communication scheme by preprocessing the distributed column index
arrays.

First, the arrays a}, are analysed on each processor k to determine which data
result in accesses to components of d; of other processors. Then, a} and a} are
reorderd in such a way that the data which result in accesses to processor h are
collected in block h. The data of block h succeed row-wise one another with
increasing column index per row. Block k is the first block in a; and af and
contains the data which result in local accesses. The goal of the reordering is
performing computation and communication overlapped.

The principle of the first reordering scheme is shown in (11) for the data
distribution from (10) and the matrix-vector product Ad; from algorithm 2.1.
A second reordering and communication scheme will be discussed below. Here,
merely array aj is analysed and reordered.

Processor 0: aj = (1]32|423), dip=(d} & &3)

Processor 1: af = (.4.@.5|45. diy = (d} &)
Processor 2: a5 = (746 |4576), dio=(dd) (11)
Processor 3: aj = (48), diz=(d)

Reordering: a; (45|45||.||@. .||.

1

Computing the operation row times vector of the matrix-vector product of
processor 1, the index 3 results in an access to component d3 of processor 0,
the index 8 to d¥ of processor 3, and the indices 6 and 7 in accesses to d% and
d! of processor 2. The data blocks in (11) are separated by double dashes for
elucidation; the blocks have been numbered below the brackets. After reordering,
the data of block 1 result in local accesses, the data of block 0 in accesses to
processor 0, the data of block 2 in accesses to processor 2, and the data of block
3 in accesses to processor 3.

4 PARALLELIZATION 9

OIS

@ : Processor k
‘Index jof a

vector component
@ @

Figure 2: Communication scheme, reordering 1

After having analysed the column index array aj, each processor k knows
which components of d; must be required of which processors. This information
is broadcasted to all processors. Two variants have been investigated. First, the
minimum and maximum index of the required components are sent; in this scope,
there can be indices of components which are not needed. Second, all indices of
the requisite components are sent. Thereafter, each processor can decide which
data must be sent to which processors. This communication scheme is determined
once before starting the parallel CG algorithm and applies unchanged to each
iteration.

The communication scheme for the example discussed above is displayed in
figure 2.

Processor 1 e.g. receives the third component of d; from processor 0, the
sixth and seventh component from processor 2 and the eighth component from
processor 3. On the other side, the fourth component of processor 1 is sent to
processor 0, the fourth and fifth to processor 2 and the fourth to processor 3.

In figure 3, the parallel computation of the matrix-vector product is described
for algorithm 2.1.

First, on each processor, the data which are necessary for other processors are
sent asynchronously. After having executed asynchronous receive-routines for
receiving non-local data, all local computations are performed, in particular the
local part of the matrix-vector product. Then each processor waits until the data
of an arbitrary processor arrive and continues the computation of the matrix-
vector product. Thereafter, each processor awaits the data of other processors
until the computation of the matrix-vector product is complete. Computation
and communication are performed overlapped. While required data are on the
network, operations with local or already arrived data of other processors are
executed.

In the second reordering scheme, the data blocks, built as discussed before,
are sent to the processors which own the corresponding components of the vector

4 PARALLELIZATION 10

k=0 | 1 p-1

Sending the data which are necessary for other processors,
asynchronously

Receiving non-local data for the
matrix-vector product, asynchronously

Local vector-vector operations

| Computing the matrix-vector product with local data |

Q %?> ??>

Data of a | processor available?
yes | yes yes
| Matrix-vector product with the data of the processor |

no no no
Computation | complete?
yes yes yes

Figure 3: The parallel matrix-vector product, reordering 1

of the matrix-vector product. The goal is to increase the number of local com-
putations while required data are on the network. In this case, the processors
compute partial results of the result vector of the matrix-vector product. Then,
Yk, denotes the partial result of y, = Apd; of processor k£ which is computed on
processor [. After the computation, the partial results except the local one are
sent to the corresponding processors and then are added to the local result of the
recelving processor.

The new distribution of the matrix data is presented in (12).

The first number of the blocks in (12) denotes the processor to which the
partial result is sent; the second number indicates the processor on which the
computation is performed. Processor 1 e.g. computes the local result y; ; with
the first block, the partial result y; of processor 0 with the second block, the
partial result y,; of processor 2 with the third block, and the partial result ys,
of processor 3 with the fourth block, respectively.

4 PARALLELIZATION 11

@ : Processor k
|I| Index j of a

vector component
@ @

Figure 4: Communication scheme, reordering 2

Processor 0: af (112323 [3]), dip=(d} & d)
—_— =

0,0
Procamr 1: 0} = (83145 | [] ||l A1 [wa-
E/—/
ey
Processor 2: aj = 67|67 I @. . dio = (d2 d) (12)
Tz
Processor 3: a3 = (8 || [8]), dis=(d%)

Figure 4 shows the communication scheme for the block distribution from
(12).

Processor 1 e.g. sends a value to processor 0 which must be added to the third
component of yg. On the other side, processor 1 receives a value from processor
0 which must be added to the first component of y;.

In figure 5, the parallel computation of the matrix-vector product is presented
for the second reordering and communication scheme.

First, asynchronous receive-routines for receiving all neccessary partial results
of other processors are executed on each processor. After that, each processor
computes the partial results which are sent to other processors. The compu-
tation is performed per data block; the results are asynchronously sent to the
corresponding processors after each computation. Then, all local computations
are performed, in particular the computation of the local part of the matrix-
vector product. Thereafter, each processor waits until the data of an arbitrary
processor arrive and then adds the values to the corresponding components of the
local result. This is repeated until the computation of the matrix-vector product
is complete. Computation and communication are performed overlapped.

4 PARALLELIZATION 12

k=0

| -

| Receiving all neccessary non-local partial results, asynchronously |

Are there data-blocks of other
?) ?
—<?) —<?) processors? !
no es no ves no ves

?
y
—>] —>
Computing a partial result of another processor
I 1 [| 1 [|
Sending the partial result, asynchronously
no A Iloé no A

Processing of | all data-blocks of other proc.
yes yes complete? yes

» > »

Local vector-vector operations

k=0 1
| Computing the local partial result

nQO? %9 %5

Data of a | processor available?
yes | ves yes
| Adding the values to the local partial result |

\ 4

no
Computation | complete?

yes yes yes

Figure 5: The parallel matrix-vector product, reordering 2

Since partial results of the matrix-vector product are exchanged most com-
putations are local. Merely the summation of the partial results follows after
the receiving of non-local data. The disadvantage of this method is that load
balancing is not guaranteed any more after the new distribution of the blocks;
some processors can own more or larger data blocks than other ones. However,
this scheme allows arbitrary data distributions; each processor can get arbitrary
parts of arbitray rows which need not succeed one another. For a specific FE
application, suitable data distributions for this scheme can be found considering
the discretization mesh. The data distribution and the communication scheme
presented here do not require any knowledge about a specific discretization mesh;
the schemes are determined automatically by analysing the column indices of the
non-zero matrix elements.

5 RESULTS 13

5 Results

The numerical and performance tests of the developed parallel CG methods have
been performed on the distributed-memory system iPSC/860 of the Research
Centre Julich. The INTEL computer system has 32 processors with 16 Megabyte
private memory each interconnected by a hypercube-network. The maximum
transfer rate is 2.8 Megabyte/second per channel in both directions.

5.1 Numerical Results

The tests presented here have been carried out with one equation system each
of the FE models from environmental science and structural mechanics. In table
1, numerical data of the coeflicient matrices and for the convergence of the CG
method are indicated.

‘ Environmental science ‘ Structural mechanics ‘

Rows 49392 25222
Non-zeros 1242814 3856386
Density 0.05% 0.6%
Non-zeros per row, max. 27 485
m, 25.2 152.9
amvp 75% 95%
CG method: max. scal. abs. diff. <107°
Iterations without scaling 390 1444
Iterations with scaling 84 658
| git12 4.5 x 1074 1.5 x 107°

Table 1: Numerical data of the considered large sparse matrices

The matrix from environmental science has 49392 rows, that from structural
mechanics 25222. In the first case, the mean number of non-zeros per row is near
the maximum number. This is caused by a regular discretization mesh. For the
second case, the mean and the maximum number are considerably different; the
discretization mesh is much more irregular. The operational contribution of the
matrix-vector product to one iteration is 75% for the matrix from environmental
science and 95% for the matrix from structural mechanics.

Below in table 1, the number of CG iterations with and without diagonal
scaling is given. The iteration has been stopped when the maximum scaled
absolute difference from (1) has been less than or equal to 1075; this corresponds
to a precision of the solution vector of about five decimals. With diagonal scaling,
the number of iterations is considerably smaller in both cases. The contribution

5 RESULTS 14

of this preconditioner to the total execution time is in both cases below 1%. For
the preconditioned method, the euclidean norm of the residue after 84 and 658
iterations, respectively, is given in addition.

The sparsity patterns of both matrices are shown in the figures 6 and 7,
respectively.

The matrix from environmental science has essentially band structure with a
maximum bandwidth of 2375. The matrix from structural mechanics has a much
more irregular structure; the maximum bandwidth is 3474.

By reducing the bandwidth of the matrices, the communication overhead in
each iteration of the CG method can be decreased. Since communication is
necessary for the operation row times vector of the matrix-vector product, a
smaller bandwidth results in smaller message length or even in communication
with fewer processors. Here, the matrix is reordered by the reverse Cuthill-McKee
(RCM) scheme [16]. In FE models, this scheme is frequently used for the assembly
of the coefficient matrix; it is performed merely once if the mesh does not change,
whereas in many cases equation systems are frequently solved, e.g. in each time
step of a time dependent problem or in each iterative step of a nonlinear problem
which is solved by linearization.

In the figures 8 and 9, the sparsity patterns of both matrices with bandwidth
reduction are presented.

For the matrix from environmental science, the bandwidth is reduced by 45%;
the maximum bandwidth is 1303. The maximum bandwidth of the matrix from
structural mechanics after applying the reverse Cuthill-McKee scheme is 2989;
this is a reduction by merely 14%.

5.2 Performance Results

In the first four investigations, bandwidth reduction has not been applied to the
matrices.

Figure 10 shows execution times per iteration of the parallel CG method for
both the presented storage schemes using 16 processors. In this investigation,
each processor has got nealy the same number of succeeding rows.

The execution times in figure 10 hardly differ for the storage schemes in 2-
dimensional and 1-dimensional arrays. The times for the scheme in 1-dimensional
arrays are slightly increased since in this case a third array is neccessary for
addressing; the costs for accessing the matrix elements are higher compared with
the scheme in 2-dimensional arrays. The storage requirement, however, is about
147 Megabyte for the matrix from structural mechanics using the storage scheme
in 2-dimensional arrays and merely 47 Megabyte using the storage scheme in
1-dimensional arrays. This is caused by a very different number of non-zeros
per row of this matrix. For the matrix from environmental science, the storage
requirement is 17 Megabyte in the first and 16 Megabyte in the second case.
The number of non-zeros per row is the same for most rows. Because of the less

5 RESULTS

Figure 6: Sparsity pattern of the matrix from environmental science

Figure 7: Sparsity pattern of the matrix from structural mechanics

15

5 RESULTS 16

Figure 8: Sparsity pattern of the matrix from environmental science with band-
width recuction

Figure 9: Sparsity pattern of the matrix from structural mechanics with band-
width recuction

5 RESULTS 17

~
o
|

[storing in 2-d arrays — §
120
Storing in 1-d arrays
o 100
e}
c
o
2 80
ko)
=
£ 60 N
[0}
IS
F 404
204
Environmental science Structural mechanics

Figure 10: Execution times per iteration, different storage schemes, 16 processors

storage requirements, the storage scheme in 1-dimensional arrays is applied in all
following measurements.

In figure 11, execution times per iteration on 32 processors are presented for
the three considered data distributions.

For the matrix from environmental science, the execution times are nearly
the same because the matrix has quite a regular structure. For the matrix from
structural mechanics, the execution times using the criteria "same number of
non-zeros” and ”same number of operations” are reduced by 19% compared with
the time using the criterion ”same number of rows”. Because of the very different
number of non-zeros per row, the operations for the computation of the matrix-
vector product are not uniformly distributed to each processor applying the latter
criterion. The times for the criteria "same number of non-zeros” and ”same
number of operations” are nearly the same since the contribution of the time
for computing the matrix-vector-product to the total time for one iteration is
95%. In all following investigations, the criterion ”same number of operations”
is applied.

Figure 12 shows execution times per iteration on 32 processors for different
communication schemes.

In the first case, the vector components of the vector of the matrix-vector
product from the minimum to the maximum index which have been determined
by analysing the column index array are sent. In the second case, only the com-
ponents which are necessary for the computation are delivered as packed list, and
in the third case, the components of partial results of the matrix-vector product
are sent, also as packed list. For the matrix from environmental science, using

5 RESULTS

90+

80+

Time in miliseconds
-~
(@]
|

[C] same number of rows

Same number of non-zeros

Il Same number of operations

Environmental science

Structural mechanics

18

Figure 11: Execution times per iteration, different data distributions, 32 proces-

SOTS

+~ (o)) (o) ~ 0
o (@) (@) o o
| | | | |

Time in miliseconds
[N
(e}
|

] Minimum to maximum index

Indices of the vector components]

M Indices of partial results

Environmental science

Structural mechanics

Figure 12: Execution times per iteration, different communication schemes, 32

processors

5 RESULTS 19

20 [Not overlapped
Overlapped

60 N
[}
© —
& 50
(o]
(4]
o)
T 40+ §
<
()] |
2 30
'_

204

104

Environmental science Structural mechanics

Figure 13: Execution times per iteration, CG method, 32 processors

case 2 reduces the time by about 23% compared with case 1 and by about 9%
for the matrix from structural mechanics. This indicates that in case 1 consider-
ably more components than necessary are sent. Case 3 does not result in further
improvement. On the contrary, the time increases for the matrix from structural
mechanics. Because of the irregular structure of this matrix, the new distribution
of the data blocks destroys the load balancing. In the following investigations,
the communication scheme according to case 2 is applied since the best results
have been achieved with this scheme for the considered matrices.

In figure 13, execution times per iteration on 32 processors with and with-
out communication and computation performed overlapped are presented. The
overlapped execution reduces the execution times by nearly 20%.

In figure 14, speedups on 4 to 32 processors are shown with and without
bandwidth reduction of the matrices. The equation system from environmental
science together with the program code and the remaining data requires the
memory of more than two processors, that from structural mechanics the memory
of more than four processors. For up to four and, in the second case, up to
eight processors, linear speedup was assumed because nearly linear speedup was
observed in tests with smaller systems of equations for up to 8 processors.

For 16 processors and without bandwidth reduction, the speedup is 13.2 in
the first case and 15.2 in the second case. This corresponds to efficiencies of 83%
and 95%. With bandwidth reduction, the speedups increase to 14.6 and 15.6,
respectively; the efficiecies are 91% and 97%. For 32 processors, speedups of 21.6
and 27.2 without bandwidth reduction or of 24.8 and 28.5 with bandwidth reduc-
tion are achieved. The efliciencies decrease to 68% and 85% without bandwidth

6 CONCLUSIONS 20

30+

[C] Environmental science without RCM

W Environmental science with RCM
[Structural mechanics without RCM
204 [structural mechanics with RCM

25+

o

8 16 32
Number of processors

Figure 14: Speedups, CG method

reduction or 78% and 89% with bandwidth reduction because the communication
overhead increases.

6 Conclusions

The developed parallel CG algorithms have been shown to be well suited for the
considered large sparse matrices from FE models; they are employed in both the
projects from environmental science and structural mechanics. On a distributed
memory system, the data distribution and communication scheme determined
by preprocessing together with the overlapped execution of communication and
local computations result in flexible algorithms. These algorithms perform well
for large sparse matrices of very different sparsity patterns.

Bandwidth reduction decreases the communication overhead additionally; ap-
plying reordering schemes like the reverse Cuthill-McKee method is recommended
for FE models.

In current investigations, other data distributions and other storage schemes
for sparse matrices and their influence on the communication scheme are tested
as well as polynomial preconditioning [3] [13] as convergence accelerator. This
preconditioner allows using the same parallelization strategies as described for the
CG algorithm in this report. Furthermore, the applicability of these principles
to the QMR algorithm for solving non-hermitian systems of linear equations [9]
will be investigated.

Moreover, further research is scheduled to parallelize the Lanczos algorithm

REFERENCES 21

for solving large sparse symmetric eigenproblems, which has a deep theoretical
connection to the CG method [6]. The Lanczos algorithm requires essentially
the computation of matrix-vector products and the determination of eigenvalues
and eigenvectors of symmetric tridiagonal matrices. A parallel solver for deter-
mining all eigenvalues of large real symmetric tridiagonal matrices has already
been developed [5]. For determining the eigenvectors of the tridiagonal matrices,
inverse iteration is a suitable method and can be done perfectly in parallel if the
corresponding eigenvalues are known.

References

[1] 3BDFEMWATER: a three-dimensional finite element model of water flow
through saturated-unsaturated media. Oak Ridge National Laboratory.
ORNL-6386, 1987

[2] SMART, Benutzerhandbiicher. Institut fiir Statik und Dynamik der Luft-
und Raumfahrtkonstruktionen der Universitat Stuttgart. ISD-Berichte,
1976-1992.

[3] S.F. Ashby. Minimax polynomial preconditioning for hermitian linear sys-

tems. SIAM J. Matriz Anal. Appl., 12:766-789, 1991.

[4] C. Aykanat, F. (jzgiiner, D.S. Scott. Vectorization and parallelization of
the conjugate gradient algorithm on hypercube-connected vector processors.
Mucroprocessing and Microprogrammang, 29:67-82, 1990.

[5] A. Basermann, P. Weidner. A parallel algorithm for determining all eigen-
values of large real symmetric tridiagonal matrices. Parallel Computing,

18:1129-1141, 1992.

6] J.K. Cullum, R.A. Willoughby. Lanczos Algorithms for Large Symmetric
Figenvalue Computations. Volume I: Theory, Birkhauser, Boston Basel
Stuttgart, 1985.

[7] N. Feistl. Das Verfahren der konjugierten Gradienten auf Vektorrechern.
Diplomarbeit, Ludwig-Maximilians-Universitat, Munchen, Juli 1990.

[8] P. Fernandes, P. Girdinio. A new storage scheme for an efficient implemen-
tation of the sparse matrix-vector product. Parallel Computing, 12:327-333,
1989.

9] R.W. Freund, N.M. Nachtigal. QMR: a quasi-minimal residual method for
non-Hermitian linear systems. Numerische Mathematik, 60:315-339, 1991.

REFERENCES 22

[10]

[11]

[12]

[13]

[14]

M.R. Hestenes, E. Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards, 49:409—
436, 1952.

C.P. Kruskal, L. Rudolph, M. Snir. Techniques for parallel manipulation of
sparse matrices. Theoretical Computer Science, 64:135-157, 1989.

O.A. McBryan, E.F. Van de Velde. Matrix and vector operations on hyper-
cube parallel processors. Parallel Computing, 5:117-125, 1987.

J.M. Ortega. Introduction to Parallel and Vector Solution of Linear Systems.
Plenum Press, New York London, 1988.

S. Pissanetsky. Sparse Matriz Technology. Academic Press, London Orlando,
1984.

U. Schendel. Sparse-Matrizen. R. Oldenbourg Verlag, Munchen Wien, 1.
Auflage, 1977.

H.R. Schwarz. FORTRAN-Programme zur Methode der finiten Elemente. B.
G. Teubner, Stuttgart, 1981.

H. Vereecken, G. Lindenmayr, A.Kuhr, D.H. Welte, A. Basermann. Numer-
ical modelling of field scale transport in heterogeneous variably saturated

porous media. KFA/ICG-/ Internal Report No. 500393, January 1993.

