Width optimization of laser patterning

October 18, 2014 | Bugra Turan, Stefan Haas

Mitglied der Helmholtz-Gemeinschaft

current density J_{FC} glass front-contact \rightarrow absorber \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V} $\sqrt{}$ front-contact back-contact position x

Motivation

site: pv-tech.org

Motivation

site: pv-tech.org

Fabrication of a series connected module

Motivation

Mitglied der Helmholtz-Gemeinschaft

[1] Gupta et al. Proc. 16th PVSC (1982)

Scribe width minimization

Approach: adaption of peak fluence F_p and beam radius ω_0

Distance from focal point z- z_0 [mm]

Constraints:

- Deviations of threshold fluence and laser pulse
 → unstable processing
- Stronger focusing \rightarrow decreased depth of focus

Front contact patterning (P1)

Thin scribes possible, but large amount of debris and/or HAZ

Electrical width of front contact separation

Detection of electrical properties by spatially resolved measurements

- Strong decrease of current flow, influence on active solar cell
 - \rightarrow Electrical width >> geometrical width
 - \rightarrow counterproductive for width minimization

Heat affected zone or barrier layer formation

Wet chemical post treatment

Front contact patterning (P1)

Summary after wet chemical treatment

- Thin scribes possible for both materials with good electrical quality
- For etched ZnO:Al width slightly increased
- Isolation of TCO in M Ω -range also after solar cell deposition

Absorber patterning (P2)

- Thin scribes possible for 300nm thickness
- For 1.4µm thick absorber scribe width limit above laser beam diameter
- Mechanical properties most probably responsible for thickness/radius dependence

Contact resistance: TLM setup

- Gupta calculations: 10µm radius (R_c~1Ω) counterproductive
- Change of specific contact properties?
- SEM: increased debris redeposition on TCO

Back contact patterning (P3)

- Even stronger mechanical constraints with additional back contact
- Large irregularities at scribe etch, tilted silver layer

Current increase taken at -1 V

- Rather constant behavior as function of F_{p}
- For 10µm radius always leads to highest shunting
- Similar behavior for 60µm and 20µm
 - \rightarrow Just like for P2 usage of 10µm counterproductive with detrimental impact!

Conclusion

- P1: scribe width mainly limited by depth of focus
 - \rightarrow Post treatment removes redepositions
- P2/P3: ablation mech. sets strong constraints on the width minimization
 - \rightarrow Thin scribes only possible for thin layers
- Electrical properties of are strongly influenced by scribe width
 - \rightarrow Thinner lines lead to worse electrical properties

Thank you for your attention!

Properties of Gaussian beams (P3)

18. Oktober 2014

-80

-40

40

0 Radius r [µm] 80

slide 18

Influence of ambient pressure

air

vacuum

Vacuum:

- → lower particle deposition on surface
- → decreased contact resistance

Electrical width of front contact separation

Detection of electrical properties by spatially resolved measurements

Strong decrease of current conduction and current generation
→ counterproductive for width minimization

October 18, 2014

Heat affected zone or barrier layer formation

Wet chemical post treatment

18. Oktober 2014

Gupta calculations: 10µm radius counterproductive for a-Si:H

October 18, 2014

slide 22

Current increase taken at -1 V

- Strong fluctuations detected
- Above onset fluence (dashed line) almost constant for a-Si:H
- 10µm radius always leads to highest shunting
- Tandem shunting always lower than a-Si:H

October 18, 2014