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Calculation of the Potential Distribution
for a Three-Layer Spherical Volume
Conductor

Zhao Shuang-Ren', Johannes Grotendorst®, and Horst Halling®

Introduction

Electroencephalography (EEG) and magnetoencephalography (MEG) are non-invasive
methods of studying the functional activity of the human brain with millisecond temporal
resolution. Much of the work in EEG and MEG in the last few decades has been focused on
estimating the properties of the internal sources of the fields from the external measurements,
i.e. on solving the inverse problem of EEG and MEG. To handle this task one must first study
the forward problem, i.e. how the fields arise from a known source. For practical purposes,
one also has to choose appropriate models for the source and the head as a conductor. The
most straightforward model for describing the surface evoked potential or the external evoked
magnetic field is the single equivalent current dipole. In EEG models the volume conductor
properties of the head are commonly modelled by three or four concentric spherical shells with
different electrical conductivities representing the brain, the cerebrospinal fluid, the skull, and
the scalp [1-2]. While more accurate geometric models have been applied, such asymmetric
models are limited in accuracy by knowledge of boundaries and resistivities of various tissues.
In this article we consider a three-layer spherical volume conductor model and calculate the
dipole-induced potential by analytical methods. This calculation requires the symbolic solution
of a system of linear equations which is not complicated but that would be a pain when done
by pencil and paper [1-3]. We use Maple for setting up the system of model equations, solve it
symbolically, and then generate numerical code to obtain a fast program for the evaluation of
the potential. Finally, the dipole-envoked electric potential is plotted for realistic EEG model
parameters.

The intention of this interdisciplinary application is to illustrate how Maple can be used
as an integrated working environment for investigating mathematical models as they occur in
brain research.

Mathematical Model

Suppose ||r|| = a,b,c define three concentric spherical surfaces with 0 < a < b < ¢ < oo.
We consider a current dipole with moment Q inside of surface ||r|| = a, i.e. we assume rg =
lrg|| < a for the dipole position vector rq. The potential distribution U(r) created by this
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Figure 1: Three-layer spherical model of the head. The inner sphere represents the brain (a);
the successive layers represent the skull (b) and the scalp (c). The dipole is on the z axis of the
EEG coordinate system.

dipole is described by the Poission equation
Q Q
VU(r)=ve(—d(rrq)) = — evi(r rq) (1)
(s (s

and the Laplace equation

v2U(r) = 0. (2)

In Eq. (1) é(r) is the Dirac delta funtion, 57 the gradient operator and o denotes the conduc-
tivity in the sphere ||r|| < a. For solving these equations we consider the special case of a dipole
located on the z axis and a moment vector Q which lies in the z-z plane (see Fig. 1). The
multipole expansion for the electric potential in a volume conductor then yields the following
formal solution [1]:

U(r) = Up(r)+Us(r), 0<|r| <a,
= Upy(r), a < ||r]| < b,
= U.(r), b<|r| <e,
= Uy(r), e < |lr|| < oo, (3)
where
Uo(r) = Uzo(r) + Uze(r) (4)
with
= 0 Pt
Uso(r) =3 =2 7 Pl (cos(6))cos(9), (5)
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and
oo -1
Q. Ir
Uz(r) = ; i P;(cos(6)), (6)
is a special solution of the Poission equation inside of the sphere ||r|| = a and
Ur(r) = > A{(r)f(6,¢), I=a,bc,d, (7)
=1
with
£(6,¢) = Pl(cos(f))cos(¢) for the z component of Q
R PP(cos(f)) for the z component of Q

represent the series solutions of the Laplace equation in the various regions, assuming that the
asymptotic behavior of the potential is given by U(r) — 0 as ||r|| — co. Here, @ is the vertical
component and @, the parallel component of the dipole moment Q with respect to the z axis,
(r,8, ¢) denote the spherical coordinates of the position vector r, and P*(u) stands for an
associated Legendre polynomial. The coefficients A{(r), I —=a,b,c,d, are so far undetermined.
If the dipole is not on the z axis, we first transform the coordinate system, and then calculate the
potential with respect to a new coordinate system (z_new,y_new, z_new) in which the dipole
is on the z_new axis. The coefficients will be determined by applying the boundary conditions
that the potential and current flow must be continuous across the boundaries between regions
of different conductivity. The electrical conductivities in the various regions are denoted by o¢
for ||r|| < a, o1 for a < ||r]| < b, 02 for b < ||r|| < ¢, and o3 for ¢ < ||r|| < oo.

Calculating the Potential distribution

In this section we give the analytical evaluation for the potential U produced by the x
component (), of the dipole moment Q. The calculation for the potential created by the z com-
ponent (), is done in a similar way. Let a_P(l, n, u) denote a so far undefined Maple procedure
for calculating the associated Legendre polynomials P/*(u). Then, we have the following series
solutions for the potential U in the various regions:

> Ux[0]:=Sum(Q[x]/(4*Pi*sigmal0])*rQ~(1-1)/r~(1+1)*a_P(1,1,cos(theta))*cos(phi),
> 1=1..infinity);
Uzg i— i (l Q. rQ(t-1) a_P(1,1,cos(8)) cos( gb))
— \4 T o r(i+1)

fulfills the Poisson equation. The potential which satisfies the Laplace equation inside of the

spherical surface ||r|| = a is given by

> Ux[a]:=Sum(A[1]*r~1*a_P(1,1,cos(theta))*cos(phi),1=1..infinity);

Uz, :— Z Aprt a_P(l,1,cos(0))cos(¢)
=1
The coefficients 4;,1 > 1, are so far unspecified. For the potential between the two spherical
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surfaces ||r|| = a and ||r|| = b we have
> Ux[b]:=Sum((B[1]/r~ (1+1)+C[1]1*r-1)*a_P(1,1,cos(theta))*cos(phi),1l=1..infinity);

> B
Uzy := ZE: (WTll) +C rl) a_P(l,1,cos(6))cos(¢)
=1

Here, B; and C} are undetermined coefficients. For the potential between the two spherical
surfaces ||r|| = b and ||r|| = ¢ holds
> Ux[e]:=Sum((D[1]/xr" (1+1)+E[1]*r-1)*a_P(1,1,cos(theta))*cos(phi),1l=1..infinity);
Uz, := ZZ; (r(l—+1) + E; rl) a_P(l,1,cos(8))cos(¢)

Again, D; and F; denote undetermined coefficients. The potential outside of the spherical
surface ||r|| = ¢ is given by
> Ux[d] := Sum((F[1]1/r"(1+1))*a_P(1l,1,cos(theta))*cos(phi), 1=1..infinity);

> FraP(l,1,cos(8))cos( o)
Uzgy ::Z (51

=1

F;,1 > 1, are coefficients to be found. Inside of the surface ||r|| = a the potential is Uy + U,,
between the surfaces ||r|| = a and ||r|| = b the potential is U, and on the surface |r|| = a
the potential should be continuous, i.e. Uy + U, = Uy should hold, which in turn leads to the
following equation for the terms of the corresponding infinite series representations:

> eqn_a := collect(op(1, Ux[0]) + op(1, Ux[al) = op(1, Ux[b]),
> [a_P(1,1,cos(theta)),cos(phi)l);

4 7 ogr(l+l)

~O(-1)
eqn_a :— (l QrQ@ - + Aj rl) cos(¢p)aP(l,1,cos(0)) =

B,
(r(lTl) +Ci Tl) a_P(l,1,cos(6))cos(¢)
Simplifying and then substituting » = a yields the first relation for the coefficients of the
infinite series.

> eqn_a_0 :
> eqn_a_1 :

simplify(eqn_a/(a_P(1l,1,cos(theta))*cos(phi)), power):
subs(r=a, eqn_a_0);

1 Qz ’I'Q(lil) a( —1-1)
Z oo

The current perpendicular to the surface ||r|| = a should be continuous also, i.e. the potential
should satisfy 0'0%(U0(r) +Ua(r))(a) = 0'1%(Ub(r))(a), which leads to the next relation for the
coefficients.

—I—Alal = Bla(ilil) —I—Clal

eqn_a_1 :=

> eqn_a_2 := simplify(subs(r=a, sigmal[0]*diff(lhs(egqn_a 0), r)=
> sigmal1]*diff(rhs(eqn_a _0), r)), power);

lQm ’I'Q(lil)a(iliz)(*l* 1)

4 T O

eqn_a_2 :— oy ( + A; ali-1) l) =

o1 (Bl al1-2) (-1-1)+ Cyalt-1) l)
On the surface ||r|| = b the boundary condition for the potential, U, = U,, gives the equations
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> eqn_b := op(1, Ux[bl) = op(1, Ux[cl);
B
eqn_b :— (T(ITZI) + rl) aP(l,1,cos(0))cos(¢d) =
Dy 1
T(ZTI)—I—EZT a_P(l,1,cos(6))cos(¢)

simplify(eqn_b/(a_P(1l,1,cos(theta))*cos(phi))):
subs (r=b, eqn_b_0);

eqn_b_1 = B (1) L ot = pypl) 1 B
The current perpendicular to the surface ||r|| = b satisfies the boundary condition

01;7(Ub(r))(b) = 0'2%(Uc(r))(b) which results in the following condition for the coefficients
of the series solutions:

> eqn_b_0
> eqn_b_1 :

> eqn_b_2 := simplify(subs(r=b, sigmal[1]*diff(lhs(egqn_b_0), r)=
> sigmal[2]*diff(rhs(eqn_b_0), r)), power);

eqnb 2 :=oy (Brbl ") (—1 - 1)+ Cp11) =

oy (Dbl %) (—1— 1) + Eb(-1)1)

The boundary conditon for the surface ||r|| = ¢, given by U, = Uy, implies the following
conditional equations for the coefficients of the corresponding infinite series:
> eqn_c := op(1, Uxl[ecl) = op(1, Ux[d]);

D
eqn_c :— (WTll) + E; rl) aP(l,1,cos(0))cos(¢p) =
FaP(l,1,cos(0))cos(¢)
p(I+1)

simplify(eqn_c/(a_P(1,1,cos(theta))*cos(phi))):
subs (r=c, eqn_c_0);

eqn—c—l = Dl C( 7l71) + El Cl = E c( 7l71)
Finally, the boundary condition for the current perpendicular to the surface ||r|| = e,
02;7(UC(7'))(C) = UB%(Ud(r))(c), gives the last relation for the coeflicients of the infinite series

> eqn_c_0
> eqn_c_1 :

representations.

> eqn_c_2:=simplify(subs(r=c, sigma[2]*diff(1lhs(eqn_c_0), r)=
> sigmal[3]*diff(rhs(eqn_c_0), r)), power);

eqn_c_2 :— oy (ch(flfz) (-1-1)+FE 1) l) — o3 Fyel172) (-1-1)
Now, solving the linear equations eqn_a_l1,eqn_a_2,eqn_b_1,eqn_b2,eqn_c_1,eqn_c_2 we obtain

the coefficients Fj,l > 1, needed for the evaluation of the potential Uz .

> coeff_x := solve({eqn_a_1,eqn_a 2,eqn_b_1,eqn_b_2,eqn_c_1,eqn_c_2},
> {af1]1, BI1]1, c[1]1, p[1]l, E[1], F[11}):

> F[1] := subs(coeff_x, F[1]):

Next, we evaluate the potential produced by the current dipole (), outside of the surface
|lr|| = ¢ numerically. To obtain a fast numerical routine the Maple code for the coefficients
Fj in the series representation of Uz can be translated into optimized C or FORTRAN code.
Moreover, the Maple packages MacroC [4] and Macrofort [5], available from the share library,
allow an automatic generation of complete and ready-to-compile programs for the evaluation
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of the potential Uz, (see Ref. [6] for an example). A convergence criterion for determining the
required number of terms to achieve a prescribed accuracy is discussed in Ref. [7]. Here, we
use the first 10 terms of the infinite series representation to get numerical values for plotting

purposes.
> Ux[d] := ’sum(F[1]1/r~(1+1) * ’a_P(1, 1, cos(theta))’*cos(phi), 1=1..10)°;
10 ’ 1]
F'aP(l,1,cos(8)) cos(¢)
Umd = ZZ; r(l—l—l)

The expression for Uz, depends on the parameters rQ, r, a, b, ¢, 0g, 01, 02, 03,8, ¢, and Q. For
the evaluation of this expression we need a procedure for calculating the associated Legendre
polynomials.

> with(orthopoly, P):

> a_P := proc(n,m,x)

> local q;

> if m = 0 then P(n,q) else diff(P(n,q),q $ m) fi;
> sqrt(1-q~2) “mx*";

> subs(q = x,")

> end:

Next, we express the spherical angles 8 and ¢ of the postion vector r in terms of the cartesian
coordinates (z,y, z)

> theta := arccos(z/r); phi:= arctan(y, x);

0 := arccos (E)
r

¢ = arctan(y, z)
and introduce a function for inserting special values of the parameters r, a, b, ¢, 09, 01, 02, 73, Q 2,
and rQ.

> parameter := u -> subs(r=8.8e-2, a=8.1e-2, b=8.5e-2, ¢c=8.8e-2,
> sigmal0]=0.33, sigma[1]=4.2e-3, sigmal[2]=0.33, sigma[3]=0,
> Q[x]=10e-9, rQ=7.5e-2, u);

parameter := u — subs (r = .088,a = .081,b=.085,c = .088, 00 = .33,

o1 = .0042,05 = .33,05 = 0,Q, = .1010 7, rQ = .075, u)
The physical units used are m (meter) for the length, Am (A Ampere) for the dipole moment,
(Qm)~! (Q Ohm) for the conductivities o and V (Volt) for the potential. We select 10 nAm
(n = nano = 10~? ) as dipole intensity, the order of magnitude usually required to explain
the measured electric and magnetic field strengths outside of the head. In Figures 2 and 3 the
contour lines of the electric potential Uy = Uzg4 on the top half of the sphere with radius r = ¢
are plotted in the z-y plane (z = 0).
> U[d] := subs(z=sqrt(r-2-x"2-y~2), parameter(Ux[d])):

> r := parameter(c);

r:= .088

> plot3d(U[dl, x=-r..r, y=-sqrt(r"2-x"2)..sqrt(r"2-x"2),
> labels=[x, y, V], style=contour, contours=[-3e-06+i*0.25e-6 $ i=0..24],
> colour=white, orientation=[-90,0], grid=[48,48], axes=frame);
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Figure 2: Dipole-envoked potential on the upper hemnisphere of the outermost surface of a

three-layer spherical volume conductor model represented as contour map in the z-y plane.

The step between successive isopotential lines is 0.25 uV (u = micro = 1075).
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“0.’08 -0.06 -0.04 X

Figure 3: 3D contour map of the potential distribution shown in Fig. 2 (plot3d options used:

style=patchcontour, shading=zgreyscale). The dipole Q, near the skull layer generates a

potential that peaks roughly along the axis of the dipole moment.
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Conclusion

It has been shown how Maple can be used as a working environment for investigating
mathematical models in the field of electroencephalography (EEG). EEG is a non-invasive
method for estimating the location, orientation, and strength of current sources in the brain
from measurements of the electric potential on the surface of the head (inverse problem). This
estimation requires the solution of the forward problem, i.e., calculation of the electric potential
due to known current sources in a specified conducting volume. At present, most EEG studies
assume that the head is composed of spherical layers, each having a (different) constant value
of electrical conductivity. In this article the EEG forward problem is solved analytically for a
three-layer spherical model. Symbolic calculations are used for setting up the model equations,
for the analytical solution of a sytem of linear equations, and for code generation to obtain a fast
numerical program for the evaluation of the potential. Also, parametric studies using Maple’s
graphic capabilities are indicated. The applied computation technique is readily extended to
the four-layer model or the general n-layer model. A worksheet version of this article will be
available in the Maple share library.
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