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ABSTRACT

It is shown that in a Hilbert space the only infinite equidistant systems of
points are those obtained by translation and scaling from (in the complex case:
almost) orthonormal systems.

1. INTRODUCTION

A trivial geometric argument leads to the conclusion that a maximal sys-
tem of equidistant points in the three-dimensional Euclidean space consists
of the four corners of a tetrahedron.

In this note we want to discuss the structure of equidistant sets in ar-
bitrary Hilbert spaces. Our results imply a characterization of infinite
orthonormal sets in Hilbert spaces which, though completely elementary,
seems to have remained unnoticed in the literature.

2. FINITE EQUIDISTANT SETS IN REAL HILBERT SPACES

THEOREM 1.

(a) Let H be a real Hilbert space, and let x1,...,2,, € H be given such
that

|z; — x| =c>0 (I1<j<k<m) 1)
and

T4t Ty = 0. (2)
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Then

1
ol = = ol = sy/1- 3)
follows, and any m — 1 of the x; are linearly independent.
(b) If for two systems of m points in H (1) holds for the same constant
¢, then the systems are congruent.

REMARK 1. If we do not refer to Euclidean norms, the assertions be-
come false in general; e.g., in R™ with the Chebyshev norm || - ||, all 27
points having components 0 and/or 1 form an equidistant system, whereas
in the Euclidean case according to the theorem a maximum equidistant set
in R™ consists of n + 1 points.

Proof. In order to prove (a) we first derive (3) by induction on m.

The cases m = 1 and m = 2 being trivial, we assume that (3) holds for
some m > 2. Now let x1,...,Zm,Tm+1 € H be given such that z; +--- +
Tmt1 =0, |z; —zx|=c>0for 1 <j<k<m+1. Weput

Tm+1

whence by assumption
* c | 1

Since |2k ~ Tm41| = ¢ (1 € k < m), we get

(1 + %) (I:m2 + %Iwmﬂlz) = |z

m
2 2
c 1 c
2 m m
Hence |z1| = - - - = |z, | follows, and thus (since m > 2 and the enumeration

is arbitrary) also |Tm41] = |z1).
We therefore get for 1 <k <m+1

= (m) (50 3) + )
c? 1
7(1“ rnTl)

This completes the proof of (3).
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We now prove the linear independence. To this end we first observe that
because of

(zj,2k) = 3(lz;° + lekl® — [z — 2k f?) (4)
we get (z;,1x) = —(c®/2m)(1 < j < k < m) from (1) and (3). Hence
multiplying

AMZ1+ o F A 1Zm_1 =0 (5)

by Zr, leads to Ay + -+ + A1 = 0, and thus multiplying (5) by x; gives
Aic?/2 = 0, whence A\, = 0.

By symmetry A\; =+ -+ = A,—1 = 0, and also the linear independence of
any m — 1 of the x; follows.

We prove (b) by induction on m. The cases m = 1 and m = 2 being
trivial, we assume that we are given two equidistant systems of m + 1
points T1,...,ZTm, Tm+1 and Y1, .., Ym,Ym+1- Without loss of generality
we suppose Ty + -+ Ty =y1+ -+ Ym = 0.

Then by (3) and (4) we get

(1, Tk) = 1 |ZTma1]® — —-2 1+ 1 (1<k<m)
mEh 2 ! 2 m ’
whence

2
m c 1
0= (Tmt1,Z1+ - +Zm) :-2—['%"“‘2_—2_(1—}__)]’

and thus ,,+1 is orthogonal to the (m — 1)-dimensional subspace spanned

by Z1,...,Tm, and |Zmy1] = (¢/v2)y/1 + 1/m. An analogous reasoning
holds for the other system.
By assumption there is an orthogonal transformation A such that

Now let B be an orthogonal transformation reducing to the identity on
the (m — 1)-dimensional subspace spanned by yi,...,yn and such that
BAZ;11 = ym+1- The existence of B is obvious, since

A$m+1 L Y1y -y Ym-
Hence BA is an orthogonal transformation such that
BAzx, =y (1§k§m+1),

thus proving the congruence of the two given equidistant systems of m + 1
points. ]
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3. INFINITE EQUIDISTANT SETS IN REAL HILBERT SPACES

THEOREM 2. If(x)xea is an infinite equidistant family in a real Hilbert
space H, i.e.

ox—zul=c>0  (ApeA A#p),
then there is an y € H with the following properties:

(i) The mean-value relation

1 N
lim — =
2o =

holds for every countably infinite subfamily (x, )neN-

(ii} The family
V2
<—C‘($/\ - Z/)>A€A

REMARK 2. The theorem shows that the only infinite equidistant sys-
tems in a real Hilbert space are those obtained by translation and scaling
from orthonormal systems.

18 orthonormal in H.

Proof. We only need to prove assertions (i) and (ii) for countably in-
finite families. The general case then will follow from a straightforward
“zigzag” argument.

Thus we suppose in what follows that we are given an infinite equidistant
sequence (Z,)nenN in H.

The sequence ({x1 + -+ + Zn)/N)nen being bounded, there is a weakly

convergent subsequence
<$1 +'-'+:Elﬂ)
I n€EN

with a weak limit y € H. (This follows from the well-known Eberlein-
Shmulyan theorem; see [1] or [3] for the general formulation, and [2, The-
orem 4.25] for the simpler Hilbert-space case.)

By (3) and (4) we get for j, k < l,, j #k

T+ -+, Ty 4+, c
T ! R ! T
n n n
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whence for j, ki, ky <1, ki,ko #J

b e I o —0
Tj— —I_vxh — Ty ) =

and thus also

(xj — YTk — :L'kz) =0 (klka # .7) (6)

follows. If we put k; =k, ko = 1,2,...,1, in (6), we get

zy+---+x, Tp — T
27j-y,xk“'—‘l——'— =\% Y )
n n

and hence finally

(zj—yxx—y)=0 for j#k (7)

Observing ¢? = |z; — zx|? = |z; — y|? + |zx — y|2 for j # k, we conclude
that all distances |z; — y| coincide and that ((+/2/¢)(zn — Y))nen is an
orthonormal sequence in H.

Now for any orthonormal sequence (e, )nen in H we have

1 N
N2

n=1

2

L=

whence for y we get

2
02

= .

z2|

1 N
Zmn"y
n=1

4. COMPLEX HILBERT SPACES

As is obvious, the theorems have to be modified if we consider complex
scalars. For example, if (e,)nen is an orthonormal sequence in a complex
Hilbert space H, then the sequence

(61,161, 62,i62, Ceny en,ien, . )

is equidistant in H.
But since the bijection

(Zl,...,zn) — (xl’yl"",mnay’n)
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(relating coefficients with respect to two orthonormal bases) from the uni-
tary space C™ onto the Euclidean space R?" preserves distances, the results
for real spaces apply in a straightforward manner to the complex case. We
thus have

THEOREM 3.

(a) A mazimal equidistant system in the unitary space C™ consists of
2n 4+ 1 points.

(b) If ui,...,um are equidistant points in a complex Hilbert space H
such that
lu; —uk| =¢>0 (1<j<k<m) (8)
and

U+ -+ Uy =0

then

1

[ug] = - 1=,

and any m — 1 of the points are linearly independent over the reals.

(c) If for two systems of m points in H (8) holds with the same c, then
there is an isometry f : H — H mapping the points of one system
onto those of the other one. (f need not be linear but necessarily s
additive and homogeneous with respect to real scalars.)

(d) If (ur)ren is en infinite equidistant family in a complex Hilbert space
H, then there is a v € H such that for every countably infinite sub-
family (ux, )nen we have

Jim Z“An =
Moreover, for all \,u e A, A#pu
R(uy —v,uy, —v) =0 and |uy—v|=|u, —v|

REMARK 3. This shows that the only infinite equidistant systems are
the trivial ones, namely those obtained from a system (ex)xea with |ex] =
1 (A € A) and R(ex,e,) = 0 (A # p) by translation and scaling; such a
system (ey) is “almost” orthonormal.
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