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Abstract. Controlled laboratory studies of the physical and

chemical properties of sea spray aerosol (SSA) must be un-

derpinned by a physically and chemically accurate represen-

tation of the bubble-mediated production of nascent SSA par-

ticles. Bubble bursting is sensitive to the physicochemical

properties of seawater. For a sample of seawater, any im-

portant differences in the SSA production mechanism are

projected into the composition of the aerosol particles pro-

duced. Using direct chemical measurements of SSA at the

single-particle level, this study presents an intercomparison

of three laboratory-based, bubble-mediated SSA production

schemes: gas forced through submerged sintered glass filters

(“frits”), a pulsed plunging-waterfall apparatus, and break-

ing waves in a wave channel filled with natural seawater. The

size-resolved chemical composition of SSA particles pro-

duced by breaking waves is more similar to particles pro-

duced by the plunging waterfall than those produced by sin-

tered glass filters. Aerosol generated by disintegrating foam

produced by sintered glass filters contained a larger fraction

of organic-enriched particles and a different size-resolved el-

emental composition, especially in the 0.8–2 µm dry diam-

eter range. Interestingly, chemical differences between the

methods only emerged when the particles were chemically

analyzed at the single-particle level as a function of size;

averaging the elemental composition of all particles across

all sizes masked the differences between the SSA samples.

When dried, SSA generated by the sintered glass filters had

the highest fraction of particles with spherical morphology

compared to the more cubic structure expected for pure NaCl

particles produced when the particle contains relatively lit-

tle organic carbon. In addition to an intercomparison of three

SSA production methods, the role of the episodic or “pulsed”

nature of the waterfall method on SSA composition was un-

dertaken. In organic-enriched seawater, the continuous oper-

ation of the plunging waterfall resulted in the accumulation

of surface foam and an over-expression of organic matter in

SSA particles compared to those produced by a pulsed plung-

ing waterfall. Throughout this set of experiments, compar-

ative differences in the SSA number size distribution were

coincident with differences in aerosol particle composition,

indicating that the production mechanism of SSA exerts im-

portant controls on both the physical and chemical proper-

ties of the resulting aerosol with respect to both the internal

and external mixing state of particles. This study provides

insight into the inextricable physicochemical differences be-

tween each of the bubble-mediated SSA generation mecha-

nisms tested and the aerosol particles that they produce, and
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also serves as a guideline for future laboratory studies of SSA

particles.

1 Introduction

Understanding the production and characteristics of natural

atmospheric aerosol particles is critical for constraining their

influence on our global climate (e.g., Charlson et al., 1992;

Ramanathan et al., 2001; Menon et al., 2002; Lohmann and

Feichter, 2005; Carslaw et al., 2013; Ghan et al., 2013; Tsi-

garidis et al., 2013) and for the accurate prediction of chemi-

cal processes in the atmosphere (Andreae and Crutzen, 1997;

Brown and Stutz, 2012). Sea spray aerosol (SSA) particles,

which are ejected from the ocean surface through the disinte-

gration of whitecap foam (Blanchard and Woodcock, 1957;

Lewis and Schwartz, 2004; de Leeuw et al., 2011), repre-

sent one of the most dominant types of natural atmospheric

aerosol (Andreae and Rosenfeld, 2008). The production flux

and physicochemical properties of SSA that are emitted over

the wide range of possible oceanic conditions are not suf-

ficiently constrained for proper inclusion in climate models

(Lewis and Schwartz, 2004; de Leeuw et al., 2011; Quinn

and Bates, 2011; Gantt and Meskhidze, 2013; Tsigaridis et

al., 2013).

While SSA has long been known to consist of both in-

organic salts and organic material (Blanchard, 1964; Duce

and Hoffman, 1976; Novakov et al., 1997), field studies dur-

ing the past decade have suggested that the organic fraction

of marine aerosol is enhanced when the particles are ejected

from seawater that is host to elevated biological activity (e.g.,

O’Dowd et al., 2004). Seasonal trends in organic aerosol

mass supporting the influence of biological activity on SSA

composition have been observed in the northern and southern

midlatitudes (Yoon et al., 2007; Sciare et al., 2009), but am-

bient studies cannot always unambiguously assign changes

in the composition of SSA to specific primary, secondary,

anthropogenic, and/or continental sources (Sorooshian et al.,

2009; Shank et al., 2012).

Laboratory studies are quite commonly conducted to gen-

erate and study nascent SSA that is uncontaminated by par-

ticles found in the marine boundary layer that are produced

by other sources. These studies produce SSA from disinte-

grating foam in natural seawater or proxy materials mainly

by means of sintered glass bubblers or plunging water jets.

(Sellegri et al., 2006; Keene et al., 2007; Tyree et al., 2007;

Fuentes et al., 2010b; Hultin et al., 2010; Bates et al., 2012;

Park et al., 2014). Since it is well known that SSA is pro-

duced by the bursting of air bubbles at the sea surface (e.g.,

Blanchard and Woodcock, 1957; Lewis and Schwartz, 2004;

de Leeuw et al., 2011), the differences between generation

methods for SSA in the laboratory differ primarily by the

method of bubble production. Recent reports indicate that

pneumatic atomization does not produce particles of similar

physical or chemical properties to those generated by bubble

bursting (Fuentes et al., 2010b; Gaston et al., 2011). Until re-

cently, two different bubble production techniques have been

utilized for laboratory studies of aerosol composition: (1) air

(or N2) forced through sintered glass filters (“frits”) (Cloke et

al., 1991; Keene et al., 2007; Wise et al., 2009; Fuentes et al.,

2010b; Modini et al., 2010; Park et al., 2014), and (2) imping-

ing water jets (Facchini et al., 2008; Fuentes et al., 2010b;

Hultin et al., 2010). A new approach introduced by Prather et

al. (2013) produces SSA using reproducible breaking waves

in a linear wave channel filled with natural, filtered seawater.

While laboratory waves may not reproduce all of the factors

that lead to SSA production over the ocean, they do produce

bubble size distributions that compare favorably with those

measured in whitecaps (Deane and Stokes, 2002). Conse-

quently, aerosol generation by means of the wave-breaking

method provides the closest proxy to natural SSA currently

available in a controlled environment.

Experiments to compare the characteristics of aerosols

produced using sintered glass filters, plunging water jets or

waterfalls, and breaking waves have shown that each has a

distinctly different and characteristic size distribution (Sell-

egri et al., 2006; Fuentes et al., 2010b; Prather et al., 2013;

Stokes et al., 2013). Some intercomparison studies have in-

vestigated water uptake properties of the aerosol as indirect

measures of composition (Fuentes et al., 2010b; King et al.,

2012); however, the findings of each study depend on the spe-

cific operating conditions of each bubble-mediated aerosol

generation method tested. In this study, direct chemical mea-

surements of SSA generated using sintered glass filters and a

plunging waterfall were compared against SSA produced by

laboratory breaking waves to investigate the importance of

reproducing various physical elements of the wave-breaking

process in the generation of nascent SSA in the laboratory.

The impact of continuous bubble production, which can re-

sult in the accumulation of foam at the water surface several

bubble layers thick, on the composition of SSA is also dis-

cussed.

2 Experimental methods

Two sets of experiments were conducted: (1) the intercom-

parison experiments to compare the production of SSA be-

tween sintered glass filters, a plunging waterfall, and break-

ing waves, and (2) the foam production experiments to study

the effects of pulsed versus continuous foam production. The

intercomparison experiments were staged in the glass-walled

wave channel in the Scripps Institution of Oceanography

(SIO) Hydraulics Laboratory, while the foam production ex-

periments were carried out using a Marine Aerosol Reference

Tank. Both studies are described below.
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2.1 Sea spray generation methods intercomparison

Sea spray aerosol particles were generated using sintered

glass filters, a plunging waterfall, and breaking waves in

a 33 m× 0.5 m× 0.6 m (length–width–water depth, 9900 L)

glass-walled wave channel managed by the Hydraulics

Laboratory at SIO, which has been recently adapted for

ocean–atmosphere interaction studies (Prather et al., 2013),

and is shown schematically in Fig. 1. Prior to each experi-

ment, the wave channel was filled with natural, coastal sea-

water from 275 m offshore and approximately 4 m below

the low-tide line at the SIO Pier (La Jolla, CA; 32◦52.0′ N,

117◦15.4′W). Detailed information on the seawater delivery

system to the wave channel facility is provided by Prather

et al. (2013). All SSA generation methods tested in these

intercomparison experiments were operated using the same

sample of seawater within 24 h of filling the wave chan-

nel to ensure that the biogeochemical state of the seawater

closely represented the natural seawater supply and chem-

ical changes in the seawater itself were minimized. Sweep

air that was filtered and scrubbed of reactive trace gases was

supplied to the wave channel headspace continuously with a

linear velocity of approximately 6 cm s−1. Bubbles were gen-

erated using each of the three methods approximately 1 m up-

stream of the sampling manifold, giving a particle residence

time in the headspace of the wave channel of approximately

17 s.

2.1.1 Controlled breaking waves

Individual breaking waves were generated by a computer-

controlled hydraulic paddle. The breaking waves were

formed when a train of wave pulses of varying amplitude and

speed generated at one end of the channel were focused and

superimposed to form a plunging breaker at a set location

along the wave channel’s long axis. This hydraulic-paddle-

induced wave production at the SIO Hydraulics Laboratory

wave channel facility is described in detail elsewhere (Deane

and Stokes, 2002; Callaghan et al., 2013). Waves were gen-

erated with a maximum frequency of 1 min−1. Bubbles en-

trained in the water column by the wave-breaking event pen-

etrated to approximately 15 cm below the water surface. The

lack of background particle contamination was verified every

5 min by generating a wave pulse train with an amplitude in-

sufficient to induce a wave-breaking event to ensure that the

wave generation mechanism did not contaminate the sample.

2.1.2 Plunging waterfall

Specifically designed as a physical mimic to wave breaking,

a plunging-waterfall apparatus was implemented to generate

aerosol in the same location of the wave channel where wave

breaking occurs. In this technique, seawater was recirculated

from the wave channel through a centrifugal pump to a hor-

izontal slotted cylinder approximately 40 cm above the wa-

ter surface. The recirculating flow to the waterfall appara-

tus was modulated with a 6 s on/6 s off cycle that allowed

the foam patch at the waterfall impinging location to de-

cay before plunging resumed. As a result of the modulated

flow, the waterfall swept across a 30 cm× 50 cm patch of

the wave channel surface, disturbing the surface and form-

ing bubbles throughout the swept area. This system is based

on the same design criteria used to engineer the plunging-

waterfall system in the Marine Aerosol Reference Tank de-

scribed by Stokes et al. (2013).

2.1.3 Sintered glass filters

The setup utilized in this intercomparison was similar to that

implemented by Keene et al. (2007) and is identical to that

utilized by Prather et al. (2013). The distance from the top

of the sintered glass filter, where bubbles are released into

the water, to the water surface was approximately 35 cm,

which is smaller than the 115 cm rise distance used by Keene

et al. (2007). Nitrogen gas was forced through two sintered

glass filters of porosity “A” (145–174 µm pore diameter) and

four of porosity “E” (4–8 µm pore diameter). Each set of

glass filters of a particular porosity was supplied a total of

0.5 L per minute N2 gas, so that the gas flux for the two sets

of bubble sizes was equal.

2.2 Foam production experiments

The impact of standing foam on SSA composition was in-

vestigated using the plunging-waterfall mechanism in a Ma-

rine Aerosol Reference Tank (MART) system (Stokes et al.,

2013). The plunging waterfall utilized in the intercompari-

son experiment performed in the wave channel (Sect. 2.1.2)

is mechanistically similar to the aerosol generation system

implemented in the MART. The plunging waterfall was op-

erated in two modes: “continuous” and “pulsed”. While in

“continuous” mode, the waterfall was continuously gener-

ated by recirculating water from the bottom of the tank to

the waterfall apparatus suspended above the water surface

through a centrifugal pump. In “pulsed” mode, the recircu-

lation flow to the waterfall apparatus was modulated with a

4 s on, 4 s off pattern. During the “on” cycle, the flow rate of

water was approximately 40 L per minute.

Seawater for MART-based experiments was collected

from the ocean surface 275 m offshore at the end of Scripps

Pier, from a more shallow depth than the source of seawa-

ter used in the intercomparison experiments. Results utilizing

this unaltered seawater condition are labeled “natural seawa-

ter” in Sect. 3.2. In order to perform this foam production

experiment with high organic matter concentrations, the nat-

ural seawater sample was augmented with Guillard’s f/2 me-

dia (including 13 mg L Na2SiO3; Aquatic EcoSystems, Inc.,

Apopka, FL) and was continuously supplied with cool white

light (∼ 100 µE m−2, 6500 K; Phillips Alto II, F32T8/DX),

allowing for an unconstrained phytoplankton bloom to take
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Figure 1. Schematic of the linear wave channel with interchangeable bubble generation apparatuses for SSA production. Each of these

bubble generation mechanisms were tested within the wave channel within 24 hours, and with the same natural seawater sample.

place over the course of 1 to 2 weeks, in which the large

majority of the autotrophic biomass consisted of diatoms.

Proliferation of heterotrophic bacteria was observed upon

phytoplankton senescence in agreement with the canonical

view of biological processes active within the microbial loop

(Pomeroy et al., 2007). Chlorophyll a concentrations reached

as high as 140 mg m−3 and then subsided to 20 mg m−3, at

which time the foam production experiments were conducted

(Sect. 3.2). Autotrophic organisms, the abundance of which

is indicated through the chlorophyll a concentration, are well

known to exude organic material, increasing the organic mat-

ter concentration in the seawater throughout the bloom life-

time. Heterotrophic organisms (e.g., bacteria, grazers) then

process these organic exudates (Ogawa et al., 2001; Teeling

et al., 2012), chemically altering the dissolved organic matter

produced by the autotrophic biomass. This method of enrich-

ing the seawater with organic matter allows for natural dy-

namic ecosystem processes to shape the composition of the

organic matter in the seawater, similar to the types of inter-

actions found in natural phytoplankton blooms (Azam and

Malfatti, 2007; Pomeroy et al., 2007; Teeling et al., 2012).

While the total chlorophyll a concentration in these experi-

ments is an indirect indicator of the autotrophic biomass, it is

notable that various controlled SSA generation studies have

shown that the amount of organic matter imparted to SSA

is only a weak function of the seawater chlorophyll concen-

tration, and depends instead on the amount and composition

of organic matter in the seawater (Ault et al., 2013; Collins

et al., 2013; Prather et al., 2013; Park et al., 2014; Quinn et

al., 2014). Total organic carbon (TOC) concentrations in the

seawater were measured by means of the high temperature

combustion method (Shimadzu Scientific Instruments) after

acidifying the sample with 12N hydrochloric acid. While the

exact molecular identity of the organic compounds in the

seawater in these experiments was not known, the compo-

sition of the seawater utilized in this experiment can be rea-

sonably expected to be more chemically similar to regions

of the ocean that are naturally organic-matter-enriched than

a salt water mixture doped with organic proxy molecules.

This experiment therefore also benefits from naturally accu-

rate influences of organic matter physicochemical properties

on bubble physics and sea surface microlayer properties.

2.3 Aerosol measurements

All aerosol measurements were conducted after passing the

sample through silica gel diffusion driers to attain a relative

humidity < 15 %. Number size distributions of aerosol parti-

cles were measured using a scanning mobility particle sizer

(SMPS) for particles with mobility diameters (dm) between

0.013 and 0.7 µm, and an aerodynamic particle sizer (APS)

for particles with aerodynamic diameters (da) between 0.6

and 20 µm. Size distributions from these two different instru-

ments with different size metrics were unified by converting

both dm and da to the physical diameter (dp) according to

Eqs. (1) and (2) (DeCarlo et al., 2004), assuming all parti-

cles were spherical and had a density (ρp) of 1.8 g cm−3 (Ze-

lenyuk et al., 2007) and a reference density (ρ0) of 1 g cm−3.

dp = dm (1)

dp = da

(
ρ0

ρp

)1/2

(2)

Since particles were dried prior to sampling, the spherical

particle assumption may not be accurate in all cases. Assum-

ing all particles were cubic would decrease dp derived from

Atmos. Meas. Tech., 7, 3667–3683, 2014 www.atmos-meas-tech.net/7/3667/2014/
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dm by 8 %, and would increase dp derived from da by 4 %

(DeCarlo et al., 2004). SSA is an external mixture of parti-

cles with different compositions and physicochemical prop-

erties (Collins et al., 2013; Prather et al., 2013), including

size-dependent differences in morphology (Ault et al., 2013).

Caution is therefore encouraged when making quantitative

comparisons between SSA size distributions reported using

different methods.

The size-resolved chemical composition of SSA was

characterized by aerosol time-of-flight mass spectrometry

(ATOFMS). Two ATOFMS instruments were used in paral-

lel: one was fitted with a converging nozzle inlet (Gard et al.,

1997) and measured particles with vacuum aerodynamic di-

ameters (dva) between 0.5 and 3 µm, while a second, using

an aerodynamic lens inlet (Su et al., 2004), measured par-

ticles with dva between 0.1 and 2.5 µm. In both ATOFMS

instruments, particles transmitted through the inlet reach a

size-dependent terminal velocity in a differentially pumped

vacuum chamber, where they intersect two continuous wave

lasers (532 nm; 50 mW) positioned at a fixed distance along

the flight trajectory. The light scattered as the particle inter-

sects each beam is collected and the time between each set

of light scatter pulses is used to determine the velocity of

each particle. Particle velocities are translated to dva using

a calibration curve generated using polystyrene latex (PSL)

spheres of known diameter (density= 1.05 g cm−3). In order

to make convenient correspondence with the number size dis-

tributions presented herein, dva was converted to dp using the

density of PSL in this case for ρ0 (Eq. 3); however, caution

in making comparisons is again encouraged due to the inher-

ent morphology and density assumptions required for con-

versions between size metrics.

dp = dva

ρ0

ρp

(3)

The measured particle velocity is also used to trigger a

pulsed, Q-switched Nd:YAG laser (266 nm; 1.3 mJ; 7 ns) that

intersects each particle in the ion source region of the mass

spectrometer, where particle desorption and ionization occur

using a single laser pulse. Positive and negative ion time-of-

flight mass spectra are obtained for each particle. Informa-

tion about the ATOFMS is provided in greater detail in prior

publications (Gard et al., 1997; Su et al., 2004). ATOFMS

data were post-processed using the YAADA toolkit (http:

//www.yaada.org) for Matlab (The MathWorks Inc.). Parti-

cles were classified according to their mass spectral signa-

tures using a neural network algorithm, Art-2a (Song et al.,

1999), with a vigilance factor of 0.85 and a learning rate

of 0.05. The resulting clusters were refined by computation-

ally regrouping with a threshold of 0.90. Five distinct parti-

cle types (Fig. 2) were formed by manually grouping Art-2a

classes based on their characteristic mass spectra based on

the classifications described by Prather et al. (2013).

In addition to in situ single-particle composition mea-

surements using ATOFMS, SSA samples were collected for
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Figure 2. Representative mass spectra for each of the particle types

described in this study.

offline analysis by scanning electron microscopy (SEM).

Aerosol samples were deposited on silicon wafer substrates

using a micro-orifice uniform deposit impactor (MOUDI;

MSP Corporation). SEM images were collected using a Hi-

tachi S-4800 scanning electron microscope with a 5 kV

accelerating voltage and a 9.2–9.6 mm working distance.

Single-particle analysis was performed using computer-

controlled SEM combined with an IXRF Systems energy

dispersive X-ray (EDX) spectrometer (CCSEM/EDX). EDX

data were analyzed with Iridium Ultra software (IXRF

Systems) for automated particle analysis. The computer-

controlled system analyzes the sample on a field-by-field ba-

sis. Once particles are identified in a field of view, the soft-

ware acquires an X-ray spectrum for each particle. X-ray

spectra were acquired for 20 s at a beam current of 15 µA

and an accelerating voltage of 5 kV. Particle size was deter-

mined by automated measurement of the area of each parti-

cle. The area-equivalent diameter (dae) was then calculated

using Eq. (4):

dae =

(
4A

π

)1/2

, (4)
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Table 1. Tabulated number of particles analyzed by SEM-EDX in

each size bin.

dae Sintered Plunging Wave

(µm) glass filters waterfall breaking

0.3–0.4 166 171 54

0.4–0.5 76 75 41

0.5–0.6 29 42 37

0.6–0.7 17 37 31

0.7–0.8 13 49 28

0.8–0.9 38 48 32

0.9–1.0 31 29 27

1.0–1.1 35 38 28

1.1–1.2 25 29 25

1.2–1.3 20 41 22

1.3-1.4 14 44 26

1.4–1.5 11 45 30

1.5–1.7 16 59 45

1.7–1.9 33 62 27

1.9–2.1 26 52 33

2.1–2.3 20 36 17

2.3–2.5 18 19 13

2.5–2.7 23 13 9

2.7–3.0 17 5 6

Total

0.3–3.0 678 963 546

where A is the geometric area of the particle in the image.

Conversion of area equivalent diameter to physical diameter

for particles deposited on MOUDI substrates are associated

with an uncertainty in particle shape. The shape of particles

deposited on a substrate depends on viscosity and surface

tension (O’Brien et al., 2014), neither of which are known for

SSA. Consequently, particle sizes within the CCSEM/EDX

analysis were not converted to dp.

In total, 2187 particles with dae between 0.3 and 3 µm were

analyzed. Any particle intersected by the boundary of the

image was neglected to ensure that only particles that were

completely imaged are included in the analysis. All mea-

sured particles were segregated into size bins for analysis.

The number of particles analyzed in each size bin for each

aerosol generation method can be found in Table 1.

3 Results

3.1 SSA generation method intercomparison

The physicochemical properties of SSA particles have been

associated with the physical characteristics of bubbles in

many prior publications (e.g., Blanchard and Woodcock,

1957; Lewis and Schwartz, 2004; Sellegri et al., 2006;

Fuentes et al., 2010b; de Leeuw et al., 2011; King et al.,

2012); however, direct comparison with SSA produced by a

breaking wave in the laboratory, assumed to be a good proxy

for nascent sea spray, has only recently been realized (Prather

et al., 2013). The physicochemical characteristics of aerosol

production from bubble bursting have been linked not only

to the size distribution of SSA (Sellegri et al., 2006; Fuentes

et al., 2010b; Zábori et al., 2012) but also to the water uptake

properties of SSA particles (Fuentes et al., 2010b; King et

al., 2012). This study extends prior investigations by directly

probing the influence of bubble-bursting mechanisms on the

detailed composition of SSA particles using direct chemical

measurements at the single-particle level.

As discussed earlier, aerosol particles were generated us-

ing breaking waves, a plunging waterfall, and sintered glass

filters in natural seawater. The laboratory breaking waves

used here have bubble size distributions that are represen-

tative of those observed in open-ocean waves (Deane and

Stokes, 2002) and particles from the breaking waves are

taken to be the best proxy for oceanic SSA. As discussed

by Prather et al. (2013), the number size distribution of SSA

particles derived from sintered glass filters had a modal diam-

eter of approximately 60 nm, whereas the plunging waterfall

and wave-breaking particles exhibit modal diameters of ap-

proximately 190 and 200 nm, respectively (Fig. 3b). The dif-

ferences in size distribution shape and modal diameter sug-

gest that the dominant SSA production mechanism of SSA

from the sintered glass filters could be different from SSA

produced by wave breaking and the plunging waterfall. On

the other hand, differences in the number size distribution of

aerosols produced by each method could feasibly result from

simple scaling of aerosol sizes to the bubble sizes (as is ac-

cepted for the jet droplet mechanism; Lewis and Schwartz,

2004), since bubbles from the sintered glass filters did not

produce bubbles larger than 1 mm (Prather et al., 2013). If

this were the case, the size-resolved composition and mixing

state of the SSA produced by each method would be expected

to be identical.

3.1.1 Mixing state measurements by ATOFMS

Sea spray aerosol is composed of a mixture of aerosol par-

ticles that are chemically distinct, yet fall into several de-

fined “types”; this is referred to as the “external” mixing

state. For this intercomparison, the chemical mixing state

of 47 927 individual SSA particles generated by controlled

breaking waves, plunging waterfall, and sintered glass filters

was measured using ATOFMS. The particles were grouped

into four types described in detail by Prather et al. (2013):

sea salt (SS), sea salt with organic carbon (SS-OC), biologi-

cal (Bio), and organic-carbon-dominated (OC). A fifth type,

labeled “other”, contains Art-2a clusters with minor contri-

butions and/or are attributed to contamination from lab air. A

representative dual-polarity mass spectrum for the four main

particle types is provided in Fig. 2. The SS type is character-

ized by prominent ion markers for Na and Cl, with smaller

contributions from other inorganic species known to exist in

seawater (e.g., K, Ca, Mg). The SS-OC type is characterized
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Figure 3. (a) Size-resolved chemical composition of SSA particles

measured by ATOFMS for each bubble/aerosol generation method,

noted in white text. The vertical scale indicates the number fraction

of particles sampled by ATOFMS. The grayscale bar at the top of

each panel indicates the number of particles sampled in each size

bin. (b) Number size distributions measured by SMPS and APS,

corresponding to the data shown in (a). The sintered glass filter

method generates a significantly different number size distribution

of SSA particles and shows an enhancement in organic-rich parti-

cles in the dva = 0.8–2 µm range, when compared with the other two

generation methods. The second size axis in (a) labeled “Physical

Diameter” is provided for comparison with (b), noting that dva is

the size metric directly measured by ATOFMS.

by a larger ratio of organic marker ions (CN− and CNO−,

for example) to chloride. In addition, the contribution of salt

ion clusters (NaCl−2 , MgCl−3 ) is greater in the SS-OC type

than in the SS type, and the total absolute intensity of these

mass spectra were smaller than for SS. Particles within the

SS-OC type had a similar size distribution to SS-OC par-

ticles measured by transmission electron microscopy with

energy dispersive X-ray analysis (TEM-EDX) in prior stud-

ies of nascent SSA produced by wave breaking (Ault et al.,

2013; Prather et al., 2013). It is notable that both the SS and

SS-OC types have different size distributions and mass spec-

tral signatures, yet both contain markers for organic material

(e.g., CN−). The “biological” (Bio) particle type is charac-

terized by the presence of positive ion markers for Mg, Ca,

and transition metals with organic nitrogen, phosphate, and

carbohydrate negative ion markers (Pratt et al., 2009; Guasco

et al., 2013). The “organic carbon-dominated” (OC) particle

type has a large Ca ion marker, with Na also present but to a

smaller degree than in the SS and SS-OC types. The negative

ion spectrum contains markers for organic nitrogen, carbo-

hydrates, phosphate, and chloride. The presence of Ca in this

particle type is in correspondence with CCSEM/EDX anal-

ysis presented below and discussed further in Sect. 3.1.2 in

the context of the marine organic matter literature.

Particles with dva > 1 µm were characterized by large num-

ber fractions of SS and Bio particles, while particles with

dva < 1 µm were dominated by SS-OC and OC particles. The

size-resolved chemical composition of SSA produced by

each of the bubble generation methods shown in Fig. 3a is

shown alongside the corresponding number size distributions

for each method in Fig. 3b. The sampling efficiency for par-

ticles with dva > 1 µm in these experiments was greater than

for particles with dva < 1 µm. Therefore, the ability for the

ATOFMS to chemically speciate particles at sizes approach-

ing dva = 0.1 µm was dependent on the number concentra-

tion of particles present at that size. The sintered glass filters

produced approximately 10-fold higher size-resolved num-

ber concentrations than the other two methods (Fig. 3b).

The fraction of OC particles is higher for all mea-

sured sizes in the sintered-glass-filter-generated SSA parti-

cles compared to wave breaking, whereas the overexpression

of OC particles from the plunging waterfall is more mod-

erate. A slightly larger number fraction of biological parti-

cles with dva > 1 µm was also observed in the aerosol gen-

erated by plunging waterfall and sintered glass filters, com-

pared with wave breaking. Overall, the fraction of organic

and biological SSA particles generated in these experiments

increases with a distinct trend: wave breaking < plunging wa-

terfall < sintered glass filters. This trend is especially evident

in the supermicron size range, which is also the size range

containing the majority of the chemically characterized par-

ticles in this study. These ATOFMS results indicate that the

size-resolved composition of SSA is directly affected by the

physical mechanism of bubble generation.

3.1.2 Elemental composition measurements by electron

microscopy

Further single-particle composition measurements were con-

ducted using CCSEM/EDX, which allowed for quan-

titative chemical analysis of individual particles with

dae = 0.3–3 µm. Figure 4 compares the enrichment of three

different elements (X =Mg, K, and Ca) relative to Na from

a collection of individual SSA particles sampled from each

of the three generation methods. The comparison is pre-

sented as the size-resolved ratio of X / Na for aerosol par-

ticles generated using the plunging waterfall (Fig. 4a) and

sintered glass filter (Fig. 4b) schemes, divided by the size-

resolved X / Na ratio for SSA generated by wave break-

ing (the reference case). A value of 1 in Fig. 4 means that

there is no difference between the X / Na ratio in the SSA

generated by the methods being compared. The chemical

composition as determined by CCSEM/EDX is very simi-

lar across all sizes between the plunging-waterfall and wave-

breaking SSA particles. In contrast, SSA generated by the

sintered glass filter method shows ratios of Mg / Na, K / Na,

and Ca / Na compared to wave-breaking SSA that are much

greater than 1 for particles with dae = 1–1.5 µm, indicating

an enrichment of those ions in supermicron particles. In par-
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Figure 4. Elemental composition of particles produced via (a)

plunging waterfall (PW) and (b) sintered glass filters (SGF), com-

pared to particles produced via wave breaking (WB). The compari-

son is made using the ratio of the EDX intensities (counts per sec-

ond) for Mg, K, and Ca referenced to Na in SSA particles. Devia-

tion from unity indicates differences in chemical composition. The

number of particles in each size bin can be found in Table 1.

ticles with dae < 0.8 µm, these ionic species are depleted rela-

tive to wave-generated SSA, shown byX / Na ratios less than

1. It is important to note that the enhancement and deple-

tion ofX / Na ratios relative to wave-generated particles only

emerges when their size-resolved composition is measured.

Despite the significant deviations from unity observed in the

size-resolved particles produced by the sintered glass filter,

all three of the elemental ratio comparisons are close to unity

when averaged over all particle sizes (Fig. 4, insets). This

disparity between the two means of analysis highlights the

importance of making size-resolved single-particle measure-

ments due to inherent chemical heterogeneity in an externally

mixed aerosol.

Common results from both ATOFMS and CCSEM/EDX

analyses are the enrichment of Mg, Ca, and K in SSA

generated by sintered glass filters in supermicron particles.

ATOFMS measurements show that these cations are mainly

localized to OC and biological SSA particles (Fig. 2). The

tendency for inorganic cations to coordinate, or strongly as-

sociate, with organic and biological material in the ocean and

in SSA particles has long been recognized (e.g., Duce and

Hoffman, 1976). Divalent cations, such as Mg2+ or Ca2+,

have the ability to stabilize organic supramolecular struc-

tures (Verdugo, 2012) and coordinate surface-active organic

ligands at interfaces (Casillas-Ituarte et al., 2010). Magne-

sium has been shown to be a good tracer for SSA produced

from bacteria-rich seawater (Guasco et al., 2013) and has

been observed in aerosol over the ocean in association with

biological activity (Gaston et al., 2011). Hence, the enrich-

ment of Ca, Mg, and K in the 1–1.5 µm size range in the CC-

SEM/EDX analysis is in good agreement with the ATOFMS

results, which show an increased fraction of OC and biolog-

ical particles from the sintered glass filter-generated SSA in

this same size range, relative to wave production. The deple-

tion of Mg, K, and Ca in particles with dae < 0.8 µm observed

by CCSEM/EDX suggests that smaller particles have chemi-

cal trends opposite those with dae > 1 µm. ATOFMS measure-

ments did not achieve sufficient sampling statistics for de-

tailed comparative analysis. Consequently, any suppression

of organic matter in the dae = 0.1–0.8 µm size range could

not be dually corroborated and should be a topic of future

work.

3.1.3 Internal mixing state particles of SS-OC particles

The trend of increasing organic matter enrichment in SSA

by plunging waterfall and sintered glass filters compared to

wave breaking is not restricted to the variety of particle types

observed. Individual types of SSA particles, described in

Sect. 3.1.1, often contain mixtures of chemicals within each

particle; this is referred to as the “internal” mixing state. The

size-resolved fraction of particles containing sea salt mixed

with organic carbon (SS-OC) does not appear to change sig-

nificantly across the three methods (Fig. 3); however, the

amount of organic matter in SS-OC particles is different for

each bubble generation method. Figure 5 shows the fraction

of SS-OC particles that contain mass spectral markers for

organic matter, binned by the area under each ion marker

peak (an indicator of the quantity of each species in the parti-

cle). The fraction of particles that contain NaCl and each or-

ganic marker, as well as the organic ion marker peak area, in-

crease with the same pattern as described previously: break-

ing waves < plunging waterfall < sintered glass filters. There-

fore, even within the SS-OC particle type, organic matter is

enriched in SSA particles generated by sintered glass filters,

while the plunging waterfall produced only a moderate en-

richment in organic matter compared to breaking waves.

Morphological details of individual particles were mea-

sured using SEM images, examples of which are shown in

Fig. 6. The particle cores (which consist mainly of salts) are

more rounded in the sintered glass filter sample, compared

with the plunging-waterfall and wave-breaking samples. Dif-

ferences in the morphologies of vacuum-dried SSA particles

generated by each method were quantified using a circular-

ity parameter, C, which was calculated for nearly 100 parti-

cles with dae between 0.380 and 2.6 µm from each generation
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ganic nitrogen (CN−), oxygenated organic carbon (CH3COO−),

and phosphate (PO−
3
), considering only particles composed of an

internal mixture of sea salt and organic compounds (SS-OC) all

sizes. The vertical axis indicates the number fraction of SS-OC

particles whose mass spectrum includes each marker, with the

color indicating the peak area of the marker. Notice that, from

left to right, a larger fraction of SS-OC particles contain these or-

ganic/biomolecule marker ions; the peak area also increases, sug-

gesting that each particle contains more of each chemical species

moving from left to right.

method (Eq. 5).

C =
4πA

P 2
, (5)

where A is the area of an individual particle and P is

its perimeter. Particles were counted as either spherical,

if C was within 10 % of the value for an ideal sphere

(C = 1.00± 0.10), or cubic, if C was within 10 % of the

value for an ideal cube (C = 0.79± 0.08). Only the “core”

of each particle was accounted for in the circularity deter-

mination; “shadows” observed around the particles were ne-

glected. It was found that 56 % of the SSA particles gener-

ated by sintered glass filters were classified as spherical un-

der vacuum, whereas 44 % of the SSA particles generated by

the plunging waterfall and 32 % of the SSA particles gen-

erated by wave breaking were classified as spherical. Less

than 1 % of the particles measured were characterized as nei-

ther spherical nor cubic. For particles that are composed of

a mixture of sea salt and organic matter (e.g., SS-OC parti-

cles), it has been shown previously that increasing circularity

is associated with a greater organic/inorganic volume mixing

ratio as cubic crystallization is inhibited (Laskin et al., 2012;

Ault et al., 2013). Hence, agreement was observed between

the SEM morphology analysis and single-particle analysis

by ATOFMS: particles generated by the sintered glass filter

method contain more organic matter.

3.2 Continuous foam formation and SSA composition

Natural SSA is mainly produced by whitecaps in the ocean,

which are episodic in nature (de Leeuw et al., 2011). The vis-

ible white area on the sea surface during and subsequent to a

wave-breaking episode is due to the presence of foam, a col-

lection of bubbles floating at the air–sea interface, each sep-

arated from the next by a thin liquid film (Bikerman, 1973).

Whitecap foam persistence, measured in terms of its expo-

nential decay time, lies mostly in the range of 2–4 s, oc-

casionally extending to times as long as 10 s (Callaghan et

al., 2012). The discrete, episodic nature of wave breaking in

the natural environment and in wave channel experiments re-

ported here (mimicked also by the duty cycle of the plung-

ing waterfall) is in contrast to the behavior of continuously

generated bubble plumes from sintered glass filters. Con-

tinuous production of bubbles results in a persistent surface

foam, which has been implicated in alterations to SSA pro-

duction mechanisms (Keene et al., 2007; Tyree et al., 2007)

and water uptake properties (King et al., 2012). These obser-

vations led to the investigation of the role of time-modulated

(or “pulsed”) versus continuous bubble generation on parti-

cle production. Using a MART system (Stokes et al., 2013),

which produces aerosol through a plunging-waterfall appa-

ratus similar to that implemented in the wave channel inter-

comparison experiments described above, the sensitivity of

SSA composition to the intermittent nature of the plunging

waterfall was tested using both unamended natural seawa-

ter ([TOC]= 85 µM) and organic-enriched natural seawater

([TOC]= 400 µM) as described in Sect. 2.2.

3.2.1 Size distributions

The number size distributions of SSA particles were ob-

served to be the nearly identical (within 1σ ) between the

pulsed and continuous plunging protocols when imple-

mented using unamended natural seawater (Fig. 7a). How-

ever, a significant change in the shape of the SSA number

size distribution was observed when comparing pulsed and

continuous plunging-waterfall protocols in organic-enriched

natural seawater (Fig. 7b). The concentration of particles

with dp < 0.05 µm and dp > 0.3 µm were lower, while con-

centrations of particles with dp = 0.05–0.125 µm were higher

for continuous plunging when compared with pulsed plung-

www.atmos-meas-tech.net/7/3667/2014/ Atmos. Meas. Tech., 7, 3667–3683, 2014
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Figure 6. SEM images of particles generated by each of the three laboratory SSA generation mechanisms considered in this study (two

images shown for each case). All samples are dried in the vacuum of the SEM during the analysis process. The increased circularity of the

particle cores is visible when comparing the sintered glass filter SSA samples to the plunging-waterfall and wave-breaking samples.

ing in the same seawater. Continuous plunging resulted in a

tank-wide layer of foam that accumulated on the water sur-

face, whereas surface foam had a patchy character when the

plunging waterfall was pulsed at 4 s intervals. The reduced

concentration of particles with dp > 0.3 µm during continuous

plunging could be due to weakened jet droplet production,

and will be discussed in further detail in Sect. 4.3.

The correlation of changes in the size distribution for

dp < 0.05 µm with particles having dp > 0.3 µm suggests a

physical link between the production mechanism of both

large (dp > 0.3 µm) and small (dp < 0.05 µm) SSA particles.

The presence of a significant surface foam layer appeared

to enhance the production of SSA with dp = 0.05–0.125 µm,

suggesting that cap film breakup plays a significant role in the

production of SSA particles in this limited size range. Hence,

this type of deliberate foam accumulation experiment is a po-

tentially useful tool for isolating the production mechanism

of SSA particles via thin fluid film fragmentation for more

detailed studies.

3.2.2 Chemical composition

The chemical composition of SSA produced via continuous

and pulsed plunging were indistinguishable when generated

from unaltered natural seawater (Fig. 8a, c). However, con-

tinuous plunging in organic-enriched natural seawater was

associated not only with a change in the SSA particle size

distribution (Fig. 7) but also with more organic matter in SSA

particles sampled by ATOFMS (Fig. 8b). For instance, the

fraction of SS-OC particles measured by ATOFMS that con-

tained organic carbon markers, as well as the area under the

organic carbon marker peaks in the SS-OC particles’ mass

spectra, was substantially higher in SSA produced by contin-

uous plunging, as compared to pulsed plunging in organic-

enriched seawater (Fig. 8). This finding is in general agree-

ment with the response of cloud condensation nuclei activity

to foam buildup in a similar type of laboratory experiment

utilizing sodium laurate as a surface-active chemical proxy

for dissolved organic matter (King et al., 2012). Achieving

similar results to those of King et al. (2012) in this study

with only 1 % of the concentration of organic material rein-

forces the critical importance of the naturally complex chem-

ical composition of organic matter used to alter the seawater

in this and other recent laboratory SSA experiments (Fuentes

et al., 2010a; Moore et al., 2011; Ault et al., 2013; Collins et

al., 2013; Prather et al., 2013). The differences observed in

SSA composition between the pulsed and continuous plung-

ing modes explored here stress the importance of preserving

the transient nature of surface foam inherent to the wave-

breaking process in the production of SSA in the laboratory

when concentrations of organic matter in the seawater are el-

evated.

4 Discussion

Direct chemical measurements of laboratory-produced SSA

at the single-particle level described in this study indicate that

the physical mechanism for bubble generation is inherently

linked to particle composition. In this section, a variety of

hypotheses are provided for the results of this study, which

are discussed in the context of the existing literature. Each

concept discussed below is shown schematically in Fig. 9.
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Figure 7. Number size distributions for MART-generated SSA par-

ticles using continuous (red) and pulsed (black) plunging-waterfall

modes (±1σ error bars). The change in the shape of the size distri-

bution is clearly evident between the continuous and pulsed plung-

ing cases when the seawater is enriched with organic matter. Con-

centrations of particles with dp > 0.3 and dp < 0.05 µm are smaller

during continuous plunging, indicating a change in the SSA particle

production mechanism due to the overproduction of foam.

4.1 Bubble-mediated surfactant transport

As described in detail above, the size-resolved chemical

composition of SSA generated by sintered glass filters con-

tains a larger number fraction of OC particles in the super-

micron size range than are found in SSA from breaking

waves (Figs. 3 and 4). In addition, particles within the SS-OC

type, which do not show as significant a change in number

fraction as the OC particles, still undergo an enrichment in

organic matter from sintered glass filter production, as com-

pared to SSA from wave breaking and plunging waterfall

(Figs. 5 and 6). As discussed by Prather et al. (2013), the

bubble size distribution produced by the sintered glass filter

setup did not produce bubbles with radius > 1 mm. Subsur-

face bubbles are known to scavenge surface-active material

from the water column and transport the organics to the sea

surface (Liss, 1975). Since the efficiency of surfactant scav-

enging by rising bubbles increases as bubble radius decreases

(Blanchard, 1975), a greater degree of surfactant scavenging

in bubble plumes generated by sintered glass filters is ex-

pected as compared to plumes generated by wave breaking

or plunging waterfall, assuming the same gas flux rate for all

systems, but weighted toward smaller bubbles in the case of

the frit. On the whole, the process of surfactant transport to-

ward the air–sea interface would result in the accumulation of

organic matter in the sea surface microlayer (SML) (Keene

et al., 2007), which is a layer of material at the air–sea in-

terface up to 1 mm thick that is typically highly enriched in

dissolved and particulate organic material in the open ocean

(Carlson, 1983; Liss and Duce, 1997; Aller et al., 2005; Cun-

liffe et al., 2011). Some sintered glass filter aerosol genera-

tors have been designed to mitigate the over-expression of or-

ganics in the SML by continuously refreshing the surface of

the seawater subjected to bubbling (Keene et al., 2007; Mo-

dini et al., 2010; Bates et al., 2012); this design feature was

not explicitly tested in this study. Wurl et al. (2011) show

that the SML exists on the ocean surface for wind speeds

up to 10 m s−1 (global ocean mean wind speed is approxi-

mately 6 m s−1), so the existence of the SML is relevant for

many instances of wave-induced bubble and foam produc-

tion. At the same time, dynamic physical processes at the

ocean surface can exert control on the thickness and extent

of the SML (Cunliffe et al., 2013), so limiting organic matter

enrichment at the sea surface is likely important for SSA pro-

duction studies. Surface-active material is well known to be

important to foam lifetime; a recent study discussed its po-

tential influence on whitecap decay time measurements near

the east coast of the United States (Callaghan et al., 2012),

which was then explicitly tested in recent laboratory studies

of bubble decay times (Callaghan et al., 2013; Modini et al.,

2013). Still, the extent to which an organic-enriched surface

microlayer exists in laboratory-scale SSA generators repre-

sents the range of environments in the open ocean has not

been explicitly explored. Important considerations for future

SSA production studies include surfactant solubility, quanti-

tative analysis of surface/bulk mixing, the dilation, compres-

sion and packing of surfactant molecules, along with the al-

ready recognized role of subsurface bubble scavenging. As

reviewed by de Leeuw et al. (2011), the impact of bubble

rise distance could be a contributing factor in organic mat-

ter transport from the water column to the air–sea interface

(Blanchard and Syzdek, 1972, 1975; Blanchard, 1975), al-

though a recent theoretical assessment conflicts with these

results (Fuentes et al., 2010b). While this study did not sys-

tematically test the bubble transit distance as a contributing

factor in SSA organic matter content, we note that the transit

distance of bubbles from breaking waves in this set of exper-

iments (which includes a downward and upward path) was

similar to that of the sintered glass filter bubble plume (up-

ward path only), since the penetration depth of the wave was

about half the depth of the sintered glass filter setup.
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Figure 8. (a, b) Comparison of color-stack plots generated by sampling SSA produced by a plunging waterfall under “continuous” bubble

generation versus “pulsed” (4 s on/off) bubble generation. Large differences in SSA composition are observed when seawater organic matter

concentrations are high ([TOC]= 400 µM), coinciding with major differences in surface foam accumulation between the generation modes.

Only SS-OC particles are considered in (a) and (b). On the right, (c) shows a matrix of pie charts indicating the fractional contribution

of each of the particle types to SSA from both pulsed and continuous plunging with both low (85 µM) and high (400 µM) organic matter

concentrations in the seawater.

PlungingW
ater

Foam
Accumulation

Turbulent
Mixing Bubble

Scavenging

Trapped
Bubbles

Film Drainage

Figure 9. Process diagram of SSA production depicting phenomena

described in Sect. 4.

4.2 Surface water mixing

In the breaking wave and plunging-waterfall mechanisms,

mixing of sea surface material back into the water column

is a phenomenon that counteracts bulk-to-surface transport

of surface-active organic matter by the rising bubble plume.

Vertical mixing of surface water was observed concurrently

with air entrainment and bubble generation in prior wave

channel studies of plunging breakers (Rapp and Melville,

1990), and is expected to translate to bubble entrainment by

the plunging waterfall due to the similarity of the bubble for-

mation processes between these two SSA generation meth-

ods. The lack of mixing of the organic-enriched SML back

into the water column, as is likely the case for sintered glass

filters due to the lack of surface penetration, could also con-

tribute to the observed enhancements of organic matter in

SSA relative to wave breaking, as described above. The re-

sults provided in this study suggest that generating aerosol

using a technique where surface-active organic material is

mixed back into the water column provides a similar mitiga-

tion of organic enrichment in the SML. Based on this expla-

nation, the composition of SSA from the plunging waterfall

suggests that the surface water mixing regime lies between

that of wave breaking and sintered glass filters.

4.3 Foam layer accumulation

The impact of a layer of accumulated, persistent foam on

SSA production was investigated by comparing the size dis-

tribution and composition of SSA produced from the plung-

ing waterfall in pulsed and continuous operation. The two op-

eration modes produced SSA differently only while the sea-

water was enriched with organic matter ([TOC]= 400 µM),

and a persistent layer of foam was observed on the water sur-

face.

The transient nature of surface foam in natural wave break-

ing has been discussed in the context of a continuous plung-

ing water jet technique (Fuentes et al., 2010b), where the

bubble plume and foam on the water surface is allowed to de-

cay as it moves away from the jet impingement location. The

continuous production of bubbles that have a size distribution

closely mimicking that within oceanic breaking waves in an

experiment utilizing a plunging water technique may closely

approximate wave-breaking SSA composition at mean TOC
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concentration (60–85 µM), but not when using seawater that

is enriched with organic matter (Figs. 7 and 8). Addition of

soluble surfactants to salt water is known to increase bubble

lifetime (Modini et al., 2013), and can lead to more persistent

whitecap foam following a breaking wave event (Callaghan

et al., 2013). The properties of persistent foam are temporally

dynamic. Foam cell size distributions are subject to fluid film

rupture, which gives rise to processes which can both coarsen

the foam by coalescence (e.g., Colin, 2012) and cause foam

fining through daughter bubble production (Bird et al., 2010).

Direct measurements of aerosol production with quantitative

measurements of foam properties have not been shown in the

literature to date; however, results shown in Sect. 3.2, along

with those reported by King et al. (2012), indicate that foam

properties can exert a significant influence on the physical

and chemical characteristics of SSA.

As bubbles age on the seawater surface, the cap films are

known to drain and thin; these types of time-dependent pro-

cesses have been shown to influence aerosol production in

single bubble experiments (Modini et al., 2013). In this study,

the production of SSA particles from persistent foam that

is greater than one bubble layer thick (continuous plunging,

high [TOC]) was associated with increased organic matter in

the particles compared to SSA generated from the bursting of

bubbles while a less pronounced foam layer existed (pulsed

plunging, low [TOC]; Fig. 8). We hypothesize that foam bub-

ble bursting could (1) preferentially produce particles that are

more enriched in organic matter than free bubbles bursting at

the air–sea interface due to bubble cap film draining and thin-

ning processes, and/or (2) droplets produced by the bursting

of thin fluid films (film drops) are inherently enhanced in or-

ganics as a result of their production mechanism. While these

hypotheses are not mutually exclusive and the former would

require further detailed measurements, the latter concept is

supported by the coincidence of the accepted film droplet

size distribution (Lewis and Schwartz, 2004; de Leeuw et al.,

2011) and the size-resolved enhancement of organic matter

in nascent, submicron SSA particles (e.g., Keene et al., 2007;

Facchini et al., 2008; Gantt and Meskhidze, 2013; Prather et

al., 2013).

The existence of a layer of foam on the seawater surface

was also associated with a change in the shape of the SSA

size distribution (Fig. 7). The low concentrations of SSA

particles with dp > 0.3 µm is perhaps indicative of reduced

aerosol production by the jet droplet mechanism, based on

particle size (Lewis and Schwartz, 2004; de Leeuw et al.,

2011). The existence of the foam layer on the seawater sur-

face may be capable of prohibiting or curtailing jet droplet

production by assimilating rising bubbles into the foam layer

prior to rupture. The mechanism for jet droplet formation via

rapid retraction of surface water within the cavity (Lewis and

Schwartz, 2004) of a bursting bubble is likely to be impossi-

ble in the absence of a continuous liquid phase beneath the

bursting bubble, as in a foam that is greater than one bub-

ble layer thick. In addition, we suggest that jet droplets that

may have formed beneath the foam layer would have been

sequestered by the overlying foam, causing a reduction in

jet droplet introduction to the air above the foam (Fig. 9, in-

set). In either case, the reduced formation of particles with

dp > 0.3 µm when a persistent layer of foam was observed

clearly links a change in SSA production with surface foam

accumulation.

5 Conclusions

Due to uncertainties in the projections of global climate that

stem from natural aerosol sources, detailed studies of SSA

in controlled environments approximating preindustrial con-

ditions are of great importance (Menon et al., 2002; Ghan

et al., 2013; Tsigaridis et al., 2013). At the same time, con-

trolled laboratory studies that utilize physicochemically ac-

curate SSA production taking into account realistic biogeo-

chemical systems are critical for developing an understand-

ing of natural geochemical and geophysical interactions that

influence the global climate system. It has been shown in

this study that the composition of laboratory-generated SSA

was inherently sensitive to the physicochemical environment

(controlled by the bubble production mechanism) in which

bubbles were generated and allowed to burst. In addition, the

pulsed or periodic nature of bubble production was impor-

tant in controlling the transfer of organic matter to SSA via

surface foam accumulation when high concentrations of or-

ganic matter are present in the seawater. Based on the results

presented in Sect. 3.2, it is also shown that SSA production

studies with accumulated foam layers can be a useful tool in

enhancing the formation of SSA via thin fluid film rupture.

When compared with wave breaking and plunging wa-

terfall in this study, the sintered glass filter apparatus pro-

duced a different bubble size distribution and different sur-

face foam accumulation properties. The modal diameter and

shape of the sintered glass filter aerosol number size distribu-

tion are clearly distinguishable from the plunging-waterfall

and wave-breaking size distributions. Size-resolved, single-

particle chemical composition measurements of SSA parti-

cles produced by the sintered glass filters showed a larger

contribution of OC from supermicron particles compared to

those from both plunging waterfall and wave breaking. While

it has been established that the similarity of the bubble size

distribution in laboratory SSA generators to that in the open

ocean is an important factor (Fuentes et al., 2010b; Prather

et al., 2013), these authors suspect that turbulent mixing of

the organic-enriched surface microlayer back into the water

column by the breaking waves and plunging waterfall, and

perceived lack thereof by the sintered glass filters (as imple-

mented in this study), may play a role in the results presented

in the intercomparison portion of this study (Sect. 3.1). The

natural conformity of the physical and chemical environment

for bubble generation and bursting are critical for an accu-

rate reproduction of SSA generation in the laboratory. It is
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possible that a careful redesign of the sintered glass filter

setup used in this study could allow for SSA production that

more closely matches the wave-breaking method described

in this study. In general, new SSA generation schemes should

not only replicate the bubble size distribution of open ocean

waves but also the inherently turbulent and discrete nature of

the wave-breaking process.

The correspondence of similarities and differences in both

the size distribution and chemical composition of SSA parti-

cles generated by the methods explored in this study stresses

the inherent coupling between the SSA production mecha-

nism and its composition. Hence, this study indicates that

the similarity of the number size distribution of laboratory-

generated SSA to the best available reference (e.g., labora-

tory breaking waves) can be utilized as a first-order check on

SSA composition. This study takes important steps toward

bringing the marine environment into the laboratory by eval-

uating the natural fidelity of the starting material utilized for

many chemical and physical studies of SSA particles through

a critical intercomparison of various SSA generation mecha-

nisms.
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