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Abstract. We review the calculation of the Hoyle state of 12C in nuclear lattice effective field
theory (NLEFT) and its anthropic implications in the nucleosynthesis of 12C and 16O in red
giant stars. We also analyse the extension of NLEFT to the regime of medium-mass nuclei, with
emphasis on the determination of the ground-state energies of the α nuclei 16O, 20Ne, 24Mg, and
28Si by Euclidean time projection. Finally, we discuss recent NLEFT results for the spectrum,
electromagnetic properties, and α-cluster structure of 16O.
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1. Introduction

Nuclear lattice effective field theory (NLEFT) is a first-principles approach, in which
chiral EFT for nucleons is combined with numerical auxiliary-field quantum Monte Carlo
(AFQMC) lattice calculations. NLEFT differs from other ab-initio methods [1–6] in that
it is an unconstrained Monte Carlo calculation, which does not rely on truncated basis
expansions, many-body perturbation theory, or on prior information about the structure of
the nuclear wave function.

As in chiral EFT, our calculations are organized in powers of a generic soft scale Q

associated with factors of momenta and the pion mass [7]. We denote O(Q0) as leading
order (LO), O(Q2) as next-to-leading order (NLO), and O(Q3) as next-to-next-to-leading
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order (NNLO) contributions. The present calculations are performed upto NNLO. We
define HLO as the LO lattice Hamiltonian and HSU(4) as the equivalent Hamiltonian with the
pion–nucleon coupling gA = 0 and contact interactions that respect Wigner’s SU(4) symmetry.

In our NLEFT calculations, HLO is treated non-perturbatively (see [8] for a review).
The NLO contribution to the two-nucleon force (2NF), the electromagnetic and strong
isospin-breaking contributions (EMIB), and the three-nucleon force (3NF) which first
enters at NNLO, are all treated as perturbations. It should be noted that our ‘LO’ calcu-
lations use smeared short-range interactions that capture much of the corrections usually
treated at NLO and higher orders [9]. At NNLO, the 3NF overbinds nuclei with A ≥ 4
due to a clustering instability which involves four nucleons on the same lattice site. A
long-term objective of NLEFT is to remedy this problem by decreasing the lattice spacing
and including the next-to-next-to-next-to-leading order (N3LO) corrections in chiral EFT.
Simultaneously, the overbinding problem has been rectified by means of a 4N contact
interaction, tuned to the empirical binding energy of either 4He or 8Be [10]. While this
provides a good description of the α nuclei upto A = 12 including the Hoyle state
[10–12], the overbinding is found to increase more rapidly for A ≥ 16. In [13], a non-local
4N interaction which accounts for all possible configurations of four nucleons on adja-
cent lattice sites was introduced, and adjusted to the empirical binding energy of 24Mg. A
detailed study of the spectrum and electromagnetic properties of 16O (with the inclusion
of the effective 4N interaction) is reported in [14].

2. The Hoyle state

The Hoyle state is a resonance with spin-parity quantum numbers Jp = 0+ in the spec-
trum of 12C, which plays an important role in resonantly enhancing the reaction rate for
the so-called triple-α process, which is responsible for the production of carbon in mas-
sive stars that have reached the red giant stage in their evolution. This reaction represents
a significant bottleneck in the stellar nucleosynthesis, as 8Be is an unstable (though rel-
atively long-lived) resonance. For 12C to form, a third α-particle must combine with the
8Be resonance to create the Hoyle state, which subsequently decays electromagnetically
to the ground state of 12C. This reaction may then proceed further (non-resonantly) to
form 16O by the addition of a fourth α-particle. However, the temperature of the stellar
plasma at which the triple-α process takes place depends exponentially on the energy
�h of the Hoyle state above the triple-α threshold, which is experimentally known as
�h � 379.5 keV. Stellar model calculations [15] have shown that only a narrow win-
dow of ±100 keV exists in �h, where significant amounts of carbon and oxygen can be
produced simultaneously.

Our NLEFT calculations [12] have recently shed light on the structure, electromagnetic
properties, and transitions of the Hoyle state from first principles, and have furthermore
enabled an initial investigation of the sensitivity of the triple-α process to changes in
the fundamental parameters, such as the light quark mass mq and the electromagnetic
fine-structure constant αem. In particular, carbon–oxygen-based life as we know appears
unlikely to become strongly disfavoured for relative changes smaller than �3% in mq

or αem. This situation, where the production rates of 12C and 16O are not excessively
fine-tuned, arises due to strong correlations between the binding energy of 4He and
the energies of the 8Be and Hoyle state resonances. In turn, this is a reflection of the
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Table 1. Lattice results at leading order (LO) and avai-
lable experimental values for the root-mean-square
charge radii and quadrupole moments of the 12C states.

LO Exp.

r(0+
1 ) (fm) 2.2(2) 2.47(2) [17]

r(2+
1 ) (fm) 2.2(2) −

Q(2+
1 ) (e fm2) 6(2) 6(3) [18]

r(0+
2 ) (fm) 2.4(2) −

r(2+
2 ) (fm) 2.4(2) −

Q(2+
2 ) (e fm2) −7(2) −

Table 2. Lattice results at leading order (LO) and available experimental values for
electromagnetic transitions involving the even-parity states of 12C.

LO Exp.

B(E2, 2+
1 → 0+

1 ) (e2 fm4) 5(2) 7.6(4) [19]
B(E2, 2+

1 → 0+
2 ) (e2 fm4) 1.5(7) 2.6(4) [19]

B(E2, 2+
2 → 0+

1 ) (e2 fm4) 2(1) −
B(E2, 2+

2 → 0+
2 ) (e2 fm4) 6(2) −

M(E0, 0+
2 → 0+

1 ) (e2 fm4) 3(1) 5.5(1) [20]

underlying α-cluster structure of the Hoyle state, which is found to resemble a ‘bent-
arm’ or obtuse triangular configuration. However, such calculations also require some
knowledge on how the LO contact terms in the chiral EFT interaction depend on mq or,
equivalently, on the pion mass mπ . At present, this information enters through the deriva-
tives of the two-nucleon S-wave scattering lengths in the singlet and triplet channels,
∂a−1

s /∂mπ and ∂a−1
t /∂mπ , respectively. So far, these have been difficult to determine

accurately from lattice QCD calculations. In this situation, the derivatives of the binding
energies ∂B3/∂mπ and ∂B4/∂mπ of 3He and 4He may prove more constraining in the
near term, as these are easier to extrapolate to the physical point from lattice QCD data
[16]. NLEFT work in this direction is in progress.

Finally, we briefly review our results for the electromagnetic properties of the low-lying
even-parity states of 12C in table 1 and our results for the electromagnetic transitions
between these states in table 2. These are currently available to LO (the extension to
NNLO will appear in a future publication). We note that the good agreement with experi-
mental results (where available) inspires confidence in our conclusions concerning the
α-cluster structure and possible anthropic role of the Hoyle state.

3. Medium-mass nuclei in NLEFT

Recently, much effort has been directed towards the extension of NLEFT beyond 12C
into the regime of medium-mass nuclei (see in particular [13]). In this section, we shall
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review the developments in computational methods which have made this extension pos-
sible. At present, our calculations have been performed with a (spatial) lattice spacing
of a = 1.97 fm in a periodic cube of length L = 11.8 fm. In [13], our trial wave func-
tion |� init

A 〉 is a Slater-determinant state composed of delocalized standing waves, with
A nucleons and the desired spin and isospin. First, we project |� init

A 〉 for a time t ′ using
the Euclidean-time evolution operator of the SU(4) Hamiltonian, giving the ‘trial state’
|�A(t ′)〉 ≡ exp(−HSU(4)t

′)|� init
A 〉. Second, we use the full Hamiltonian HLO to construct

the Euclidean-time projection amplitude

ZA(t) ≡ 〈�A(t ′)| exp(−HLOt)|�A(t ′)〉, (1)

and the ‘transient energy’

EA(t) = −∂[ln ZA(t)]/∂t. (2)

If we denote the lowest (normalizable) eigenstate of HLO by |�A,0〉 which has a non-
vanishing overlap with the trial state |�A(t ′)〉, we obtain the corresponding energy EA,0

as the t → ∞ limit of EA(t). The NLO and NNLO contributions are evaluated in
perturbation theory. We compute operator expectation values using

ZO
A (t) ≡ 〈�A(t ′)| exp(−HLOt/2)O exp(−HLOt/2)|�A(t ′)〉 (3)

for any operator O. Given the ratio XO
A (t) = ZO

A (t)/ZA(t), the expectation value of O
for the desired state |�A,0〉 is obtained as XO

A,0 ≡ 〈�A,0|O|�A,0〉 = limt→∞ XO
A (t).

Sign oscillations make it difficult to reach sufficiently large values of the projection
time t . It is helpful to note that the closer the trial state |�A(t ′)〉 is to |�A,0〉, the less is
the necessary projection time t . |�A(t ′)〉 can be optimized by adjusting both the SU(4)
projection time t ′ and the strength of the coupling CSU(4) of HSU(4). The accuracy of
the extrapolation t → ∞ can be further improved by simultaneously incorporating data
from trial states that differ in CSU(4). The large-time behaviour of ZA(t) and ZO

A (t) is
controlled by the low-energy spectrum of HLO. Let |E〉 denote the eigenstates of HLO

with energy E and let ρA(E) denote the density of states for a system of A nucleons. We
then express ZA(t) and ZO

A (t) in terms of their spectral representations

ZA(t) =
∫

dE ρA(E)
∣∣〈E|�A(t ′)〉∣∣2

exp(−Et), (4)

ZO
A (t) =

∫
dE dE′ ρA(E) ρA(E′)〈�A(t ′)|E〉 〈E|O|E′〉

×〈E′|�A(t ′)〉 exp(−(E + E′)t/2) (5)

from which we construct the spectral representations of EA(t) and XO
A (t). We can approxi-

mate these to arbitrary accuracy over any finite range of t by taking ρA(E) to be a sum
of energy delta functions ρA(E) ≈ ∑imax

i=0 δ(E − EA,i), where we take imax = 4 for
the 4He ground state and imax = 3 for A ≥ 8. Using the data obtained for different
values of CSU(4), we perform a correlated fit of EA(t) and XO

A (t) for all operators O
that contribute to the NLO and NNLO energy corrections. We find that the use of 2–6
trial states allows for a much more precise determination of EA,0 and XO

A,0 than hitherto
possible. In particular, we may ‘triangulate’ XO

A,0 using trial states that correspond to
functions XO

A (t) which converge both from above and below.
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4. Lattice Monte Carlo results for NLEFT with A ≥ 16

In this section, we discuss the NLEFT results for nuclei in the medium-mass range (see
also [13,14]). A detailed description of the NLEFT calculation for 16O is given in figure 1,
while the results for the α nuclei from 4He to 28Si are shown in table 3. The curves in
figure 1 show a correlated fit for all trial states, using the same spectral density ρA(E). The
upper row shows (from left to right) the LO energy, the total isospin-symmetric 2NF cor-
rection (NLO), the electromagnetic and isospin-breaking corrections (EMIB), and the total
3NF correction. The remaining panels show the matrix elements XO

A (t) that form part of
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Figure 1. NLEFT results for 16O. The LO energy ELO = −147.3(5) MeV and the
result at NNLO including 4N interactions is ENNLO+4N = −131.3(5) MeV. The
empirical binding energy is −127.62 MeV (for definitions, see text).
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Table 3. NLEFT results for the ground-state energies (in MeV). The combined statis-
tical and extrapolation errors are given in parentheses. The columns labelled ‘LO(2N)’
and ‘NNLO(2N)’ show the energies at each order using the two-nucleon force only.
The column labelled ‘+3N’ also includes the 3NF, which first appears at NNLO.
Finally, the column ‘+4Neff’ includes the ‘effective’ 4N force. The column ‘Exp.’
gives the empirical energies.

A LO(2N) NNLO(2N) +3N +4Neff Exp.

4 −28.87(6) −25.60(6) −28.93(7) −28.93(7) −28.30
8 −57.9(1) −48.6(1) −56.4(2) −56.3(2) −56.35

12 −96.9(2) −78.7(2) −91.7(2) −90.3(2) −92.16
16 −147.3(5) −121.4(5) −138.8(5) −131.3(5) −127.62
20 −199.7(9) −163.6(9) −184.3(9) −165.9(9) −160.64
24 −253(2) −208(2) −232(2) −198(2) −198.26
28 −330(3) −275(3) −308(3) −233(3) −236.54

the NLO and 3NF terms. The operators ∂EA/∂Ci give the contributions of the NLO
contact interactions and �EA(�xπ) denotes the energy shift due the O(a2)-improved
pion–nucleon coupling. The operators ∂EA/∂Di give individual contributions to the total
3NF correction.

From the results in table 3, we note that the NNLO results are good upto A = 12, at
which point an increasing overbinding manifests itself for A ≥ 16. As we ascend the α

ladder from 4He to 28Si, the lighter nuclei can be described as collections of α-clusters
[11,12]. As the number of clusters increases, they become increasingly densely packed,
such that a more uniform liquid of nucleons is approached. This increase in the density
of α-clusters appears correlated with the gradual overbinding we observe at NNLO for
A ≥ 16. As this effect becomes noticeable for 16O, we can view it as a problem which
first arises in a system of four α-clusters.

Following [10], which removed discretization errors associated with four nucleons
occupying the same lattice site, we can attempt to remove similar errors associated with
four α-clusters in close proximity with neighbouring lattice sites. In table 3, the column
labelled ‘+4Neff’ shows the results at NNLO while including both the 3NF and the
‘effective’ nearest-neighbour 4N interaction V (4Neff). Due to the low momentum cutoff
(corresponding to a lattice spacing of a = 1.97 fm), the two-pion exchange contributions
have been absorbed into the contact interactions at NLO. We have tuned the coupling
D(4Neff) of V (4Neff) to give approximately the correct energy for the ground state of 24Mg.
With V (4Neff) included, a good description of the ground-state energies is obtained over
the full range from light to medium-mass nuclei, with a maximum error no larger than
∼3%. This lends support to the qualitative picture that the overbinding at NNLO in
table 3 is associated with the increased packing of α-clusters and the eventual crossover
to a uniform nucleon liquid. The missing physics would then be comprised of short-range
repulsive forces that counteract the dense packing of α-clusters.

In spite of the good agreement (upon introduction of V (4Neff)) with experiment in table 3,
we also need to verify that the good description of the binding energies is not accidental.
It is then helpful to check whether a consistent picture is obtained with respect to excited
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states, transitions, and electromagnetic properties of nuclei in the medium-mass range
where V (4Neff) gives a sizable contribution.

5. Alpha-cluster structure of 16O

Since the early work of Wheeler [21], theoretical studies of 16O have been based on α-
cluster models [22–28] and some experimental evidence for α-particle substructure in 16O
has been found from the analysis of decay products [29]. While some of the puzzles in the
structure of 16O have been explained on a phenomenological (or geometrical) level, so far
no support has been available for the α-cluster structure of 16O from ab-initio calculations.
The NLEFT results for 16O have been reported in [14], which is also the first time that
evidence for the tetrahedral α-cluster structure of the ground state of 16O has been found
from an ab-initio calculation. We have also found the first excited 0+ state of 16O to
predominantly consist of a square arrangement of α-clusters. We summarize the results
for the electromagnetic properties and transition rates in 16O in tables 4 and 5.

The computed charge radii, quadrupole moments, and transition rates of 16O provide
very convincing evidence supporting the realism of our extension of NLEFT to medium-
mass nuclei. In particular, the excitation energies and level ordering in 16O (see table 4)
are found to be very sensitive to the strength and form of V (4Neff). This sensitivity arises
due to the differences in the α-cluster structure of the states in question. We also note that
NLEFT is able to explain the empirical value of B(E2, 2+

1 → 0+
2 ), which is �30 times

larger than the Weisskopf single-particle shell model estimate (see table 5). This provides
confirmation of the interpretation of the 2+

1 state as a rotational excitation of the 0+
2 state.

Finally, we provide a prediction for the quadrupole moment of the 2+
1 state. We note that

the NLEFT calculation of the electromagnetic transitions requires a full coupled-channel
analysis. For such calculations, we use initial states that consist of a compact triangle of
α-clusters and a fourth α-cluster, located either in the plane of the triangle (square-like)
or out of the plane of the triangle (tetrahedral).

In table 5, we note that the LO charge radius rLO of the ground state of 16O is smaller
than the empirical value rexp. This leads to a systematic deviation, which arises from
the overall size of the second moment of the charge distribution. To compensate for
this overall scaling mismatch, we have also calculated ‘rescaled’ quantities multiplied by
powers of the ratio rexp/rLO, according to the length dimension of each observable. With
such a scaling factor included, we find that the NLEFT predictions for the E2 and E0
transitions are in good agreement with the available experimental values.

Table 4. NLEFT results and experimental (Exp.) energies for the lowest even-parity
states of 16O (in MeV). The errors are one-standard-deviation estimates which include
statistical Monte Carlo errors and uncertainties due to the extrapolation Nt → ∞.

J
p
n LO(2N) NNLO(2N) +3N +4Neff Exp.

0+
1 −147.3(5) −121.4(5) −138.8(5) −131.3(5) −127.62

0+
2 −145(2) −116(2) −136(2) −123(2) −121.57

2+
1 −145(2) −116(2) −136(2) −123(2) −120.70
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Table 5. NLEFT results for the charge radius r , the quadrupole moment Q, and the
electromagnetic transition amplitudes for E2 and E0 transitions, as defined in [30].
We compare with empirical (Exp.) values where these are known. For the quadrupole
moment and the transition amplitudes, we also show ‘rescaled’ LO results, which
correct for the deviation from the empirical value of the charge radius at LO (see text).
The errors are one-standard-deviation estimates which include statistical Monte Carlo
errors and uncertainties due to the extrapolation Nt → ∞.

LO Rescaled Exp.

r(0+
1 ) (fm) 2.3(1) – 2.710(15) [31]

r(0+
2 ) (fm) 2.3(1) – –

r(2+
1 ) (fm) 2.3(1) – –

Q(2+
1 ) (e fm2) 10(2) 15(3) –

B(E2, 2+
1 → 0+

2 ) (e2 fm4) 22(4) 46(8) 65(7) [19]
B(E2, 2+

1 → 0+
1 ) (e2 fm4) 3.0(7) 6.2(1.6) 7.4(2) [32]

M(E0, 0+
2 → 0+

1 ) (e fm4) 2.1(7) 3.0(1.4) 3.6(2) [33]

6. Conclusions and outlook

We have presented an overview of the central NLEFT results for the low-lying even-
parity spectra of 12C and 16O. This includes the Hoyle state of 12C which plays a central
role in the stellar nucleosynthesis of life-essential elements. We have also shown that the
electromagnetic properties and transition rates of 12C and 16O are in agreement with the
available experimental data. While the long-term objectives of NLEFT are to decrease
the lattice spacing and include higher orders in the EFT expansion, we also find that the
missing physics upto 28Si can be approximated by an ‘effective’ 4N interaction. These
results represent an important step towards more comprehensive NLEFT calculations of
medium-mass nuclei in the near future.
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