
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Interner Bericht

Data Distribution and Communication Schemes
for Solving Sparse Systems of Linear Equations
from FE Applications by Parallel CG Methods

Achim Basermann

KFA-ZAM-IB-9323

September 1993
(Stand 01.10.93)

Tagungsband des Workshops über Parallelverarbeitung, 20.-24. September, Lessach, Österreich

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35034738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Data Distribution and CommunicationSchemes for Solving Sparse Systems ofLinear Equations from FE Applicationsby Parallel CG MethodsA. Basermann aa Central Institute for Applied MathematicsResearch Centre J�ulich GmbH, 52425 J�ulich, Germanyemail: A.Basermann@kfa-juelich.deAbstractFor the solution of discretized ordinary or partial di�erential equationsit is necessary to solve systems of equations with coe�cient matrices ofdi�erent sparsity pattern, depending on the discretization method; usingthe �nite element (FE) method results in largely unstructured systems ofequations. Iterative solvers for equation systems mainly consist of matrix-vector products and vector-vector operations. A frequently used iterativesolver is the method of conjugate gradients (CG) with di�erent precon-ditioners. For parallelizing this method on a multiprocessor system withdistributed memory, in particular the data distribution and the commu-nication scheme depending on the used data structure for sparse matricesare of greatest importance for the e�cient execution. These schemes canbe determined before the execution of the solver by preprocessing the sym-bolic structure of the sparse matrix and can be exploited in each iteration.In this report, data distribution and communication schemes are presentedwhich are based on the analysis of the column indices of the non-zero ma-trix elements. Performance tests of the developed parallel CG algorithmshave been carried out on the distributed memory system INTEL iPSC/860of the Research Centre J�ulich with sparse matrices from FE models. Thesemethods have performed well for matrices of very di�erent sparsity pattern.Keywords: Sparse matrices; Finite element method; Conjugate gradientsmethod; Parallelization; Distributed memory computer; Data distribution;Communication scheme.1 IntroductionFor the solution of discretized ordinary or partial di�erential equations it is nec-essary to solve systems of equations with coe�cient matrices of di�erent spar-1

2 THE METHOD OF CONJUGATE GRADIENTS 2sity patterns, depending on the discretization method; using the �nite elementmethod (FE) results in largely unstructured systems of equations.Iterative methods for solving linear systems mainly consist of matrix-vectorproducts and vector-vector operations; the main work in each iteration is usu-ally the computation of matrix-vector products. Therein, accessing the vector isdetermined by the sparsity pattern and the storage scheme of the matrix.A frequently used iterative solver is the method of conjugate gradients (CG)with di�erent preconditioners [10] [13]. In 1990, Aykanat e.a. presented a mod-i�ed CG algorithm [4] with better parallelization properties than the originalmethod developed by Hestenes and Stiefel.For parallelizing iterative solvers on a multiprocessor system with distributedmemory, in particular the data distribution and the communication scheme de-pending on the data structures used for sparse matrices are of greatest impor-tance for the e�cient execution. In this context, di�erent reordering strategies ofthe sparse matrix have been investigated to reduce waiting times by performingcommunication and computation overlapped. Additionally, the reverse Cuthill-McKee scheme [16] is applied to diminish the bandwidth of the matrix. De-pending on the sparsity pattern of the matrix, bandwidth reduction results in aconsiderable decrease of communication. The data distribution and the communi-cation scheme are determined before the execution of the solver by preprocessingthe symbolic structure of the sparse matrix and are exploited in each iteration.Moreover, the schemes are applicable as long as the sparsity pattern of the ma-trix which is determined by the discretization mesh does not change, i.e. theycan be used in each time step of a time dependent problem or in each iterativestep of a nonlinear problem which is solved by linearization. In this report, datadistribution and communication schemes are presented which are based on theanalysis of the column indices of the non-zero matrix elements.Performance tests of the developed parallel CG algorithms with precondition-ing have been carried out on the distributed memory system INTEL iPSC/860of the Research Centre J�ulich with sparse matrices from two FE models. The�rst FE model comes from environmental science; it simulates the behaviour ofpollutants in geological systems [1] [17]. In the second FE model from structuralmechanics, stresses in materials induced by thermal expansion are calculated byapplying the FE program SMART [2].2 The Method of Conjugate GradientsThe method of conjugate gradients [10] is an algorithm for solving systems oflinear equations Ax = b, particularly for sparse coe�cient matrices A. Themethod converges for matrices which are symmetric and positive de�nite.Aykanat e.a. [4] suggested a modi�ed CG algorithm (see algorithm 2.1) whichhas better parallelization properties than the original method.

2 THE METHOD OF CONJUGATE GRADIENTS 3Algorithm 2.1. The modi�ed CG methodChoose an arbitrary x0 2 IRn ;g0 = Ax0 � bd0 = �g0i = 0; 1; : : : i = gTi gidTi Adi�i = i(Adi)TAdidTi Adi � 1gTi+1gi+1 = �igTi gixi+1 = xi + idigi+1 = gi + iAdidi+1 = �gi+1 + �idiuntil kgi+1k2 � �r:In each iteration, the vectors xi, gi, and di are computed. xi approximates thesolution vector, gi is the residue; di determines the direction in which the nextapproximation of the solution vector is searched for. The main work in each itera-tion consists in the computation of the matrix-vector product Adi. Furthermore,two dot products and three vector additions have to be performed. Iteration iscontinued until the euclidean norm of the residue is less than or equal to �r. An-other stopping criterion which uses the maximumscaled absolute di�erence of thecomponents of the latest two approximations of the solution vector is determinedas follows: maxj=1;:::;n 2 jxji+1 � xji jjxji+1j+ jxji j � �s: (1)The main di�erence between the original and the modi�ed CG algorithm isthat in the modi�ed one all dot products are computed directly one after anotherwithout any other operations between. If each iteration is performed in parallelon a distributed memory system the local values of the dot products can beincluded in one message for determining the global values.In the investigations, algorithm 2.1 has been performed with and withoutdiagonal scaling [13], a simple preconditioner, which hardly contributes to thetotal execution time but usually accelerates the convergence considerably.

3 STORAGE SCHEMES 4

Figure 1: FE discretization mesh3 Storage SchemesStorage schemes for large sparse matrices depend on the sparsity pattern of thematrix, the considered algorithm, and the architecture of the computer systemused. In the literature, many variants of storage schemes can be found [7] [8] [11][12] [14] [15].In FE models, the maximum number of non-zeros per row of the matrix isgiven by the geometry and the choice of the elements. The discretization meshin �gure 1 e.g. consists of hexahedron elements with nodal points in each corner.The number of rows of the coe�cient matrix is given by the number of nodes, thenumber of non-zeros per row by the number of nearest neighbours of a node. Thenode in the middle of the mesh e.g. has eight neighbours in the middle plane, ninein the plane below, and nine in the plane above, totally 26 nearest neighbours.Therefore, the corresponding row of the matrix has 27 non-zeros. Boundary nodes

3 STORAGE SCHEMES 5have less than 26 nearest neighbours. More nearest neighbours occur in mesheswhich consist of more complicated elements, e.g. octahedrons. Furthermore,di�erent elements in one mesh, more nodes per element and a �ner discretizationin parts of a mesh are possible for the FE discretization. Additionally, the numberof free degrees per node can increase if there are rotation axes e.g. besidesthe three spatial directions. Therefore, the number of non-zeros per row variesconsiderably for irregular dicretization meshes.In the following, two storage schemes for sparse matrices are presented; theseschemes are frequently used in FE programs.In the �rst case, the matrix is stored row-wise in two-dimensional arrays; thisstorage scheme is applied in [1]. The scheme is elucidated for matrix (2) in (3).A = 0BBBBBBBBBBBBB@ 1 0 0 0 0 0 0 00 2 9 0 0 0 0 00 9 3 10 0 0 0 00 0 10 4 11 14 12 180 0 0 11 5 0 17 00 0 0 14 0 6 15 00 0 0 12 17 15 7 00 0 0 18 0 0 0 8 1CCCCCCCCCCCCCA (2)
Aw = 0BBBBBBBBBBBBB@ 1 0 0 0 0 09 2 0 0 0 010 9 3 0 0 010 4 18 14 12 1111 5 17 0 0 015 14 6 0 0 012 17 7 15 0 018 8 0 0 0 0 1CCCCCCCCCCCCCA ; As = 0BBBBBBBBBBBBB@ 1 0 0 0 0 03 2 0 0 0 04 2 3 0 0 03 4 8 6 7 54 5 7 0 0 07 4 6 0 0 04 5 7 6 0 04 8 0 0 0 0 1CCCCCCCCCCCCCA (3)The matrixA is stored in the two-dimensional arrays Aw and As. In principle,the non-zeros of A are shifted to the left. Aw contains the values of the non-zeros,As the corresponding column indices. The value 18 e.g. is in A in row 4 andcolumn 8. The order of the matrix elements per row in Aw and As is di�erentfrom that in matrix A since this is usually the case in FE programs caused bythe assembly of the coe�cient matrix from the single elements. In (3), manyzeros are stored in Aw and As because the number of non-zeros per row variesconsiderably. For irregular discretization meshes, the storage requirements of thisscheme are much higher than necessary.This disadvantage is avoided by storing merely the non-zeros row-wise inthree one-dimensional arrays. The storage scheme considered here can be foundin similar form in e.g. [11]. The principle of the scheme is shown in (4) for matrix(2).

4 PARALLELIZATION 6aw = (1 j 9 2 j 10 9 3 j 10 4 18 14 12 11 j 11 5 17 j 15 14 6 j 12 17 7 15 j 18 8);as = (1 j 3 2 j 4 2 3 j 3 4 8 6 7 5 j 4 5 7 j 7 4 6 j 4 5 7 6 j 4 8); (4)az = (1 2 4 7 13 16 19 23 25):The non-zeros of matrixA are stored row-wise in three one-dimensional arrays.aw contains the values of the non-zeros, as the corresponding column indices.In az, the position of the beginning of each row in aw and as is stored. Thesubdivisions in aw and as have been added to mark the beginning of a new row.The value 10 e.g. is in matrixA in column 3 and row 4. This scheme is suitable forregular as well as for irregular discretization meshes and has usually less storagerequirements than the former. Therefore, merely this scheme is applied in thefollowing considerations.4 Parallelization4.1 Data DistributionFor parallelizing algorithm 2.1 on a distributed memory system, the matrix andvector arrays must be suitably distributed to each processor. For the considereddata distribution schemes, the arrays aw and as are distributed row-wise; therows of each processor succeed one another. The distribution of the vector arrayscorresponds component-wise to the row distribution of the matrix arrays.Criteria for the data distribution can be: each processor gets the same numberof rows or so many rows that each processor has nearly the same number of non-zeros. The number of operations for the computation of the matrix-vector productis proportional to the number of non-zeros; the remaining vector operations ofone iteration are proportional to the number of rows. Another criterion is thateach processor has to compute nearly the same number of operations. If thediscretization mesh is regular, i.e. the sparsity pattern of the coe�cient matrix isregular, all three criteria result in nearly the same data distribution. If the meshis very irregular, the three distributions di�er considerably.The �rst case, i.e. each processor gets nearly the same number of rows, willbe explained in (5) by distributing the array aw from (4) to four processors. Thedistribution of the remaining arrays ensues analogously.Processor 0: aw0 = (1 j 9 2)Processor 1: aw1 = (10 9 3 j 10 4 18 14 12 11) (5)Processor 2: aw2 = (11 5 17 j 15 14 6)Processor 3: aw3 = (12 17 7 15 j 18 8)

4 PARALLELIZATION 7In the second case, aw is distributed according to the criterion "each processorgets the same number of non-zeros", see (6).Processor 0: aw0 = (1 j 9 2 j 10 9 3)Processor 1: aw1 = (10 4 18 14 12 11) (6)Processor 2: aw2 = (11 5 17 j 15 14 6)Processor 3: aw3 = (12 17 7 15 j 18 8)In the third case, i.e. each processor has to compute nearly the same number ofoperations, processor k; k = 0; : : : ; p� 1, gets so many rows untilek + �nke+ �n � 1p ; for ek; nk � 10 (7)is satis�ed for the �rst time, i.e. for the least number of rows possible. Therow distribution is determined by analyzing the array az. p is the number ofthe processors used, ek the number of non-zeros, and nk the number of rows ofprocessor k. e is the total number of non-zeros and n the order of the matrix. Theparameter � considers the number of vector operations except the operations ofthe matrix-vector product and the ratio of the execution times of multiplication,division etc. operations and the addition operation; it is therefore dependent onthe processor architecture. The numerator in (7) is proportional to the number ofoperations of one partial iteration on processor k, the denominator is proportionalto the total number of operations of one iteration. It shall be remarked that for� ! 0 each processor gets nearly the same number of non-zeros and for � !1nearly the same number of rows. The �rst case means that the execution time ofall vector-vector operations is neglectable compared with the execution time ofthe matrix-vector product. In the second case, the excution time of the matrix-vector product hardly contributes to the total execution time.With these considerations, the contribution of the matrix-vector product toone iteration can be approximated byaMVP � ee+ �n = 11 + �=mz ; for e; n� 10: (8)mz = e=n is the mean number of non-zeros per row. Additionally, (8) provides ameans for measuring �. If aMVP is determined by timings an approximation of �can be computed by � � mz(1aMVP � 1): (9)On the INTEL i860XR, the timings result in an approximative value � ofabout 8.3 for the considered CG method.The data distribution according to criterion (7) is shown in (10) by distribut-ing the array aw to four processors.

4 PARALLELIZATION 8Processor 0: aw0 = (1 j 9 2 j 10 9 3);Processor 1: aw1 = (10 4 18 14 12 11 j 11 5 17); (10)Processor 2: aw2 = (15 14 6 j 12 17 7 15);Processor 3: aw3 = (18 8):4.2 Communication SchemeOn a distributed memory system, the computation of the matrix-vector productrequires communication because each processor owns only a partial vector. Forthe e�cient computation of the matrix-vector product, it is necessary to developa suitable communication scheme by preprocessing the distributed column indexarrays.First, the arrays ask are analysed on each processor k to determine which dataresult in accesses to components of di of other processors. Then, ask and awk arereorderd in such a way that the data which result in accesses to processor h arecollected in block h. The data of block h succeed row-wise one another withincreasing column index per row. Block k is the �rst block in ask and awk andcontains the data which result in local accesses. The goal of the reordering isperforming computation and communication overlapped.The principle of the �rst reordering scheme is shown in (11) for the datadistribution from (10) and the matrix-vector product Adi from algorithm 2.1.A second reordering and communication scheme will be discussed below. Here,merely array as1 is analysed and reordered.Processor 0: as0 = (1 j 3 2 j 4 2 3); di;0 = (d1i d2i d3i)Processor 1: as1 = (3 4 8 6 7 5 j 4 5 7); di;1 = (d4i d5i)Processor 2: as2 = (7 4 6 j 4 5 7 6); di;2 = (d6i d7i) (11)Processor 3: as3 = (4 8); di;3 = (d8i)Reordering: as1 = (4 5 j 4 5| {z }1 k 3|{z}0 k 6 7 j 7| {z }2 k 8|{z}3)Computing the operation row times vector of the matrix-vector product ofprocessor 1, the index 3 results in an access to component d3i of processor 0,the index 8 to d8i of processor 3, and the indices 6 and 7 in accesses to d6i andd7i of processor 2. The data blocks in (11) are separated by double dashes forelucidation; the blocks have been numbered below the brackets. After reordering,the data of block 1 result in local accesses, the data of block 0 in accesses toprocessor 0, the data of block 2 in accesses to processor 2, and the data of block3 in accesses to processor 3.

4 PARALLELIZATION 9
3

0

2

1

4

6 74 5

3

8

4
: Processor k

: Index j of a
 vector component

k

jFigure 2: Communication scheme, reordering 1After having analysed the column index array ask, each processor k knowswhich components of di must be required of which processors. This informationis broadcasted to all processors. Two variants have been investigated. First, theminimum and maximum index of the required components are sent; in this scope,there can be indices of components which are not needed. Second, all indices ofthe requisite components are sent. Thereafter, each processor can decide whichdata must be sent to which processors. This communication scheme is determinedonce before starting the parallel CG algorithm and applies unchanged to eachiteration.The communication scheme for the example discussed above is displayed in�gure 2.Processor 1 e.g. receives the third component of di from processor 0, thesixth and seventh component from processor 2 and the eighth component fromprocessor 3. On the other side, the fourth component of processor 1 is sent toprocessor 0, the fourth and �fth to processor 2 and the fourth to processor 3.In �gure 3, the parallel computation of the matrix-vector product is describedfor algorithm 2.1.First, on each processor, the data which are necessary for other processors aresent asynchronously. After having executed asynchronous receive-routines forreceiving non-local data, all local computations are performed, in particular thelocal part of the matrix-vector product. Then each processor waits until the dataof an arbitrary processor arrive and continues the computation of the matrix-vector product. Thereafter, each processor awaits the data of other processorsuntil the computation of the matrix-vector product is complete. Computationand communication are performed overlapped. While required data are on thenetwork, operations with local or already arrived data of other processors areexecuted.In the second reordering scheme, the data blocks, built as discussed before,are sent to the processors which own the corresponding components of the vector

4 PARALLELIZATION 10
Sending the data which are necessary for other processors,

asynchronously

Receiving non-local data for the
matrix-vector product, asynchronously

Local vector-vector operations

Computing the matrix-vector product with local data

k=0 1 p-1...

Matrix-vector product with the data of the processor

? ? ?

Data of a processor available?
no no no

yes yes yes

? ? ?

Computation complete?
no no

yes yes yes

noFigure 3: The parallel matrix-vector product, reordering 1of the matrix-vector product. The goal is to increase the number of local com-putations while required data are on the network. In this case, the processorscompute partial results of the result vector of the matrix-vector product. Then,yk;l denotes the partial result of yk = Akdi of processor k which is computed onprocessor l. After the computation, the partial results except the local one aresent to the corresponding processors and then are added to the local result of thereceiving processor.The new distribution of the matrix data is presented in (12).The �rst number of the blocks in (12) denotes the processor to which thepartial result is sent; the second number indicates the processor on which thecomputation is performed. Processor 1 e.g. computes the local result y1;1 withthe �rst block, the partial result y0;1 of processor 0 with the second block, thepartial result y2;1 of processor 2 with the third block, and the partial result y3;1of processor 3 with the fourth block, respectively.

4 PARALLELIZATION 11
3

0

2

1

3

1 21 2

1

1

1
: Processor k

: Index j of a
 vector component

k

jFigure 4: Communication scheme, reordering 2Processor 0: as0 = (1 j 2 3 j 2 3| {z }0;0 k 3|{z}1;0); di;0 = (d1i d2i d3i)Processor 1: as1 = (4 5 j 4 5| {z }1;1 k 4|{z}0;1 k 4 j 4 5| {z }2;1 k 4|{z}3;1); di;1 = (d4i d5i)Processor 2: as2 = (6 7 j 6 7| {z }2;2 k 6 7 j 7| {z }1;2); di;2 = (d6i d7i) (12)Processor 3: as3 = (8|{z}3;3 k 8|{z}1;3); di;3 = (d8i)Figure 4 shows the communication scheme for the block distribution from(12).Processor 1 e.g. sends a value to processor 0 which must be added to the thirdcomponent of y0. On the other side, processor 1 receives a value from processor0 which must be added to the �rst component of y1.In �gure 5, the parallel computation of the matrix-vector product is presentedfor the second reordering and communication scheme.First, asynchronous receive-routines for receiving all neccessary partial resultsof other processors are executed on each processor. After that, each processorcomputes the partial results which are sent to other processors. The compu-tation is performed per data block; the results are asynchronously sent to thecorresponding processors after each computation. Then, all local computationsare performed, in particular the computation of the local part of the matrix-vector product. Thereafter, each processor waits until the data of an arbitraryprocessor arrive and then adds the values to the corresponding components of thelocal result. This is repeated until the computation of the matrix-vector productis complete. Computation and communication are performed overlapped.

4 PARALLELIZATION 12
Local vector-vector operations

Computing the local partial result

k=0 1 p-1...

Adding the values to the local partial result

? ? ?

Data of a processor available?
no no no

yes yes yes

? ? ?

Computation complete?
no no

yes yes yes

no

? ? ?

? ? ?

Computing a partial result of another processor

Sending the partial result, asynchronously

Receiving all neccessary non-local partial results, asynchronously

Are there data-blocks of other
processors?

Processing of all data-blocks of other proc.
yes yes yes

yes yes yesno no no

nono no

complete?

k=0 1 p-1...

Figure 5: The parallel matrix-vector product, reordering 2Since partial results of the matrix-vector product are exchanged most com-putations are local. Merely the summation of the partial results follows afterthe receiving of non-local data. The disadvantage of this method is that loadbalancing is not guaranteed any more after the new distribution of the blocks;some processors can own more or larger data blocks than other ones. However,this scheme allows arbitrary data distributions; each processor can get arbitraryparts of arbitray rows which need not succeed one another. For a speci�c FEapplication, suitable data distributions for this scheme can be found consideringthe discretization mesh. The data distribution and the communication schemepresented here do not require any knowledge about a speci�c discretization mesh;the schemes are determined automatically by analysing the column indices of thenon-zero matrix elements.

5 RESULTS 135 ResultsThe numerical and performance tests of the developed parallel CG methods havebeen performed on the distributed-memory system iPSC/860 of the ResearchCentre J�ulich. The INTEL computer system has 32 processors with 16 Megabyteprivate memory each interconnected by a hypercube-network. The maximumtransfer rate is 2.8 Megabyte/second per channel in both directions.5.1 Numerical ResultsThe tests presented here have been carried out with one equation system eachof the FE models from environmental science and structural mechanics. In table1, numerical data of the coe�cient matrices and for the convergence of the CGmethod are indicated. Environmental science Structural mechanicsRows 49392 25222Non-zeros 1242814 3856386Density 0.05% 0.6%Non-zeros per row, max. 27 485mz 25.2 152.9aMVP 75% 95%CG method: max. scal. abs. di�. � 10�5Iterations without scaling 390 1444Iterations with scaling 84 658kgi+1k2 4:5 � 10�4 1:5� 10�5Table 1: Numerical data of the considered large sparse matricesThe matrix from environmental science has 49392 rows, that from structuralmechanics 25222. In the �rst case, the mean number of non-zeros per row is nearthe maximum number. This is caused by a regular discretization mesh. For thesecond case, the mean and the maximum number are considerably di�erent; thediscretization mesh is much more irregular. The operational contribution of thematrix-vector product to one iteration is 75% for the matrix from environmentalscience and 95% for the matrix from structural mechanics.Below in table 1, the number of CG iterations with and without diagonalscaling is given. The iteration has been stopped when the maximum scaledabsolute di�erence from (1) has been less than or equal to 10�5; this correspondsto a precision of the solution vector of about �ve decimals. With diagonal scaling,the number of iterations is considerably smaller in both cases. The contribution

5 RESULTS 14of this preconditioner to the total execution time is in both cases below 1%. Forthe preconditioned method, the euclidean norm of the residue after 84 and 658iterations, respectively, is given in addition.The sparsity patterns of both matrices are shown in the �gures 6 and 7,respectively.The matrix from environmental science has essentially band structure with amaximumbandwidth of 2375. The matrix from structural mechanics has a muchmore irregular structure; the maximum bandwidth is 3474.By reducing the bandwidth of the matrices, the communication overhead ineach iteration of the CG method can be decreased. Since communication isnecessary for the operation row times vector of the matrix-vector product, asmaller bandwidth results in smaller message length or even in communicationwith fewer processors. Here, the matrix is reordered by the reverse Cuthill-McKee(RCM) scheme [16]. In FE models, this scheme is frequently used for the assemblyof the coe�cient matrix; it is performed merely once if the mesh does not change,whereas in many cases equation systems are frequently solved, e.g. in each timestep of a time dependent problem or in each iterative step of a nonlinear problemwhich is solved by linearization.In the �gures 8 and 9, the sparsity patterns of both matrices with bandwidthreduction are presented.For the matrix from environmental science, the bandwidth is reduced by 45%;the maximum bandwidth is 1303. The maximum bandwidth of the matrix fromstructural mechanics after applying the reverse Cuthill-McKee scheme is 2989;this is a reduction by merely 14%.5.2 Performance ResultsIn the �rst four investigations, bandwidth reduction has not been applied to thematrices.Figure 10 shows execution times per iteration of the parallel CG method forboth the presented storage schemes using 16 processors. In this investigation,each processor has got nealy the same number of succeeding rows.The execution times in �gure 10 hardly di�er for the storage schemes in 2-dimensional and 1-dimensional arrays. The times for the scheme in 1-dimensionalarrays are slightly increased since in this case a third array is neccessary foraddressing; the costs for accessing the matrix elements are higher compared withthe scheme in 2-dimensional arrays. The storage requirement, however, is about147 Megabyte for the matrix from structural mechanics using the storage schemein 2-dimensional arrays and merely 47 Megabyte using the storage scheme in1-dimensional arrays. This is caused by a very di�erent number of non-zerosper row of this matrix. For the matrix from environmental science, the storagerequirement is 17 Megabyte in the �rst and 16 Megabyte in the second case.The number of non-zeros per row is the same for most rows. Because of the less

5 RESULTS 15
Figure 6: Sparsity pattern of the matrix from environmental science

Figure 7: Sparsity pattern of the matrix from structural mechanics

5 RESULTS 16
Figure 8: Sparsity pattern of the matrix from environmental science with band-width recuction

Figure 9: Sparsity pattern of the matrix from structural mechanics with band-width recuction

5 RESULTS 17
Figure 10: Execution times per iteration, di�erent storage schemes, 16 processorsstorage requirements, the storage scheme in 1-dimensional arrays is applied in allfollowing measurements.In �gure 11, execution times per iteration on 32 processors are presented forthe three considered data distributions.For the matrix from environmental science, the execution times are nearlythe same because the matrix has quite a regular structure. For the matrix fromstructural mechanics, the execution times using the criteria "same number ofnon-zeros" and "same number of operations" are reduced by 19% compared withthe time using the criterion "same number of rows". Because of the very di�erentnumber of non-zeros per row, the operations for the computation of the matrix-vector product are not uniformly distributed to each processor applying the lattercriterion. The times for the criteria "same number of non-zeros" and "samenumber of operations" are nearly the same since the contribution of the timefor computing the matrix-vector-product to the total time for one iteration is95%. In all following investigations, the criterion "same number of operations"is applied.Figure 12 shows execution times per iteration on 32 processors for di�erentcommunication schemes.In the �rst case, the vector components of the vector of the matrix-vectorproduct from the minimum to the maximum index which have been determinedby analysing the column index array are sent. In the second case, only the com-ponents which are necessary for the computation are delivered as packed list, andin the third case, the components of partial results of the matrix-vector productare sent, also as packed list. For the matrix from environmental science, using

5 RESULTS 18
Figure 11: Execution times per iteration, di�erent data distributions, 32 proces-sors
Figure 12: Execution times per iteration, di�erent communication schemes, 32processors

5 RESULTS 19
Figure 13: Execution times per iteration, CG method, 32 processorscase 2 reduces the time by about 23% compared with case 1 and by about 9%for the matrix from structural mechanics. This indicates that in case 1 consider-ably more components than necessary are sent. Case 3 does not result in furtherimprovement. On the contrary, the time increases for the matrix from structuralmechanics. Because of the irregular structure of this matrix, the new distributionof the data blocks destroys the load balancing. In the following investigations,the communication scheme according to case 2 is applied since the best resultshave been achieved with this scheme for the considered matrices.In �gure 13, execution times per iteration on 32 processors with and with-out communication and computation performed overlapped are presented. Theoverlapped execution reduces the execution times by nearly 20%.In �gure 14, speedups on 4 to 32 processors are shown with and withoutbandwidth reduction of the matrices. The equation system from environmentalscience together with the program code and the remaining data requires thememory of more than two processors, that from structural mechanics the memoryof more than four processors. For up to four and, in the second case, up toeight processors, linear speedup was assumed because nearly linear speedup wasobserved in tests with smaller systems of equations for up to 8 processors.For 16 processors and without bandwidth reduction, the speedup is 13.2 inthe �rst case and 15.2 in the second case. This corresponds to e�ciencies of 83%and 95%. With bandwidth reduction, the speedups increase to 14.6 and 15.6,respectively; the e�ciecies are 91% and 97%. For 32 processors, speedups of 21.6and 27.2 without bandwidth reduction or of 24.8 and 28.5 with bandwidth reduc-tion are achieved. The e�ciencies decrease to 68% and 85% without bandwidth

6 CONCLUSIONS 20
Figure 14: Speedups, CG methodreduction or 78% and 89% with bandwidth reduction because the communicationoverhead increases.6 ConclusionsThe developed parallel CG algorithms have been shown to be well suited for theconsidered large sparse matrices from FE models; they are employed in both theprojects from environmental science and structural mechanics. On a distributedmemory system, the data distribution and communication scheme determinedby preprocessing together with the overlapped execution of communication andlocal computations result in exible algorithms. These algorithms perform wellfor large sparse matrices of very di�erent sparsity patterns.Bandwidth reduction decreases the communication overhead additionally; ap-plying reordering schemes like the reverse Cuthill-McKee method is recommendedfor FE models.In current investigations, other data distributions and other storage schemesfor sparse matrices and their inuence on the communication scheme are testedas well as polynomial preconditioning [3] [13] as convergence accelerator. Thispreconditioner allows using the same parallelization strategies as described for theCG algorithm in this report. Furthermore, the applicability of these principlesto the QMR algorithm for solving non-hermitian systems of linear equations [9]will be investigated.Moreover, further research is scheduled to parallelize the Lanczos algorithm

REFERENCES 21for solving large sparse symmetric eigenproblems, which has a deep theoreticalconnection to the CG method [6]. The Lanczos algorithm requires essentiallythe computation of matrix-vector products and the determination of eigenvaluesand eigenvectors of symmetric tridiagonal matrices. A parallel solver for deter-mining all eigenvalues of large real symmetric tridiagonal matrices has alreadybeen developed [5]. For determining the eigenvectors of the tridiagonal matrices,inverse iteration is a suitable method and can be done perfectly in parallel if thecorresponding eigenvalues are known.References[1] 3DFEMWATER: a three-dimensional �nite element model of water owthrough saturated-unsaturated media. Oak Ridge National Laboratory.ORNL-6386, 1987[2] SMART, Benutzerhandb�ucher. Institut f�ur Statik und Dynamik der Luft-und Raumfahrtkonstruktionen der Universit�at Stuttgart. ISD-Berichte,1976-1992.[3] S.F. Ashby. Minimax polynomial preconditioning for hermitian linear sys-tems. SIAM J. Matrix Anal. Appl., 12:766{789, 1991.[4] C. Aykanat, F. �Ozg�uner, D.S. Scott. Vectorization and parallelization ofthe conjugate gradient algorithm on hypercube-connected vector processors.Microprocessing and Microprogramming, 29:67{82, 1990.[5] A. Basermann, P. Weidner. A parallel algorithm for determining all eigen-values of large real symmetric tridiagonal matrices. Parallel Computing,18:1129{1141, 1992.[6] J.K. Cullum, R.A. Willoughby. Lanczos Algorithms for Large SymmetricEigenvalue Computations. Volume I: Theory, Birkh�auser, Boston BaselStuttgart, 1985.[7] N. Feistl. Das Verfahren der konjugierten Gradienten auf Vektorrechern.Diplomarbeit, Ludwig-Maximilians-Universit�at, M�unchen, Juli 1990.[8] P. Fernandes, P. Girdinio. A new storage scheme for an e�cient implemen-tation of the sparse matrix-vector product. Parallel Computing, 12:327{333,1989.[9] R.W. Freund, N.M. Nachtigal. QMR: a quasi-minimal residual method fornon-Hermitian linear systems. Numerische Mathematik, 60:315{339, 1991.

REFERENCES 22[10] M.R. Hestenes, E. Stiefel. Methods of conjugate gradients for solving linearsystems. Journal of Research of the National Bureau of Standards, 49:409{436, 1952.[11] C.P. Kruskal, L. Rudolph, M. Snir. Techniques for parallel manipulation ofsparse matrices. Theoretical Computer Science, 64:135{157, 1989.[12] O.A. McBryan, E.F. Van de Velde. Matrix and vector operations on hyper-cube parallel processors. Parallel Computing, 5:117{125, 1987.[13] J.M. Ortega. Introduction to Parallel and Vector Solution of Linear Systems.Plenum Press, New York London, 1988.[14] S. Pissanetsky. Sparse Matrix Technology. Academic Press, London Orlando,1984.[15] U. Schendel. Sparse-Matrizen. R. Oldenbourg Verlag, M�unchen Wien, 1.Auage, 1977.[16] H.R. Schwarz. FORTRAN-Programme zur Methode der �niten Elemente. B.G. Teubner, Stuttgart, 1981.[17] H. Vereecken, G. Lindenmayr, A.Kuhr, D.H. Welte, A. Basermann. Numer-ical modelling of �eld scale transport in heterogeneous variably saturatedporous media. KFA/ICG-4 Internal Report No. 500393, January 1993.

