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Zentralinstitut für Angewandte Mathematik
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Abstract

In this paper we investigate the properties of minimal lp-norm solutions

to the biomagnetic inverse problem for 1 ≤ p < 2. We show that the minimal

l1-norm solutions can be interpreted as weighted l2-norm solutions, where the

weights emphasize the larger currents and make the minimal l1-norm solutions

appear more focal than the minimal l2-norm solutions. In several examples

we demonstrate that the current distribution changes continuously as the

parameter p varies. Finally, a short overview about related work in robust

statistics is given.

1 Introduction

In general, inverse problems occur when one wants to describe the internal prop-
erty of a physical system with the help of a measured output signal. One way of
interpreting the measured biomagnetic field is to solve an inverse problem for the
current flow inside the brain. There are many different approaches to solving the
biomagnetic inverse problem. One approach is to assume that the measured field
is due to a small number of highly localized sources (current dipoles) and use a
non-linear least squares fitting routine to find the location, strength and orientation
of the dipoles. The major problem with dipole solutions is that a priori assumptions
about the number and locations of the sources must be made.

In order to avoid making assumptions about the number and locations of the sources
Hämäläinen et al. [1] proposed a minimum norm approach in which a vector field
is calculated on a pre-determined grid, and each vector represents a current dipole.
Generally many more source locations than measurement points are used, making
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Figure 1: Minimal lp-norm
solutions for p = 2 (top) to
p = 1 (bottom). The source
space was a horizontal plane
at z = 3 cm with an in-
ternode spacing of 1.5 cm.
The size of the balls is pro-
portional to the magnitude
of the current at the grid
points.

the problem highly underdetermined. Of the many
current distributions which produce the same mea-
sured magnetic field, Hämäläinen et al. chose the dis-
tribution which has minimal magnitude. The solution
can be determined by solving a linear least-squares
problem, which is equivalent to minimizing the cur-
rent distribution in the l2-norm.

Different types of minimum norm algorithms have
also been proposed where some source locations get
larger weights than others. The weights can be chosen
such that certain locations in the brain are preferred
[2], [3], [4], [5]. The minimization can also be done
in other norms such as the l1-norm, which is defined
by the sum of absolute values of the current vector
components. It was observed in a limited number of
examples, that current distributions calculated with
the l1-norm were much more focal than those which
were calculated with the l2-norm [6]. This is consid-
ered desirable, because one criticism of minimum norm
solutions is that they are too smeared. Concentrating
their interest on the l1-norm, Matsuura et al. [7] were
able to use the simplex algorithm to determine the
minimum norm solution vector among all basis solu-
tions of the underdetermined system. In this way they
calculated solutions which were ”maximally sparse”.

Note that minimum norm methods also make assump-
tions about the current sources, but not the same as-
sumptions as dipole solutions. In particular, it is as-
sumed that sources exist only at a discrete set of lo-
cations, and these locations must be chosen a priori
by the researcher. The set of locations must not be
on a regular grid, and if a different set of locations is
chosen, the reconstruction can change. In addition, it
has not been shown that the minimal lp-norm solution
(for any p) of the current is physiologically meaning-
ful. Nonetheless, minimum norm methods are gaining
in popularity in biomagnetism and it is important to
understand their properties.

In this paper we clarify why the sharpening effect
appears, present an algorithm to calculate minimal
lp-norm solutions for values of p between 1 and 2, and
discuss weighted l2-norm solutions. Several examples
are given to dramatically demonstrate the sharpening
effect.
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The paper is organized as follows. In section 2 we very briefly introduce the discrete
forward model for the current distribution in a volume conductor and present a
first example of the reconstructed current vector fields for different lp-norms. In
section 3, a mathematical algorithm for minimization in lp-norms is described and
an overview of related algorithms is given. We also show that minimal lp-norm
solutions for 1 < p < 2 can be interpreted as weighted minimal l2-norm solutions.
In section 4 we show with a simple numerical example how the sharpening effect for
p→ 1 arises. Finally, we extend the first example to show the effect of the internode
spacing.

2 The Discrete Model and A First Example

For the calculation of a minimum norm solution, a discrete set of points are chosen
within a pre-determined source space and the current magnitude and orientation
are determined at each grid point. The assumption that sources exist only at grid
points reduces the non-linear inverse problem to a linear problem. The relationship
between the continuous current distribution in a volume conductor and the magnetic
field is given by the Biot-Savart law. With the discrete approach using a grid one
gets

b(rj) =
µ0

4π

s
∑

i=1

q(ri)× (rj − ri)

|rj − ri|3
, j = 1, . . . , m. (1)

In eq. (1), q denotes the moment of the current dipole, which is defined as the prod-
uct of the current magnitude and orientation, s is the number of source locations,
and b(rj) is the magnetic field at the measurement point rj [8].

The m sums specify a system of linear equations, which we rewrite in matrix notation
as Lq = b. With m measurement points and s grid points, L is a 3m × 3s matrix
and b has dimension 3m, because the magnetic field has three components and there
are current dipoles in the x, y and z directions at each of the s grid points. When
only one component of the magnetic field is measured, the dimension of the system
can be reduced to m rows and 3s columns by taking the inner product of both sides
of eq. (1) with the unit direction vector at each sensor.

The most common way to select a solution of the linear system among the many
possible solutions is to take the minimal l2-norm solution. The minimal l1-norm
solution has recently generated interest because of its simple structure and the sparse
reconstructions. More generally one can define a norm for a vector x ∈ � n by
‖x‖p = (

∑n
i=1 |xi|p)1/p, for 1 ≤ p < ∞ and ‖x‖∞ = maxn

i=1 |xi|, for p = ∞. For
0 < p < 1 the expression is no longer a norm because the Minkowsky inequality, a
generalization of the triangle condition, does not hold [9].

We present the first example in fig. 1 to show how extreme the differences between
lp-norm solutions of the same source can be. A single dipolar source at location
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(3, 3, 3) with moment (1, −1, 0) is placed in a sphere with radius 12 cm. The mag-
netic field is calculated with a formula derived by Sarvas [10] for a BTi 37-channel
1st-order gradiometer array. A regular grid in the plane z = 3 cm with an internode
spacing of 1.5 cm is placed in the sphere and the effect-matrix L is calculated. We
calculate minimum norm solutions for different values of p between 1 and 2, using
the same magnetic field and effect-matrix. The resulting vector field is plotted such
that the magnitude of each direction vector is represented by the size of the ball. It
is worth mentioning that for different values of p the direction of the current dipoles
change. fig. 1 shows four current distributions calculated with four different values
of p (p = 2, p = 1.5, p = 1.3, p = 1). In the l2-norm solution we can see approx-
imately 10 current dipoles with a relatively large magnitude. In the case p = 1.3
there are only three dipoles with a large magnitude remaining. Finally for p = 1
only one large dipole can be recognized. Why the reconstruction becomes sharper
as p is decreased will become clearer when we have a closer look at the minimization
process.

3 About lp-Norm Minimization

The underdetermined linear system Lq = b with rank m has no unique solution
in general. One way to select a solution out of the set of non-denumerably many
solutions is to solve the system by using the pseudo-inverse L†, where the matrix
L† = LT (LLT )−1 [11]. This solution is equivalent to the minimization of ‖q‖2 un-
der the constraint Lq = b. Generalizing this approach, one can minimize ‖q‖p
under the constraint Lq = b, where ‖q‖p denotes the lp-norm of the vector q with
1 < p <∞. The lp-norms are strictly convex, implying that there always exists a
unique minimum; this is no longer true for p = 1 or p = ∞. However, as the pa-
rameter p is varied, the current distribution changes continuously [9], and under the
assumption that there exist a unique minimum for the l1-norm we can approximate
the minimal l1-norm solution by approaching p=1 from above.

In this section we show that solving the minimization problem under constraints is
equivalent to calculating a minimal lp-norm solution of an overdetermined system of
linear equations. For this purpose let n = 3s, let U denote the solution space of the
homogeneous linear system Lq = 0, and let k = n−m denote the dimension of U.
Then there exists an n × k matrix A with rank k such that the column space of A

is equal to the linear subspace U. The affine subspace of all solutions of Lq = b can
be expressed as V = v + U, where v is any particular solution of Lq = b. We now
can solve the minimization problem under constraints by minimizing ‖Ax − v‖p,
where the system Ax− v = 0 is overdetermined.

In the case p = 2, the minimum is characterized by an orthogonality condition and
is easily found by solving a least-squares problem. With p 6= 2, the orthogonality
condition cannot be applied and we must use a more complicated approach. In order
to simplify the notation let t(x) = Ax−v be the corresponding residual vector and

4



let ti denote the components of the vector t(x). Then the minimization problem
‖Ax− v‖p → min is that of minimizing the function

f(x) =
n

∑

i=1

|ti|p. (2)

Since the lp-norm is strictly convex for 1 < p < ∞, the function f has a unique
minimum that can be obtained by solving the system

n
∑

i=1

|ti|p−1sgn(ti)aij = 0, j = 1, . . . , k, (3)

where aij are the elements of the matrix A. The residuals, ti, that minimize the
function f in eq. (2) are also a solution to the problem of minimizing ‖q‖p un-
der the constraint Lq = b, and therefore correspond to the desired current vector
components.

If p = 2, eq. (3) are called normal equations. In case of p > 2 we can rewrite eq. (3)
as

n
∑

i=1

|ti|p−2tiaij = 0, j = 1, . . . , k. (4)

Fletcher et al. [12] applied Newton’s method to solve eq. (4). We are not very
interested in this case because we want to approximate the minimal l1-norm solution
by approaching p = 1 from above. Assuming the residuals ti are not zero for
i = 1, . . . , n and 1 < p < 2 eq. (3) can be rewritten as

n
∑

i=1

1

|ti|2−p
tiaij = 0, j = 1, . . . , k. (5)

Defining W = diag( 1√
|t1|2−p

, . . . , 1√
|tn|2−p

) eq. (5) are the normal equations of the

weighted least-squares problem

‖W(Ax− v)‖2 → min. (6)

This formulation suggests the approach proposed by Merle and Späth [13] to solve
‖Ax− v‖p → min for 1 < p < 2 by a reweighted least-squares algorithm:
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Reweighted-Least-Squares()
1 l ← 0
2 for i← 1 to n
3 w

(0)
i ← 1

4 repeat

5 Determine x̂(l) as solution of ‖W(l)(Ax− v)‖2 → min
6 t̂ = Ax̂(l) − v

7 for i← 1 to n
8 if |t̂i| ≥ ε
9 then

10 w
(l+1)
i ← 1√

|t̂i|2−p

11 else

12 w
(l+1)
i ← 1

ε

13 l ← l + 1
14 until convergence

Figure 2: Reweighted Least-Squares Algorithm

If a residual, t̂i, becomes smaller than ε during the iteration, the weight, w
(l+1)
i , is

set to 1/ε, where ε is a small positive real number. We feel this is reasonable because
a computer calculates with a finite numberset, which leads to roundoff errors. The
iteration process is terminated if the Euclidean norm of the difference between the
results, x̂, of two iteration steps is sufficiently small.

The desired current distribution corresponds to the residual vector at the final iter-
ation step, and can be calculated from t(x̂) = Ax̂− v, where x̂ is the final result of
the iteration process.

The local convergence of a slightly different, but more general, version of the algo-
rithm in fig. 2 is described by Wolfe [14] in a rather involved proof. If some residuals
at one iteration step are zero, he defines the weights to be zero and he then solves
the remaining least-squares-problem. Merle and Späth noticed that the closer p is
to 1, the more iteration steps were needed. Wolfe offers insight into the theoreti-
cal background showing under which conditions the increase in number of iteration
steps happens.

There are several other approaches to solving the lp-norm minimization problem.
Ekblom [15] proposed to solve a slightly perturbed problem with a damped Newton’s
method. With his method it is possible to avoid zero residuals. Fischer [16] devel-
oped a globally convergent algorithm. He interprets the lp-norm minimization as
a problem with linear constraints and solves the associated dual problem with the
help of lagrangian multipliers. Li [17] also presented a globally convergent algo-
rithm, which is superlinearly convergent for 1 < p < 2 if no component of the
residual vector at the unique minimum of the function f defined in eq. (3) vanishes.

Gorodnitsky et al. [5] proposed several types of iteratively reweighted minimum norm
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algorithms. Her first approach is similar to the reweighted least-squares algorithm
proposed by Merle and Späth with p = 1, and produces similar sharpening results.
Leahy et al. [18] tested Gorodnitsky’s algorithm with and without noise. They
found that the final error in fitting the data could be large, even for the noisless
case. In their implementation they used Tikhonov regularization and the L-curve
method [19] at each iteration to avoid ill-conditioning.

When noise is present for the algorithm presented in fig. 2, one can use Tikhonov
regularization and the L-curve method at each iteration step as Leahy et al. did.
For the examples in this paper, we calculated the basis for the solution space with
the help of a truncated singular value decomposition. This guaranteed that all
vectors which fulfill the constraint Lq = b could be calculated in a numerically
stable fashion.

4 Examples

The first example (fig. 1) makes it clear that current vector components with a rela-
tively large magnitude are preferred in an l1-norm minimization process while vector
components with a smaller magnitude are damped. In other words, small residuals
represent small components of the current vectors and large residuals represent large
components. We now present a very simple mathematical example to demonstrate
how the lp-norms produce the sharpening effect.

4.1 Simple Mathematical Example

For this example consider the system of equations:
(

1 2 3 4
5 2 3 6

)

q =
(

3
2

)

. (7)

We minimize ‖q‖p under the constraint of the linear system presented in eq. (7) using
the method outlined in the previous section. We start by determining a basis of the
solution space using a truncated singular value decomposition. For the calculation
of a particular solution we arbitrarily chose the first and the second columns of
the linear system in eq. (7). We then calculate the weights using the algorithm
presented in fig. 2, and determine the residual vector t(x̂) at the final iteration step.
This residual vector is the desired solution to eq. (7), and is plotted in fig. 3 for a
variety of p values.

We calculate the minimum norm solutions for p = 1, 1.3, 1.5, 2, and plot the absolute
value of the vector components in fig. 3. In the case p = 2, the absolute value of
the third component of the solution vector is only slightly larger than the other
components. When p is decreased, the third component becomes bigger and the
other components become smaller. In the case p = 1, one of the components is large
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Figure 3: Solution vector components of different minimal lp-norm solutions of the
simple mathematical example (eq. (7)) for p = 2, 1.5, 1.3, 1

and two of the components are nearly zero, indicating a more focal, or sharper,
result.

To show how large the weights are for each component, we chose p = 1.5 as a particu-
lar example. With 10 iteration steps we calculate the final weights (with an accuracy

of 10−5): w
(10)
1 = 1.2414, w

(10)
2 = 1.3340, w

(10)
3 = 1.2054, and w

(10)
4 = 1.3076. The

weights for the second and the fourth components are larger than those for the first
and the third components, implying that the second and the fourth components
of the solution vector will be smaller. As p is decreased, this sharpening effect is
strengthened.

4.2 Effect of Internode Spacing

The final example we present shows the behavior of the l2-norm solutions in com-
parison to the l1-norm solutions for different internode spacings. We return to the
biomagnetic example of section 2 to investigate how different internode spacings
affect the sharpness of the reconstruction.

In the example presented in fig. 4 we used the same source configuration as in
section 2. In the first example we calculated lp-norm solutions for different values
of p. In this example, we use four different regular grids in the plane z = 3 cm with
internode spacings of 1.5 cm, 2 cm, 2.5 cm and 3 cm. Note that the original source
lies on a grid point only when the internode spacing is 1.5 cm and 3 cm.

The l2-norm solution for the smallest internode spacing (1.5 cm) is smeared over the
nearby grid points. As the distance between the nodes increases, the reconstruction
looks more focal.

In comparison to the l2-norm solutions the l1-norm-solutions are much more focal for
all internode spacings, although the balls with the largest magnitude always have the
same position for both the l2-case and the l1-case. For an internode spacing of 2 cm
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there are two balls; in all other cases only one large current dipole is reconstructed.
In general, we find that the internode spacing has a greater effect on the l2-norm
solution than on the l1-norm solution.
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Figure 4: l2-norm solutions (left column) and l1-norm solutions (right column) for
different internode spacings τ . The source space was a horizontal plane z = 3 cm.
The size of the balls is proportional to the magnitude of the current at that grid
point. The original source was located at (3, 3, 3) with direction (1, -1, 0).
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5 Conclusions

We have seen that the lp-norm, 1 < p <∞, can be interpreted as a weighted l2-norm.
Large current vector components get smaller weights than small components, so
small components are damped and large ones are strengthened. This weighting
makes the picture look more focal. Weighted l1-norm minimization can partially
erase this sharpening effect.

There are many similar reweighted least-squares algorithms, and many different
weighting properties. The disadvantage of the algorithms is that the convergence
is not clear in every case. It also can happen that there does not exist a unique
minimum. The advantage of lp-norm minimization is the uniqueness. For a detailed
discussion the reader is referred to [20].

In robust statistics the lp-norm minimization is a quite common method. Ekblom [21]
compared the minimal lp-norm solutions with Huber-estimates [22], which can be
calculated with reweighted least-squares algorithms. He implemented a Monte Carlo
simulation and found that Huber-estimates are superior to all pure lp-methods with
nearly normal measurement errors. For Laplace and Cauchy error distributions he
proposed taking p = 1.25.

The remaining question is whether there exists an optimal lp-norm for a particular
class of problem. Many biomagnetism researchers have tried to answer this question
by comparing different lp-norm estimations for special examples. Linz [23] wrote
(with reference to numerical regularization methods, but we find it equally applicable
to the situation in biomagnetism):

There are no general criteria by which different algorithms can be
compared. Consequently, many methods are proposed which, on the
evidence of a few special cases, are claimed to be effective.
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