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ABSTRACT 

It is shown that in a Hilbert space the only infinite equidistant systems of 
points are those obtained by translation and scaling from (in the complex case: 
almost) orthonormal systems. 

1. I N T R O D U C T I O N  

A trivial geometric argument leads to the conclusion that  a maximal sys- 
tem of equidistant points in the three-dimensionM Euclidean space consists 
of the four corners of a tetrahedron. 

In this note we want to discuss the structure of equidistant sets in ar- 
bitrary Hilbert spaces. Our results imply a characterization of infinite 
orthonormal sets in Hilbert spaces which, though completely elementary, 
seems to have remained unnoticed in the literature. 

2. F I N I T E  EQUIDISTANT SETS IN REAL HILBERT SPACES 

THEOREM I. 

(a) Let H be a real Hilbert space, and let x l , . . . , x m  c H be given such 
that 

Ix~ - xkl = e > 0 (1 < j < k < m) (1) 

and 

xl + . . . + x . ~  = 0. (2) 
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T~en 

Ix~l . . . . .  fx~l = 1 (3) 
m 

follows, and any m - 1 of the xj  are linearly independent. 
(b) I f  for two systems of m points in H (1) holds for the same constant 

c, then the systems are congruent. 

REMARK 1. If we do not refer to Euclidean norms, the assertions be- 
come false in general; e.g., in R n with the Chebyshev norm []-Iic¢ all 2 n 
points having components 0 and/or  1 form an equidistant system, whereas 
in the Euclidean case according to the theorem a maximum equidistant set 
in R n consists of n + 1 points. 

Proof. In order to prove (a) we first derive (3) by induction on m. 
The cases m = 1 and m = 2 being trivial, we assume tha t  (3) holds for 

some m > 2. Now let x l , . . . , X m , X m + l  E H be given such tha t  xl + . . .  + 
X m + l = 0 ,  [ x j - x k [ = c > O f o r  1 < j  < k < m + l .  We put 

z~ = zk + x'~+----A (1 < k < m),  
m 

whence by assumption 

1 .  

V z v  m 

Since [xk - Xm+ll = c (1 < k < m), we get 

= ~  1- +-- 
m" 

Hence Ixll . . . . .  Ixml follows, and thus (since m > 2 and the enumeration 
is arbi trary)  also Ixm+xl = Ixll.  

We therefore get for 1 < k < m + 1 

1) 
Ixkl 2 =  ~ -~- I -  + 

] 
m + l  

This completes the proof of (3). 



E Q U I D I S T A N C E  107 

We now prove the linear independence. To this end we first observe that  
because of 

(z j ,zk)  = 1 ~([xjl +(xk[  ~ - I x j - x k l  2) (4) 

we get ( x j , x k )  = -(c2/2rn)(1  <_ j < k < m) from (1) and (3). Hence 
multiplying 

) ~ l X l  Jr- " ' '  ~-  ~m-lXm-1 : 0 ( 5 )  

by xm leads to )~1 + " "  + )~m-1 = 0, and thus multiplying (5) by Xl gives 
)~1c2/2 = 0, whence A1 = 0. 

By symmetry  A1 . . . . .  Am-1 = 0, and also the linear independence of 
any m - 1 of the x j  follows. 

We prove (b) by induction on m. The cases m = 1 and m = 2 being 
trivial, we assume tha t  we are given two equidistant systems of m + 1 
points x l , .  • •, Xm, Xm+l and Yl,. • •, ym, ym+l. Without  loss of generality 
we suppose x l  + " .  + x,,~ = Yl + "'" + Ym =- O. 

Then by (3) and (4) we get 

1 [  ( 1 ) ]  (~'m+l,Zk) = ~ Lx~+ll ~ c~ - 7  1 +  (1 < k < m ) ,  

whence 

O :  (Xm+I ,X l -~ ' ' ' -~  Xm) : V Xm+ll 2 -  ]_-Jr- , 

and thus xm+l is orthogonal to the (m - 1)-dimensional subspace spanned 
by x l , . . . , x m ,  and Ixm+ll = (c /x/2)V/] '+  1 / m .  An analogous reasoning 
holds for the other system. 

By assumption there is an orthogonal transformation A such that  

A x k = y k  (1 < k < m ) .  

Now let B be an orthogonal transformation reducing to the identity on 
the (m - 1)-dimensional subspace spanned by Yl . . . . .  Ym and such tha t  
B A x m + l  -- Ym+l- The existence of B is obvious, since 

AXm+l ± Y l ,  • . • , Y m -  

Hence B A  is an orthogonal transformation such that  

B A x k = y k  (1 < k < m + l ) ,  

thus proving the congruence of the two given equidistant systems of m + 1 
points. • 
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3. INFINITE EQUIDISTANT SETS IN REAL HILBERT SPACES 

THEOREM 2. I f  (x;~)$E A is an infinite equidistant family in a real Hilbert 
space H, i,e. 

Ixx-x,]=c>O (~,p c A, ~#p) ,  

then there is an y C H with the following properties: 

(i) The mean-value relation 

N 

n = l  

holds for every countably infinite subfamily (x;~,,)nCN. 
(ii) The family 

is orthonormal in H.  

REMARK 2. The theorem shows that  the only infinite equidistant sys- 
terns in a real Hilbert space are those obtained by translation and scaling 
from orthonormal systems. 

Proof. We only need to prove assertions (i) and (ii) for countably in- 
finite families. The general case then will follow from a straightforward 
"zigzag" argument. 

Thus we suppose in what follows that  we are given an infinite equidistant 
sequence (xn),~eN in H. 

The sequence ((xl + --. + Xn)/n)ncN being bounded, there is a weakly 
convergent subsequence 

xl + . . .  + xt,. ) 
with a weak limit y E H. (This follows from the well-known Eberlein- 
Shmulyan theorem; see [1] or [3] for the general formulation, and [2, The- 
orem 4.25] for the simpler Hilbert-space case.) 

By (3) and (4) we get for j, k ___ In, j # k 

xl  + . . ' + x l . ,  X l + . .  
x j  - in , Xk -- In 

-1- Xl, ~ ~ --  C 2 

J 2In' 
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whence for j ,  kl, k2 < ln, kl,k2 C j  

X l + ' " + X l . .  
X j - -  In ,Xk t  - - X k 2 ;  ~ 0  

and thus also 

(Xj - - y ,  Xkl --Xk2 ) : 0  (kl,]~ 2 C j )  

109 

(6) 

follows. If we put kl = k, k2 = 1 ,2 , . . .  , ln  in (6), we get 

x j - ~ , x k -  i£ = x j - y ,  V~ 

and hence finally 

(xj  - y,  xk - y) = 0 for j ~ k. (7)  

Observing c 2 = Ixj  - xk l  2 = Ixj - yl 2 + [Xk -- yl 2 for j ~ k, we conclude 
that  all distances Ixj - y[ coincide and that  ( ( y ~ / c ) ( x n  - Y))neN is an 
orthonormal sequence in H.  

Now for any orthonormal sequence ( e n ) n e N  in H we have 

1 N en 2 

-R = -R 

whence for y we get 

N N y 2  c2 
E x ~  -- = 2N" • 
n=l  

4. COMPLEX HILBERT SPACES 

As is obvious, the theorems have to be modified if we consider complex 
scalars. For example, if (en)neN is an orthonormal sequence in a complex 
Hilbert space H,  then the sequence 

( e l , i e l , e 2 , i e 2  . . . . .  e n , i e n , . . . )  

is equidistant in H. 
But since the bijection 

( Z l , . . .  ~zn ) V---* ( : / : l~Yl~. . . ,~n,Yn)  



110 EDGAR M. E. WERMUTH 

(relating coefficients with respect to two orthonormM bases) from the uni- 
tary space C ~ onto the Euclidean space R 2n preserves distances, the results 
for real spaces apply in a straightforward manner to the complex case. We 
thus have 

THEOREM 3. 

(a) A maximal equidistant system in the unitary space C '~ consists of 
2n + 1 points. 

(b) I f  U l , . . . ,Um are equidistant points in a complex Hilbert space H 
such that 

and 

then 

luj - u k l  = c > 0  (1 < j  < k < m )  

U 1 - } - ' ' "  Jr U m : 0 

(s) 

lull  . . . . .  l u m l - -  1 , 
m 

and any m - 1 of the points are linearly independent over the reals. 
(c) I f  for two systems of m points in H (8) holds with the same c, then 

there is an isometry f : H --* H mapping the points of one system 
onto those of the other one. ( f  need not be linear but necessarily is 
additive and homogeneous with respect to real scalars.) 

(d) I f  (u~)~cA is an infinite equidistant family in a complex Hilbert space 
H, then there is a v E H such that for every countably infinite sub- 
family (u~,),~CN we have 

N 

- - v  

n = l  

Moreover, for all A, # E A, A ¢ # 

~ ( u ) , - v , u  u - v ) = O  and l u ) , - v  I = ] u  u - v ] .  

REMARK 3. This shows that the only infinite equidistant systems are 
the trivial ones, namely those obtained from a system (e~)~eh with levi = 
1 (A c A) and ~(e~,e , )  = 0 (A ~ #) by translation and scaling; such a 
system (e~) is "almost" orthonormal. 
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