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Calculation of the Potential Distributionfor a Three-Layer Spherical VolumeConductorZhao Shuang-Ren1, Johannes Grotendorst2, and Horst Halling3IntroductionElectroencephalography (EEG) and magnetoencephalography (MEG) are non-invasivemethods of studying the functional activity of the human brain with millisecond temporalresolution. Much of the work in EEG and MEG in the last few decades has been focused onestimating the properties of the internal sources of the �elds from the external measurements,i.e. on solving the inverse problem of EEG and MEG. To handle this task one must �rst studythe forward problem, i.e. how the �elds arise from a known source. For practical purposes,one also has to choose appropriate models for the source and the head as a conductor. Themost straightforward model for describing the surface evoked potential or the external evokedmagnetic �eld is the single equivalent current dipole. In EEG models the volume conductorproperties of the head are commonly modelled by three or four concentric spherical shells withdi�erent electrical conductivities representing the brain, the cerebrospinal 
uid, the skull, andthe scalp [1-2]. While more accurate geometric models have been applied, such asymmetricmodels are limited in accuracy by knowledge of boundaries and resistivities of various tissues.In this article we consider a three-layer spherical volume conductor model and calculate thedipole-induced potential by analytical methods. This calculation requires the symbolic solutionof a system of linear equations which is not complicated but that would be a pain when doneby pencil and paper [1-3]. We use Maple for setting up the system of model equations, solve itsymbolically, and then generate numerical code to obtain a fast program for the evaluation ofthe potential. Finally, the dipole-envoked electric potential is plotted for realistic EEG modelparameters.The intention of this interdisciplinary application is to illustrate how Maple can be usedas an integrated working environment for investigating mathematical models as they occur inbrain research.Mathematical ModelSuppose krk = a; b; c de�ne three concentric spherical surfaces with 0 < a < b < c < 1.We consider a current dipole with moment Q inside of surface krk = a, i.e. we assume rQ =krQk < a for the dipole position vector rQ. The potential distribution U(r) created by this1Institut f�ur Medizin, zhao@zelux8.zel.kfa-juelich.de2Zentralinstitut f�ur Angewandte Mathematik, j.grotendorst@kfa-juelich.de3Zentrallabor f�ur Elekronik, h.halling@kfa-juelich.deJ�ulich Research Centre (KFA), D-52425 J�ulich, Germany 1



Three-Layer Spherical Volume Conductor
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Figure 1: Three-layer spherical model of the head. The inner sphere represents the brain (a);the successive layers represent the skull (b) and the scalp (c). The dipole is on the z axis of theEEG coordinate system.dipole is described by the Poission equation52U(r) = 5 � (Q�0 �(r� rQ)) = Q�0 �5�(r� rQ) (1)and the Laplace equation 52U(r) = 0: (2)In Eq. (1) �(r) is the Dirac delta funtion, 5 the gradient operator and �0 denotes the conduc-tivity in the sphere krk < a. For solving these equations we consider the special case of a dipolelocated on the z axis and a moment vector Q which lies in the x-z plane (see Fig. 1). Themultipole expansion for the electric potential in a volume conductor then yields the followingformal solution [1]: U(r) = U0(r) + Ua(r); 0 < krk < a;= Ub(r); a < krk < b;= Uc(r); b < krk < c;= Ud(r); c < krk <1; (3)where U0(r) = Ux0(r) + Uz0(r) (4)with Ux0(r) = 1Xl=1 Qx4��0 rl�1Qrl+1P 1l (cos(�))cos(�); (5)2



Three-Layer Spherical Volume Conductorand Uz0(r) = 1Xl=1 Qz4��0 lrl�1Qrl+1 Pl(cos(�)); (6)is a special solution of the Poission equation inside of the sphere krk = a andUI(r) = 1Xl=1AIl (r)f(�; �); I = a; b; c; d; (7)with f(�; �) = ( P 1l (cos(�))cos(�) for the x component of QP 0l (cos(�)) for the z component of Qrepresent the series solutions of the Laplace equation in the various regions, assuming that theasymptotic behavior of the potential is given by U(r)! 0 as krk ! 1. Here, Qx is the verticalcomponent and Qz the parallel component of the dipole moment Q with respect to the z axis,(r; �; �) denote the spherical coordinates of the position vector r, and Pnl (u) stands for anassociated Legendre polynomial. The coe�cients AIl (r); I = a; b; c; d, are so far undetermined.If the dipole is not on the z axis, we �rst transform the coordinate system, and then calculate thepotential with respect to a new coordinate system (x new; y new; z new) in which the dipoleis on the z new axis. The coe�cients will be determined by applying the boundary conditionsthat the potential and current 
ow must be continuous across the boundaries between regionsof di�erent conductivity. The electrical conductivities in the various regions are denoted by �0for krk < a, �1 for a < krk < b, �2 for b < krk < c, and �3 for c < krk <1.Calculating the Potential distributionIn this section we give the analytical evaluation for the potential U produced by the xcomponent Qx of the dipole momentQ. The calculation for the potential created by the z com-ponent Qz is done in a similar way. Let a P(l; n; u) denote a so far unde�ned Maple procedurefor calculating the associated Legendre polynomials Pnl (u). Then, we have the following seriessolutions for the potential U in the various regions:> Ux[0]:=Sum(Q[x]/(4*Pi*sigma[0])*rQ^(l-1)/r^(l+1)*a_P(l,1,cos(theta))*cos(phi),> l=1..infinity);Ux0 := 1Xl=1  14 Qx rQ( l�1 ) a P( l; 1; cos( � ) ) cos(� )� �0 r( l+1 ) !ful�lls the Poisson equation. The potential which satis�es the Laplace equation inside of thespherical surface krk = a is given by> Ux[a]:=Sum(A[l]*r^l*a_P(l,1,cos(theta))*cos(phi),l=1..infinity);Uxa := 1Xl=1Al rl a P( l; 1; cos( � ) ) cos(� )The coe�cients Al; l � 1; are so far unspeci�ed. For the potential between the two spherical3



Three-Layer Spherical Volume Conductorsurfaces krk = a and krk = b we have> Ux[b]:=Sum((B[l]/r^(l+1)+C[l]*r^l)*a_P(l,1,cos(theta))*cos(phi),l=1..infinity);Ux b := 1Xl=1 � Blr( l+1 ) + Cl rl� a P( l; 1; cos( � ) ) cos(� )Here, Bl and Cl are undetermined coe�cients. For the potential between the two sphericalsurfaces krk = b and krk = c holds> Ux[c]:=Sum((D[l]/r^(l+1)+E[l]*r^l)*a_P(l,1,cos(theta))*cos(phi),l=1..infinity);Ux c := 1Xl=1 � Dlr( l+1) + El rl� a P( l; 1; cos( � ) ) cos(� )Again, Dl and El denote undetermined coe�cients. The potential outside of the sphericalsurface krk = c is given by> Ux[d] := Sum((F[l]/r^(l+1))*a_P(l,1,cos(theta))*cos(phi), l=1..infinity);Uxd := 1Xl=1 Fl a P( l; 1; cos( � ) ) cos(� )r( l+1 )Fl; l � 1; are coe�cients to be found. Inside of the surface krk = a the potential is U0+Ua,between the surfaces krk = a and krk = b the potential is Ub, and on the surface krk = athe potential should be continuous, i.e. U0 + Ua = Ub should hold, which in turn leads to thefollowing equation for the terms of the corresponding in�nite series representations:> eqn_a := collect(op(1, Ux[0]) + op(1, Ux[a]) = op(1, Ux[b]),> [a_P(l,1,cos(theta)),cos(phi)]);eqn a :=  14 Qx rQ( l�1 )� �0 r( l+1 ) + Al rl! cos(� ) a P( l; 1; cos( � ) ) =� Blr( l+1 ) + Cl rl� a P( l; 1; cos( � ) ) cos(� )Simplifying and then substituting r = a yields the �rst relation for the coe�cients of thein�nite series.> eqn_a_0 := simplify(eqn_a/(a_P(l,1,cos(theta))*cos(phi)), power):> eqn_a_1 := subs(r=a, eqn_a_0);eqn a 1 := 14 Qx rQ ( l�1 ) a(�l�1 )� �0 + Al al = Bl a(�l�1 ) + Cl alThe current perpendicular to the surface krk = a should be continuous also, i.e. the potentialshould satisfy �0 ddr (U0(r)+Ua(r))(a) = �1 ddr (Ub(r))(a), which leads to the next relation for thecoe�cients.> eqn_a_2 := simplify(subs(r=a, sigma[0]*diff(lhs(eqn_a_0), r)=> sigma[1]*diff(rhs(eqn_a_0), r)), power);eqn a 2 := �0  14 Qx rQ( l�1 ) a(�l�2 ) (�l � 1 )� �0 +Al a( l�1 ) l! =�1 �Bl a(�l�2 ) (�l� 1 ) + Cl a( l�1 ) l�On the surface krk = b the boundary condition for the potential, Ub = Uc, gives the equations4



Three-Layer Spherical Volume Conductor> eqn_b := op(1, Ux[b]) = op(1, Ux[c]);eqn b := � Blr( l+1 ) + Cl rl� a P( l; 1; cos( � ) ) cos(� ) =� Dlr( l+1 ) +El rl� a P( l; 1; cos( � ) ) cos(� )> eqn_b_0 := simplify(eqn_b/(a_P(l,1,cos(theta))*cos(phi))):> eqn_b_1 := subs(r=b, eqn_b_0);eqn b 1 := Bl b(�l�1 ) + Cl bl = Dl b(�l�1 ) + El blThe current perpendicular to the surface krk = b satis�es the boundary condition�1 ddr(Ub(r))(b) = �2 ddr (Uc(r))(b) which results in the following condition for the coe�cientsof the series solutions:> eqn_b_2 := simplify(subs(r=b, sigma[1]*diff(lhs(eqn_b_0), r)=> sigma[2]*diff(rhs(eqn_b_0), r)), power);eqn b 2 := �1 �Bl b(�l�2 ) (�l � 1 ) + Cl b( l�1 ) l� =�2 �Dl b(�l�2 ) (�l� 1 ) +El b( l�1 ) l�The boundary conditon for the surface krk = c, given by Uc = Ud, implies the followingconditional equations for the coe�cients of the corresponding in�nite series:> eqn_c := op(1, Ux[c]) = op(1, Ux[d]);eqn c := � Dlr( l+1 ) + El rl� a P( l; 1; cos( � ) ) cos(� ) =Fl a P( l; 1; cos( � ) ) cos(� )r( l+1 )> eqn_c_0 := simplify(eqn_c/(a_P(l,1,cos(theta))*cos(phi))):> eqn_c_1 := subs(r=c, eqn_c_0);eqn c 1 := Dl c(�l�1 ) + El cl = Fl c(�l�1 )Finally, the boundary condition for the current perpendicular to the surface krk = c,�2 ddr(Uc(r))(c) = �3 ddr (Ud(r))(c), gives the last relation for the coe�cients of the in�nite seriesrepresentations.> eqn_c_2:=simplify(subs(r=c, sigma[2]*diff(lhs(eqn_c_0), r)=> sigma[3]*diff(rhs(eqn_c_0), r)), power);eqn c 2 := �2 �Dl c(�l�2 ) (�l� 1 ) +El c( l�1 ) l� = �3 Fl c(�l�2 ) (�l� 1 )Now, solving the linear equations eqn a 1; eqn a 2; eqn b 1; eqn b 2; eqn c 1; eqn c 2 we obtainthe coe�cients Fl; l � 1, needed for the evaluation of the potential Uxd.> coeff_x := solve({eqn_a_1,eqn_a_2,eqn_b_1,eqn_b_2,eqn_c_1,eqn_c_2},> {A[l], B[l], C[l], D[l], E[l], F[l]}):> F[l] := subs(coeff_x, F[l]):Next, we evaluate the potential produced by the current dipole Qx outside of the surfacekrk = c numerically. To obtain a fast numerical routine the Maple code for the coe�cientsFl in the series representation of Uxd can be translated into optimized C or FORTRAN code.Moreover, the Maple packages MacroC [4] and Macrofort [5], available from the share library,allow an automatic generation of complete and ready-to-compile programs for the evaluation5



Three-Layer Spherical Volume Conductorof the potential Uxd (see Ref. [6] for an example). A convergence criterion for determining therequired number of terms to achieve a prescribed accuracy is discussed in Ref. [7]. Here, weuse the �rst 10 terms of the in�nite series representation to get numerical values for plottingpurposes.> Ux[d] := 'sum(F[l]/r^(l+1) * 'a_P(l, 1, cos(theta))'*cos(phi), l=1..10)';Ux d := 10Xl=1 Fl 0a P( l; 1; cos( � ) )0 cos(� )r( l+1 )The expression for Uxd depends on the parameters rQ; r; a; b; c; �0; �1; �2; �3; �; �, and Qx. Forthe evaluation of this expression we need a procedure for calculating the associated Legendrepolynomials.> with(orthopoly, P):> a_P := proc(n,m,x)> local q;> if m = 0 then P(n,q) else diff(P(n,q),q $ m) fi;> sqrt(1-q^2)^m*";> subs(q = x,")> end:Next, we express the spherical angles � and � of the postion vector r in terms of the cartesiancoordinates (x; y; z)> theta := arccos(z/r); phi:= arctan(y, x);� := arccos�zr�� := arctan( y; x )and introduce a function for inserting special values of the parameters r; a; b; c; �0; �1; �2; �3; Qx,and rQ.> parameter := u -> subs(r=8.8e-2, a=8.1e-2, b=8.5e-2, c=8.8e-2,> sigma[0]=0.33, sigma[1]=4.2e-3, sigma[2]=0.33, sigma[3]=0,> Q[x]=10e-9, rQ=7.5e-2, u);parameter := u! subs �r = :088; a = :081; b= :085; c= :088; �0 = :33;�1 = :0042; �2 = :33; �3 = 0; Qx = :10 10�7; rQ = :075; u�The physical units used are m (meter) for the length, Am (A Amp�ere) for the dipole moment,(
m)�1 (
 Ohm) for the conductivities � and V (Volt) for the potential. We select 10 nAm(n = nano = 10�9 ) as dipole intensity, the order of magnitude usually required to explainthe measured electric and magnetic �eld strengths outside of the head. In Figures 2 and 3 thecontour lines of the electric potential Ud = Uxd on the top half of the sphere with radius r = care plotted in the x-y plane (z = 0).> U[d] := subs(z=sqrt(r^2-x^2-y^2), parameter(Ux[d])):> r := parameter(c); r := :088> plot3d(U[d], x=-r..r, y=-sqrt(r^2-x^2)..sqrt(r^2-x^2),> labels=[x, y, V], style=contour, contours=[-3e-06+i*0.25e-6 $ i=0..24],> colour=white, orientation=[-90,0], grid=[48,48], axes=frame); 6
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Figure 2: Dipole-envoked potential on the upper hemnisphere of the outermost surface of athree-layer spherical volume conductor model represented as contour map in the x-y plane.The step between successive isopotential lines is 0.25 �V (� = micro = 10�6).
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Figure 3: 3D contour map of the potential distribution shown in Fig. 2 (plot3d options used:style=patchcontour, shading=zgreyscale). The dipole Qx near the skull layer generates apotential that peaks roughly along the axis of the dipole moment. 7



Three-Layer Spherical Volume ConductorConclusionIt has been shown how Maple can be used as a working environment for investigatingmathematical models in the �eld of electroencephalography (EEG). EEG is a non-invasivemethod for estimating the location, orientation, and strength of current sources in the brainfrom measurements of the electric potential on the surface of the head (inverse problem). Thisestimation requires the solution of the forward problem, i.e., calculation of the electric potentialdue to known current sources in a speci�ed conducting volume. At present, most EEG studiesassume that the head is composed of spherical layers, each having a (di�erent) constant valueof electrical conductivity. In this article the EEG forward problem is solved analytically for athree-layer spherical model. Symbolic calculations are used for setting up the model equations,for the analytical solution of a sytem of linear equations, and for code generation to obtain a fastnumerical program for the evaluation of the potential. Also, parametric studies using Maple'sgraphic capabilities are indicated. The applied computation technique is readily extended tothe four-layer model or the general n-layer model. A worksheet version of this article will beavailable in the Maple share library.AcknowledgmentsThe authors thank the referees for a number of valuable comments which improved thepresentation of this article.References[1] R. M. Arthur, D. B. Geselowitz: E�ect of Inhomogeneities on the Apparent Locationand Magnitude of a Cardiac Current Dipole Source, IEEE Trans. Biomed. Eng., 17, pp.141-146, (1970).[2] B. N. Cu�n and D. Cohen: Comparison of the Magnetoencephalogram and Electroen-cephalogram, Electroenceph. clin. Neurophysiol., 47, pp. 132-146, (1979).[3] J. C. Mosher, M. E. Spencer, R. M. Leahy and P. S. Lewis: Error Bounds for EEG andMEG Dipole Source Localization, Electroenceph. clin. Neurophysiol., 86, pp. 303-321,(1993).[4] P. Capolsini: MacroC, C code generation within Maple, Maple Share Library.[5] C. Gomez: Macrofort, a FORTRAN code generator in Maple, Maple Share Library.[6] J. Grotendorst, J. Dornsei�er, and S. M. Schoberth: Symbolic-numeric Computations forProblem-solving in Physical Chemistry and Biochemistry, in R. J. Lopez (ed.), Maple V:Mathematics and Its Application, Proc. MSWS'94, Troy, New York, pp. 131-140, (1994).[7] H. Zhou and A. van Oosterom: Computation of the Potential Distribution in a Four LayerAnisotropic Concentric Spherical Volume Conductor, IEEE Trans. Biomed. Eng., 39, pp.154-158, (1992). 8


