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Abstract. Oxidation by hydroxyl radical (OH) and ozonoly-

sis are the two major pathways of daytime biogenic volatile

organic compound (BVOC) oxidation and secondary or-

ganic aerosol (SOA) formation. In this study, we investigated

the particle formation of several common monoterpenes (α-

pinene, β-pinene and limonene) by OH-dominated oxida-

tion, which has seldom been investigated. OH oxidation ex-

periments were carried out in the SAPHIR (Simulation of At-

mospheric PHotochemistry In a large Reaction) chamber in

Jülich, Germany, at low NOx (0.01∼ 1 ppbV) and low ozone

(O3) concentration (< 20 ppbV). OH concentration and total

OH reactivity (kOH)were measured directly, and through this

the overall reaction rate of total organics with OH in each re-

action system was quantified. Multi-generation reaction pro-

cess, particle growth, new particle formation (NPF), parti-

cle yield and chemical composition were analyzed and com-

pared with that of monoterpene ozonolysis. Multi-generation

products were found to be important in OH-dominated SOA

formation. The relative role of functionalization and frag-

mentation in the reaction process of OH oxidation was ana-

lyzed by examining the particle mass and the particle size as

a function of OH dose. We developed a novel method which

quantitatively links particle growth to the reaction rate of OH

with total organics in a reaction system. This method was

also used to analyze the evolution of functionalization and

fragmentation of organics in the particle formation by OH

oxidation. It shows that functionalization of organics was

dominant in the beginning of the reaction (within two life-

times of the monoterpene) and fragmentation started to play

an important role after that. We compared particle formation

from OH oxidation with that from pure ozonolysis. In indi-

vidual experiments, growth rates of the particle size did not

necessarily correlate with the reaction rate of monoterpene

with OH and O3. Comparing the size growth rates at the sim-

ilar reaction rates of monoterpene with OH or O3 indicates

that, generally, OH oxidation and ozonolysis had similar ef-

ficiency in particle growth. The SOA yield of α-pinene and

limonene by ozonolysis was higher than that of OH oxida-

tion. Aerosol mass spectrometry (AMS) shows SOA elemen-

tal composition from OH oxidation follows a slope shallower

than −1 in the O /C vs. H /C diagram, also known as Van

Krevelen diagram, indicating that oxidation proceeds without

significant loss of hydrogen. SOA from OH oxidation had

higher H /C ratios than SOA from ozonolysis. In ozonoly-

sis, a process with significant hydrogen loss seemed to play

an important role in SOA formation.

1 Introduction

As an important class of atmospheric aerosol, organic aerosol

(OA) comprises a significant fraction of aerosol mass. It

accounts for around 50 % of dry tropospheric submicron

aerosol mass in many urban and rural locations (Kanakidou

et al., 2005; Jimenez et al., 2009; Zhang et al., 2011). OA has

an strong impact on air pollution, human health and climate

on the regional and global scale. A large fraction of organic

aerosol is contributed by secondary organic aerosol (SOA).

In spite of intensive studies in recent years, the source of

SOA still has considerable uncertainties with the estimated

global source ranging from 120 to 1820 Tg a−1 (Hallquist

et al., 2009; Spracklen et al., 2011; Goldstein and Galbally,
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2007). SOA is believed to mainly originate from the biogenic

volatile organic compounds (BVOCs) from plants (Hallquist

et al., 2009). Among them, monoterpenes are important due

to their high emission rates and high reactivity (Chung and

Seinfeld, 2002; Guenther et al., 1995, 2012).

The impact of SOA on the radiation budget of the Earth

thus depends on its particle number concentration, size distri-

bution and composition, which affect optical properties and

cloud condensation nuclei (CCN) activity of an aerosol (An-

dreae and Rosenfeld, 2008). Understanding particle forma-

tion and growth is therefore critical for assessing the impact

of SOA.

Particle formation and growth from BVOCs are mainly

initiated by hydroxyl radical (OH) and ozone (O3) oxida-

tion during daytime. SOA formation from ozonolysis of sev-

eral monoterpenes such as α-pinene, β-pinene and limonene

has been studied extensively (Iinuma et al., 2005; Presto et

al., 2005; Shilling et al., 2009; Yu et al., 1999; Ortega et

al., 2012; Saathoff et al., 2009; Tillmann et al., 2010; Hoff-

mann et al., 1997; Griffin et al., 1999; Lee et al., 2006; Ma et

al., 2008). However, particle formation from OH oxidation of

monoterpenes has been much less investigated and pure OH

oxidation of monoterpenes has seldom been investigated due

to the presence of O3 formed in the photooxidation process

(Eddingsaas et al., 2012; Ng et al., 2007; Lee et al., 2006).

SOA formation from pure OH oxidation of monoterpenes re-

garding the reaction process, such as the formation and role

of multi-generation products, and the influence of OH ox-

idation on particle growth is not clear. Particularly, despite

the importance of the OH oxidation in the particle formation,

the quantitative effect of OH oxidation on particle growth is

not available. Here we focus on the SOA formation from OH

oxidation of monoterpenes.

It is also interesting to compare the relative importance

of OH oxidation with ozonolysis of monoterpenes in parti-

cle nucleation and growth. A number of studies have inves-

tigated this question (Bonn and Moortgat, 2002; Burkholder

et al., 2007; Hao et al., 2009; Mentel et al., 2009), but often

at high VOC concentrations and the results are controversial.

Some studies have shown the importance of ozonolysis in

new particle formation (NPF) (Bonn and Moortgat, 2002),

while others have emphasized the importance of OH oxida-

tion (Burkholder et al., 2007; Hao et al., 2009; Mentel et al.,

2009). Studies at the simulation chamber JPAC (Jülich Plant

Aerosol Atmosphere Chamber) suggest OH and H2SO4 are

needed to initiate NPF (Mentel et al., 2009; Kiendler-Scharr

et al., 2009a, 2012; Ehn et al., 2014). Ehn et al. (2014) sug-

gest that α-pinene ozonolysis produces a class of extreme

low volatile organic compounds (ELVOC), a recently discov-

ered highly oxidized multifunctional products, which are im-

portant for the nucleation and possibly make up 50–100 % of

SOA in early stages of particle growth in Hyytiälä (Ehn et al.,

2012). Regarding particle growth, Burkholder et al. (2007)

stated that particle size growth rates for different oxidation

sources are nearly indistinguishable. Yet, Hao et al. (2009),

using the real BVOC emissions from plants, showed a much

more efficient role of ozonolysis than OH oxidation in parti-

cle growth. One reason causing the different results on nucle-

ation could be that VOC oxidation products are not the nucle-

ating agents. Another important reason for the controversy on

particle nucleation and growth is that the OH oxidation and

ozonolysis have seldom been separated when comparing the

SOA formation from both pathways.

In addition, the reaction rates of OH and O3 with organics

have to be quantified and comparable when one investigates

the relative role of OH oxidation and ozonolysis in particle

formation. To obtain the reaction rates of VOCs with OH, the

OH concentration is a required parameter. However, none of

these previous studies directly measured the OH concentra-

tion, which was either not stated or just modeled. Since the

detailed chemistry, including HOx generation pathways, of

BVOC photooxidation is still not well understood, modeled

OH concentrations may have significant uncertainties (Fuchs

et al., 2013; Kaminiski, 2014; Kim et al., 2013; Whalley et

al., 2011). Consequently, the relative importance of OH oxi-

dation and ozonolysis in particle formation and growth may

have large uncertainties when the comparison of both cases

is based on modeled OH concentrations and corresponding

reaction rates with OH.

In this study, we investigated the SOA formation and

growth of several common monoterpenes, α-pinene, β-

pinene and limonene, by OH oxidation at ambient relevant

conditions low NOx (0.01–1 ppbV), low VOCs (∼ 4 ppbV)

and low particle concentrations (sub-µg m−3 to several

µg m−3). The OH oxidation experiments were conducted at

low O3 concentration (< 20 ppbV) to ensure that OH oxida-

tion was the dominant reaction pathway. OH concentration

was measured directly, as was the total reactivity (kOH) of the

whole reaction system with respect to OH, so that the over-

all reaction rates of organics with OH were directly quanti-

fied (Lou et al., 2010). Note that kOH denotes OH reactiv-

ity throughout this paper rather than the rate constant for

the reaction of individual species with OH. Direct deriva-

tion of the overall reaction rate of total organics with OH

(product of OH reactivity of total organics and the OH con-

centration) from measured parameters is a unique feature

of this study. The multi-generation reaction process, particle

growth, NPF, particle yield and particle composition were

analyzed. A novel method which quantitatively established

the relationship of particle mass growth rate with the reac-

tion rate with OH was developed for the first time here to the

best of our knowledge. This method was further used to an-

alyze the multi-generation reaction process. Particle forma-

tion by OH oxidation was compared with that by ozonolysis.

Ozonolysis experiments were done in the presence of CO as

OH scavenger, so that ozonolysis was the dominant reaction

pathway. Compared with other OH scavengers, mainly or-

ganics such as butanol, cyclohexane, etc., CO helps keep the

RO2/HO2 concentration low since in the atmosphere HO2

usually exceeds or is close to RO2 concentration (Hanke et
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al., 2002; Mihelcic et al., 2003), in contrast with many labo-

ratory studies where RO2 concentration is much higher than

HO2 concentration (Kroll and Seinfeld, 2008). The relative

roles of OH oxidation and ozonolysis in SOA formation and

particle growth were evaluated from comparisons of OH-

and O3-dominated experiments. In particular, we used low

VOC concentration (∼ 4 ppb) with natural sunlight condi-

tions resulting in low particle loading (sub-µg m−3 to several

µg m−3). The low particle loading allowed us to investigate

the particle formation, particle growth and multi-generation

reaction process under ambient relevant conditions (Presto

and Donahue, 2006; Shilling et al., 2008, 2009; Pathak et al.,

2007). It also minimized the condensation of early generation

products with low oxidation state which is of little relevance

for ambient conditions (Shilling et al., 2009; Pfaffenberger et

al., 2013).

2 Experimental

2.1 Experiment setup and instrumentation

The experiments were carried out in the outdoor atmo-

sphere simulation chamber SAPHIR (Simulation of At-

mospheric PHotochemistry In a large Reaction chamber),

Forschungszentrum Jülich, Germany. SAPHIR is a 270 m3

double-wall Teflon chamber of cylindrical shape. The details

of the chamber have been previously described (Rohrer et

al., 2005; Bohn et al., 2005). The chamber uses natural sun-

light as the light source and is equipped with a louvre sys-

tem to simulate dark processes when the louvre is closed. It

is operated with high purity synthetic air (Linde LiPur, pu-

rity 99.9999 %). A continuous flow of 7–9 m3 h−1 maintains

the chamber at a slight overpressure of ∼ 50 Pa and compen-

sates for the sampling losses by various instruments. This

flow causes dilution of the reaction mixture with clean air at

an average loss rate coefficient of 9.35×10−6 s−1 (residence

time of ∼ 30 h), agreeing well with the dilution rates deter-

mined from measured H2O and CO2 time series. Pure nitro-

gen (Linde LiPur, purity 99.9999 %) constantly flushes the

space between the inner and outer Teflon wall to prevent in-

trusion of contaminants into the chamber. A fan ensures mix-

ing of trace gases within minutes, but reduces aerosol life-

time when it runs. The loss by dilution alone applies equally

to suspended particles and gases.

For the experiments described here, the chamber was

equipped with instrumentation characterizing gas-phase and

particle-phase species as well as physical parameters includ-

ing temperature, relative humidity, flow rate and photolysis

frequencies.

The actinic flux and the according photolysis frequen-

cies were provided from measurements of a spectral ra-

diometer (Bohn et al., 2005). NO and NO2 measurements

were performed with a chemiluminescence analyzer (ECO

PHYSICS TR480) equipped with a photolytic converter

(ECO PHYSICS PLC760). For a time resolution of 90 s the

detection limits of the NOx analyzer were 5 and 10 pptV and

the accuracies 5 and 10 % for NO and NO2, respectively. O3

was measured by an UV absorption spectrometer (ANSYCO

model O341M).

The concentrations of the VOCs were measured by a

proton transfer reaction-mass spectrometer (PTR-MS, Ion-

icon) (Jordan et al., 2009) and gas chromatography cou-

pled to a mass spectrometer (GC–MS, Agilent) (Apel et al.,

2008; Kaminiski, 2014). From the measured monoterpene

time series (shown in Fig. S3 in the Supplement), the time-

dependent monoterpene consumed during an experiment is

obtained. The measured monoterpene consumed also agrees

with that calculated from the initial concentration and loss by

the reaction with OH and dilution within the uncertainty of

measurement (PTR-MS: ±15 %, OH concentration: ±10 %)

and the reaction rate constant of monoterpene (Atkinson et

al., 2006; Atkinson and Arey, 2003; Gill and Hites, 2002) as

shown in Fig. S6. In the ozonolysis experiments, reactions of

VOCs with O3 in the sample line were found to cause addi-

tional monoterpene loss. Monoterpene concentrations were

therefore also quantified from initial monoterpene concen-

trations and the losses by reaction according to the reaction

rate of O3 with monoterpenes determined from measured O3

and by dilution.

OH, HO2 and RO2 radicals were measured using laser-

induced fluorescence (LIF). The uncertainty of the OH mea-

surement, determined by the accuracy of the calibration of

the LIF instrument, is 10 % (1σ). The details of LIF instru-

ment were described by Fuchs et al. (2012). The OH radi-

cals inside SAPHIR are mainly formed by the photolysis of

HONO (nitrous acid) directly coming off the chamber walls

through a photolytic process, and to a minor fraction by O3

photolysis (Rohrer et al., 2005). No additional OH generator

was used.

Total OH reactivity (kOH), which is equivalent to the in-

verse atmospheric OH lifetime, was measured also using

flash photolysis/laser-induced fluorescence (FP/LIF) tech-

nique that was first realized by Calpini et al. (1999) and

later by Sadanaga et al. (2004). kOH is a pseudo-first-order

rate constant, equal to the sum of products of the concen-

trations of all species reacting with OH with their rate con-

stants. Laser flash photolysis (LFP) of ozone is used to pro-

duce OH in a sample of air and LIF is applied to monitor the

time-dependent OH decay. From the time-dependent OH de-

cay the kOH was obtained. The instrument used in this work

at SAPHIR was deployed in previous field campaigns and is

described in detail elsewhere (Hofzumahaus et al., 2009; Lou

et al., 2010).

The OH concentration was used to calculate the OH dose

in order to better compare different experiments. The OH

dose is the integral of the OH concentration over time and

gives the cumulated OH concentrations to which gases and

particles were exposed at a given time of an experiment. One

hour exposure to typical atmospheric OH concentrations of
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2 × 106 molecules cm−3 results in an OH dose of 7.2 ×

109 molecules cm−3 s. The OH concentration and OH reac-

tivity were also used to calculate the reaction rate of OH with

total organics.

Particle size distributions were measured by a scan-

ning mobility particle sizer (SMPS, TSI DMA3081/TSI

CPC3785) with a size range 9.82–414.2 nm. Aerosol yield

was calculated using SMPS mass concentration assuming a

density of 1 g cm−3 to compare with previous studies in the

literature. Aerosol density is assumed to be constant through-

out one experiment, since from our previous studies the den-

sity was found to be relatively constant throughout the whole

experiment (Salo et al., 2011; Saathoff et al., 2009). Parti-

cles in the chamber are subject to wall losses as reported

previously (Salo et al., 2011; Fry et al., 2011). Size effects

of the particle loss were neglected here because of the nar-

row size distribution (geometric standard deviation < 1.3). In

this study, the particle wall-loss rate was determined using an

exponential fit of the decay of the particle number concentra-

tion after the nucleation has stopped for several hours (Carter

et al., 2005; Fry et al., 2011; Pierce et al., 2008). In addition

to particle wall loss, vapor wall losses to the wall have been

observed in the laboratory chamber studies (Matsunaga and

Ziemann, 2010; Zhang et al., 2014). The particle mass con-

centration corrected for dilution and wall loss is shown here

unless otherwise stated. Vapor wall losses were not corrected

here due to the difficulty to quantify, but the effect of va-

por loss on the particle mass concentration is discussed. The

uncertainty of the particle mass concentration, due to uncer-

tainty of the particle wall loss and vapor wall loss is also

discussed.

The chemical composition of SOA was characterized by

a high-resolution time-of-flight aerosol mass spectrometer

(HR-ToF-AMS, Aerodyne Research Inc., DeCarlo et al.,

2006). Particles enter the instrument through an aerodynamic

lens and are focused to a particle beam. The particles impact

on a tungsten oven at 600 ◦C and are flash vaporized into va-

pors under vacuum. The vapors are then ionized by 70 eV

electron impact (EI), and the resulting ions are detected by a

time-of-flight mass spectrometer operating at either a high-

sensitivity mode (V-mode) or a high mass resolution mode

(W-mode). In this study we used the so-called MS (mass

spectrum) mode which gets the size integrated overall com-

position of SOA.

To characterize the degree of oxidation of particles, the

O /C ratio was obtained. The O /C and H /C ratios, also

known as Van Krevelen diagram, were derived by the ele-

mental analysis of mass spectra obtained in the high mass

resolution W-mode as described by Aiken et al. (2007, 2008).

An updated procedure to calculate O /C and H /C was re-

ported to be in development (Canagaratna et al., 2015). How-

ever, the details have not been published yet; therefore, the

traditional method is still used here to derive the elemental

ratio. Corrections for the minor influence of gaseous compo-

nents were done before the calculation of the H /C and O /C

ratios. Chamber air contains CO2 and water vapor and both

gas-phase species contribute to the mass spectra. The con-

tribution of gas-phase CO2 and water vapor to m/z (mass-

to-charge ratio) 44 and to m/z 18, respectively, was inferred

from measurements during periods when no particles were

present. The values were subtracted to obtain the particle sig-

nals before the elemental analysis (Allan et al., 2004). No

collection efficiency correction was further used.

2.2 Experiment procedure

Two kinds of experiments, photooxidation and ozonolysis

of monoterpenes were carried out under humid conditions

with a starting RH ∼ 75 %. The summary of the experimen-

tal conditions is shown in Table 1. All the experiments were

conducted under NOx <∼ 1 ppb. No NOx was added to the

chamber, and background NOx originated mainly from the

wall. In the photooxidation experiments, the O3 concentra-

tion was < 3 ppb at the start of each experiment and did not

exceed 20 ppb over the course of an experiment. The OH ox-

idation was the dominant oxidation pathway (>∼ 95 % of

monoterpene loss). In a typical procedure, air in the cham-

ber was first humidified and then the louvre system was

opened for around 1.5 h. Afterwards monoterpene was in-

jected and the reaction of monoterpene with OH occurred.

After the photooxidation process, which was finished by

closing the louvre system, the reaction mixtures stayed in

the dark for around 1 h before they were flushed out. Before

nucleation there were some background particles present in-

troduced after humidification which had relatively large di-

ameter (median diameter 40–60 nm) but with fairly low con-

centration (refer to Table 1). Particle size before nucleation

was not shown in order to avoid confusion. The ozonolysis

experiments were conducted in the dark. After humidifica-

tion CO and monoterpene were added to the chamber. CO

(∼ 40 ppm) was used as OH scavenger to ensure that oxida-

tion by O3 was the dominant reaction pathway (> 95 % of OH

was scavenged) with little contribution of the OH oxidation

to monoterpenes losses. Afterwards, O3 generated from an

UV O3 generator was added to the chamber to start ozonoly-

sis reaction of monoterpenes.

3 Methods

In the reaction of monoterpenes with OH and O3, oxidation

products are generated, which condense on the particle phase

resulting in particle growth. In the case of OH oxidation,

multi-generation products can be formed from the further

reaction of first generation products with OH, while for the

ozonolysis of monoterpenes, with one carbon–carbon double

bond, the reaction products do not react with O3 any more

since the double carbon bond has been broken down. Particle

growth depends on the condensation flux, and thus the con-

centration of condensing products, of all generations. Since

Atmos. Chem. Phys., 15, 991–1012, 2015 www.atmos-chem-phys.net/15/991/2015/



D. F. Zhao et al.: Secondary organic aerosol formation 995

Table 1. Summary of experimental conditions. All experiments were performed at initial RH 75 % and NOx < 1 ppb.

Experiment VOC VOC initial [OH] Initial O3 Average T (K) Initial mass Rate coefficient

type type (ppb) (106 molecules cm−3) (ppb) (µ g m−3) (molecule−1 cm3 s−1)b

OH oxidation α-pinene 4 6.4 1.0 299 6.1 × 10−3 5.25 × 10−11

β-pinene 4 6.2 2.5 301 9.5 × 10−3 7.89 × 10−11

limonene 4 6.4 2.2 298 12.2 × 10−3 1.64 × 10−11

Ozonolysis α-pinene 4 NDsa 136 289 9.2 × 10−3 8.72 × 10−16

β-pinene 4 NDs 760 294 5.7 × 10−3 1.50 × 10−16

limonene 4 NDs 136 290 11.7 × 10−3 2.08 × 10−16

a Below the detection limit of instruments (0.3 × 106 molecules cm−3). b Atkinson and Arey (2003).

the concentration of condensing products is a function of the

reaction rate, particle growth is closely related to the reac-

tion rate of organics. We explored the relationship between

particle mass growth and reaction rate of the organics with

OH. When particles grow, the particle diameter enlarges and

the particle mass increases due to the condensation of the re-

action products. Here we use the term particle size growth

rate to denote the particle diameter increase and mass growth

rate to denote the particle mass increases. In the following

we will establish a quantitative relationship of the particle

mass growth rate with the reaction rate of OH with total or-

ganics for the first time, to the best of our knowledge. Since

all condensing species contribute to the particle mass growth

rate, the particle mass growth rate must be related to the re-

action rate of total organic species with OH, which is directly

accessible from the OH concentration measurement and the

kOH measurement in this study. The particle mass growth rate

is derived from the sum of the particle mass growth due to all

condensing compounds.

In a first step, we will relate the overall mass growth to the

OH gas-phase reaction rates with total organic species. We

describe this with a reaction of VOC i with OH, in which for

simplicity one molecule of species i reacts with OH, forming

one molecule of species i+ of the next generation:

i+OH−→ i+ . (R1)

According to the Raoult’s law we have the following equa-

tion, assuming the gas phase and particle phase are in equi-

librium:

C
g

i =
C

p

i

C
p
t

·C0
i , (1)

where C
g

i and C
p

i are the concentrations of i in the gas phase

and in the particle phase (molecules cm−3), respectively, C0
i

is the saturation vapor pressure of i expressed as gas-phase

concentration of i (molecules cm−3) andC
p
t is the concentra-

tion of all molecules in the particle phase; thus, C
p

i /C
p
t is the

mole fraction of i. For high-volatility species, C0
i is high for

given C
g

i and thus C
p

i is low or even negligible. The opposite

is true for low volatility species, C0
i is low and C

p

i is high.

When an infinitesimal concentration of i, dC
g

i , reacts via

Reaction (R1), corresponding to a change of i in the particle

phase, dC
p

i , from Eq. (1), one can get Eq. (2). C
p
t is assumed

to be constant in each time step because the change in each

time step is minor compared to C
p
t ; furthermore, loss of i is

compensated for by a gain in i+ when the vapor pressure of

i+ is sufficiently low to be on the particle phase and thus C
p
t

is approximately conserved.

dC
g

i =
dC

p

i

C
p
t

·C0
i (2)

Re-arranging Eq. (2), one can get

dC
p

i =
C

p
t

C0
i

· dC
g

i . (3)

Similarly, one can get

dC
p

i+1 =
C

p
t

C0
i+1

· dC
g

i+1. (4)

For the change in the particle mass concentration (m,

µg m−3) due to the reaction of species i by Reaction (R1),

we have(
dm

dt

)
i

=
dm

p

i+

dt
+

dm
p

i

dt
. (5)

dm
p

i (µg m−3) and dC
p

i can be related by

dm
p

i =
dC

p

i ·Mi · 106
· 106

NA

, (6)

where Mi is the molecular weight of species i (mol kg−1)

and NA is Avogadro’s constant.

Similarly with Eq. (6), for species i+, one can get

dm
p

i+ =
dC

p

i+ ·Mi+ · 106
· 106

NA

. (7)

By applying the relationship of i and i+ in the Reaction (R1),

we express

dC
g

i+ =−dC
g

i . (8)

www.atmos-chem-phys.net/15/991/2015/ Atmos. Chem. Phys., 15, 991–1012, 2015



996 D. F. Zhao et al.: Secondary organic aerosol formation

Substituting Eqs. (3), (4), (6)–(8) into Eq. (5), one can get(
dm

dt

)
i

=
dC

g

i

dt
·C

p
t

106
· 106

NA

(
Mi

C0
i

−
Mi+

C0
i+

)
. (9)

Assuming Mi+ and Mi are similar, with an average molecu-

lar weight M , one can get

mt = C
p
t

106
· 106

NA

M, (10)

where mt is total particle mass concentration.

Substituting Eq. (10) into Eq. (9), one can get(
dm

dt

)
i

=
dC

g

i

dt
·mt

(
1

C0
i

−
1

C0
i+

)
. (11)

If we relax our assumption that one molecule of i+ is formed

from the loss of one molecule of i in Reaction (R1), e.g.,

in case of fragmentation, Eq. (11) still holds (as shown in

Appendix A).

According to the reaction of i with OH, we have

dC
g

i

dt
=−ROH,i, (12)

where ROH,i is the reaction rate of species i with OH.

Substitute Eq. (12) into Eq. (11) and one can get(
dm

dt

)
i

= ROH,i ·mt

(
1

C0
i+

−
1

C0
i

)
. (13)

Considering all the species contributing to the particle phase,

we have

dmt

dt
=

∑
i

ROH,imt

(
1

C0
i+

−
1

C0
i

)
. (14)

Re-arrange Eq. (14) and

dmt

dt
=mt

∑
i

ROH,i

∑
i=1

ROH,i

(
1

C0
i+

−
1

C0
i

)
ROH,i∑
i

. (15)

Summing up all the species, we have

ROH =

ROH,i∑
i

, (16)

wherein ROH is the reaction rate of total organics with OH.

In the next step, we will derive a system characterizing

quantity in order to overcome the underdetermined knowl-

edge about the individual components due to the complex-

ity of monoterpene degradation. We define a new metric,

GEOH(t, i) (particle growth efficiency with respect to the re-

action of OH with total organics in the whole reaction sys-

tem, including the VOCs and their oxidation products) in

Eq. (17) for species i:

GEOH(t, i)=
1

C0
i+

−
1

C0
i

. (17)

One can also define∑
i

ROH,i ·
1

C0
i+

ROH,i∑
i

=
1

C
0

i+

, (18)

and∑
i

ROH,i ·
1

C0
i

ROH,i∑
i

=
1

C
0

i

. (19)

C
0

i+ and C
0

i are obtained from the average of 1/C0
i for all

organics weighed by the reaction rate with OH, which in a

certain way reflect the overall saturation vapor pressures.

Substituting Eqs. (16), (18) and (19) into Eq. (15), one can

get

dmt

dt
= ROH ·mt ·

(
1

C
0

i+

−
1

C
0

i

)
. (20)

Then, as Eq. (17), one can also define

GEOH(t)=
1

C
0

i+

−
1

C
0

i

. (21)

GEOH(t), a system describing quantity, is derived here in or-

der to characterize the chemical system. It is an overall av-

erage of GEOH (t, i) weighted by reaction rate with OH of

each species. The molecular weight of i+ is assumed to be

similar to that of i, i.e., neither functionalization nor frag-

mentation change the molecular dramatically. In the case of

fragmentation which could change molecular weight signifi-

cantly, the relationships above still hold with a slight change

of the format (as shown in Appendix A).

Substituting Eq. (21) into Eq. (20),

dmt

dt
= ROH ·mt ·GEOH(t). (22)

Arranging Eq. (22), one can get

GEOH(t)=

dmt

dt

ROH ·mt

. (23)

Equation (22) shows a quantitative relationship of the parti-

cle mass growth rate with the reaction rate of OH with to-

tal organics, which are linked by GEOH(t). GEOH(t) is the
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mass growth rate normalized to the OH reaction rate and

mass concentration, i.e., the mass growth rate per OH reacted

per aerosol mass concentration (as shown in Eq. 23). It is a

metric of how effectively the reaction with OH changes the

mass growth rate at a given mass concentration in a reaction

system. GEOH(t) has a unit of cm3 molecules−1 (reciprocal

of the unit of the concentration). It relates to the change in

overall saturated concentration of reaction products upon re-

action with OH as shown in Eq. (21). In our case, where we

measured OH and kOH, ROH is directly accessible. The re-

action rate of OH with total organics was calculated using

the measured kOH and subtracting the OH reactivity of inor-

ganic species (NO, NO2, CO). The contribution of HONO to

the total OH reactivity is neglected (< 1 %) since the HONO

concentrations are fairly low in these experiments (maximum

peak concentration of 300 pptv as measured by a long-path

absorption photometer, LOPAP; Häseler et al., 2009).

Note that in Eq. (1) we assumed that the particle is in equi-

librium with the gas phase. When the concentrations of con-

densing species changes slowly relative to the timescale for

the gas-particle equilibrium, gas-particle equilibrium is as-

sumed to be established at any moment (Zhang et al., 2012).

This quasi-equilibrium approach was used here and com-

pounds partition between gas and particle phase through dy-

namic condensation and evaporation (Pankow, 1994; Odum

et al., 1996). Theoretically many factors, such as diffusion,

surface accommodation, etc., can affect the timescale for gas-

particle equilibrium (Shiraiwa and Seinfeld, 2012) and hence

affect the particle mass growth. For example, several recent

studies suggest that particles may exist in a viscous state

(e.g., Vaden et al., 2011; Virtanen et al., 2010; Renbaum-

Wolff et al., 2013) and particle-phase diffusion could play a

role in the particle growth kinetics. In addition, the particle-

phase photolysis is not included in this derivation, which

could also potentially affect the gas-particle equilibrium. As

a result, the gas-particle equilibrium may not necessarily be

reached all the time. These are the limitations of the method

used in this study. If the equilibrium is not reached, the mass

growth rate in this case is the lower limit for the contribution

from gas-phase condensation. The deviation from the equi-

librium would result in a higher GEOH(t).

4 Results and discussion

4.1 Multi-generation reaction process and particle

growth

Figure 1 shows the time-dependent particle growth curve

(particle mass concentration as a function of measured

monoterpene consumed) from the OH oxidation of α-pinene,

β-pinene and limonene. After one monoterpene life time

(when the monoterpene concentration decreased to 1/e of

the initial concentration), only 13, 33 and 25 % of the to-

tal mass was reached for the OH oxidation of α-pinene, β-

pinene and limonene, respectively. This indicates the im-

portance of higher generation products in the SOA forma-

tion from OH oxidation of each monoterpene (Ng et al.,

2006). Our results differ from several previous studies car-

ried out at much higher VOC and SOA concentrations (Ng

et al., 2006, 2007). Ng et al. (2006) showed that the time-

dependent growth curve is almost linear for terpenes with

one double bond such as α-pinene and β-pinene. The differ-

ence can be attributed to the difference of VOC and parti-

cle concentration. At high particle mass loading, the species

with relatively high volatility such as first generation prod-

ucts significantly condense. At low particle loading, only the

species with relatively low volatility which require more ox-

idation steps (by OH) can significantly condense onto the

particle phase. Consequently, the later generation products

play important roles in the particle formation in this study.

The importance of multi-generation products agrees with Ed-

dingsaas et al. (2012), who showed that particle growth con-

tinues well after two lifetimes of α-pinene with respect to

OH oxidation at low NOx condition.

In contrast to OH oxidation, the total mass concentra-

tion increased roughly linearly with the consumed monoter-

pene concentration for the ozonolysis of each monoter-

pene (Fig. S1). The time-dependent growth curves of three

monopterpenes in the ozonolysis experiments agree with pre-

vious studies (Ng et al., 2006; Zhang et al., 2006) and a re-

cent study of Ehn et al. (2014) showing the formation of first

generation products as the rate-limiting step. There was an

apparent positive offset on the hydrocarbon consumed for α-

pinene and β-pinene, and barely an offset for limonene, since

the reaction products needed to reach their saturation con-

centration to condense on the particle phase. For limonene,

within the time resolution of our measurement they reached

the saturation concentration immediately. The offsets are

consistent with the findings of the nucleation threshold of

monoterpenes (Bernard et al., 2012; Mentel et al., 2009).

The differences of the threshold concentrations of different

monoterpenes are related to their properties.

To further investigate the role of multi-generation oxida-

tion by OH, the particle mass concentration and the me-

dian size as a function of OH dose are shown in Fig. 2. For

all three monoterpenes, the particle mass concentration in-

creased and size grew as the reaction proceeded and monoter-

pene reacted with OH (increasing OH dose). Then the in-

crease of the mass concentration and growth of size with re-

spect to OH dose started to slow down gradually and subse-

quently leveled off. Particle size even decreased after leveling

off in the case of limonene. For α-pinene, the photooxidation

reaction stopped in the dark after the louvre system of the

chamber had been closed before the particle mass could level

off. The changes in the particle growth in Fig. 2a were prob-

ably attributed to the significant fluctuation of OH concen-

tration resulting from the cloud coverage which also caused

significant fluctuations in the reaction rate of total organics

with OH in Fig. 4a.
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Figure 1. Time-dependent growth curve of aerosols from the OH

oxidation of α-pinene (a), β-pinene (b) and limonene (c) as func-

tion of hydrocarbon (HC) consumed (monoterpene here) from mea-

surement.

In the beginning of the reaction, monoterpene reacted with

OH generating low volatility compounds by the functional-

ization process (Hallquist et al., 2009), which condensed on

the particle and resulted in the particle mass increase and size

growth. The formation of the low volatility compounds such

as 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA) has

been found from monoterpene oxidation in one of our pre-

vious studies (Emanuelsson et al., 2013). This has also been

found from the oxidation of monoterpene and its first gen-

eration products by a number of studies (Hallquist et al.,

2009; Jaoui et al., 2005; Szmigielski et al., 2007; Claeys et

al., 2007; Müller et al., 2012; Kristensen et al., 2014). These

condensing compounds still continued reacting with OH

which could lead to functionalization as well as fragmenta-

tion (Hallquist et al., 2009; Kroll et al., 2009). Fragmentation

can generate high-volatility species thus promoting evapora-

tion. Since fragmentation increased with O /C and the role

of functionalization decreased (Kroll et al., 2009; Chacon-

Madrid and Donahue, 2011; Chacon-Madrid et al., 2010), the

role of fragmentation became more and more significant as

the reaction proceeded. When the fragmentation dominated

over functionalization, the overall volatility of the products

increased, i.e., the saturated vapor pressures increased. When

the overall concentration of condensing species dropped be-

low the overall saturation concentration due to the reaction

and dilution, a net negative flux of condensable compounds

occurred and these compounds started to evaporate from the

particles. Therefore, the particle size first reached a plateau

and even diminished as observed in the limonene oxidation

experiment. For α-pinene, particle growth did not reach the

plateau phase. This is because the reaction was stopped by

closing the louvre when particles were still growing.

Moreover, time series of GEOH(t), the metric of particle

growth efficiency due to reaction with OH, shed light on the

role of functionalization and fragmentation in the reaction

process. Figure 3 shows that the GEOH(t) time series and the

particle mass concentration as well as total OH reactivity of

organics for comparison. The change in GEOH(t) reflects the

evolution of the overall volatility of organics undergoing re-

action with OH and the relative role of functionalization and

fragmentation. GEOH(t) was positive and increased fast in

the beginning of the reaction. This indicates that the reaction

products had a lower volatility than the reactants, i.e., lower

saturation concentration (refer to Eq. (21)). As the volatility

decreased, GEOH(t) increased. The decreased volatility was

caused by functionalization, which played a dominant role

in the beginning. Afterwards, GEOH(t) gradually decreased,

which indicates the decrease of overall volatility of the or-

ganics slowed down. This indicates an increasing role of

fragmentation since fragmentation cleaved the carbon frame

and formed some smaller molecules with higher volatility.

As the reaction proceeded, the products got more oxidized

and the O /C ratio of products increased; the fragmentation

of the compounds became more and more significant (Kroll

et al., 2009; Chacon-Madrid and Donahue, 2011; Chacon-

Madrid et al., 2010). After the continuous decrease, GEOH(t)

decreased to almost zero or even negative for the limonene

case (Fig. 3c). This indicates that overall volatility of organ-

ics almost stopped decreasing and even increased after fur-

ther reactions of the functionalized intermediates with OH

(see limonene case in Fig. 3c). When the overall volatility of

the reactants is equal to that of the products, GEOH(t) is equal

to zero. From Fig. 3 one can recognize that GEOH(t) had de-

creased dramatically in the relatively early period of the reac-
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Figure 2. Particle mass concentration and median diameter as a

function of OH dose for the OH oxidation of α-pinene (a), β-pinene

(b) and limonene (c). The dashed vertical lines correspond to the

one and two lifetimes of each monoterpene with respect to OH oxi-

dation. The lifetime is the time when the monoterpene concentration

decreases to 1/e of the initial concentration.

tion (within approximate two lifetimes) when the mass con-

centration was still low, indicating the fragmentation started

to play an important role. The vibrations in the GEOH(t) of α-

pinene are attributed to the fast change of OH concentration

due to the cloud coverage and then clearing up, as mentioned

above.

For comparison, the H /C and O /C time series of SOA

are also shown in Fig. 3. The change in the H /C and O /C

ratios supports our analysis of the role of functionalization
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Figure 3. Time series of GEOH(t) (particle mass growth efficiency

with respect to the reaction of OH with organics, refer to the text for

details; for clarity, a 7 points moving average is shown), kOH(Org)

(OH reactivity of total organics), O /C and H /C from AMS data,

and aerosol mass concentration in the OH oxidation of α-pinene (a),

β-pinene (b) and limonene (c). The shaded area shows the dark pe-

riod. The dashed vertical lines in each panel show the one and two

lifetimes of monoterpene.

and fragmentation. GEOH(t) had decreased dramatically to a

much lower value when the O /C ratio increased to around

0.4 and leveled off. Accordingly, H /C started to decrease

from the beginning of the reaction and then leveled off at

the same time as O /C. The decrease of GEOH(t) reflects

the increasing role of fragmentation. As a reference, Kroll

et al. (2009) showed that for the reaction of squalane with
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OH fragmentation dominates when the organics are mod-

erately oxidized (O /C≈ 0.4), although the reaction com-

pounds are different. The branching ratio of fragmentation

and functionalization has been parameterized as the power

law of O /C (Donahue et al., 2012; Jimenez et al., 2009).

The higher O /C, the higher the role of fragmentation plays.

Based on the GEOH(t) time series, the particle formation ef-

ficiency in respect to the reaction with OH was high in the

beginning of the reaction although the mass growth rate was

low. In contrast, at the later period of the reaction, GEOH(t)

was low and the mass growth was mainly attributed to the

role of favorable partitioning at higher organic mass loading.

The occurrence of fragmentation in the reaction is sup-

ported by the formation of acetone, one small volatile com-

pound of monoterpene oxidation products. An increased ace-

tone concentration was observed in the OH oxidation of all

monoterpenes as reaction proceeded (as shown in Fig. S4 for

α-pinene as an example), implying the role of fragmentation

in producing small volatile compounds. The acetone concen-

tration was corrected for the dilution loss. However, we did

not observe a significantly faster acetone formation rate in

the later period of the reaction compared to the early period

of the reaction because acetone formation depends on its pre-

cursor concentrations and OH concentration, which were not

monotonic in our study. Unfortunately, many of the products

in the α-pinene oxidation cannot be detected and/or quanti-

fied by PTR-MS or GC–MS due to the loss to the sampling

line or degradation in the instrument, which prevents us from

doing further in-depth analysis.

In addition, GEOH(t) can shed some light on the vapor

pressure of the reaction products. Since the volatility of prod-

ucts decreases around 1–2 orders of magnitude in function-

alization (Ziemann and Atkinson, 2012), in the beginning

of the reaction when functionalization dominated, C0
n,i+ �

C0
n,i . Then, based on Eq. (21), the following equation is ten-

able:

GEOH(t)=
1

C
0

n,i+

. (24)

Since C
0

i+ is an average saturation pressure weighed in a

certain way as shown in Eq. (18). Equation (24) provides a

rough estimate of the overall vapor pressure of the organ-

ics from experimentally obtained GEOH(t). For α-pinene, β-

pinene and limonene OH oxidation, the overall vapor pres-

sure varied from around 2 × 10−4 to 1 × 10−3 Pa, 6 × 10−5

to 1 × 10−3 Pa and 8 × 10−5 to 2 × 10−3, respectively. As

a reference, the lower values for each monoterpene system

are of the same order of magnitude as the estimated vapor

pressure of the middle values between pinonic acid and pinic

acid, and norpinonic acid and keto-limonic acid, based on the

structure–activity relationship (Compernolle et al., 2011).

We established the relationship of particle mass growth

rate with the reaction rate of OH with organics. The rela-

tionship of the particle size growth rate with the reaction

rate is not straightforward. The size growth rate is propor-

tional to the deviation of the concentrations of condensing

species from their equilibrium concentrations, while the re-

action rate of monoterpene with OH and O3 is proportional

to the rate of the increase of condensing species concentra-

tions, i.e., the derivative of the concentrations. Additionally,

the equilibrium concentrations of the each species changes

continuously with their varying molar fractions in the parti-

cle phase during the reaction. Therefore, the reaction rate is

only indirectly related to the size growth rate and should not

necessarily correlate with the size growth rate as observed in

Fig. 4a and c. Still some variations in the size growth rate and

mass growth rate follow the variations of the reaction rate of

OH with organics and/or reaction rate of OH with monoter-

penes (such as Fig. 4a, b and c). These variations in the re-

action rates as well as the growth rates were mostly caused

by sudden changes of the OH concentration due to variations

of solar radiation affected by cloud coverage. In addition, the

fluctuations in the growth rate were partly attributed to the

fluctuations in the particle mass or size and to deriving the

growth rate from fitting the particle mass or particle size as a

function of time.

Comparing the particle growth of OH oxidation and

ozonolysis, the ratios of the peak OH reaction rate to the

O3 reaction rate for α-pinene, β-pinene and limonene were

around 1.0, 1.2 and 0.5, respectively. The corresponding

ratios of peak size growth rates for OH oxidation to that

for ozonolysis were around 1.0, 1.5 and 1.1. At a similar

monoterpene concentration and similar reaction rate of OH

or O3 with monoterpene, the size growth rates were com-

parable. This comparison indicates that generally OH oxi-

dation and ozonolysis have similar efficiency in the particle

growth of α-pinene, β-pinene and limonene. This result is

in contrast with the study of Hao et al. (2009), who found

a much more efficient role of ozonolysis in particle growth

from plant emissions than that of OH oxidation. Yet, our

study agrees with Burkholder et al. (2007), who reported the

nearly indistinguishable particle size growth rate for different

oxidation sources. Nevertheless, our experiments differ from

both of these studies in terms of OH scavenger used (CO used

in this study; cyclohexane and butanol used in Burkholder

et al. (2007) and Hao et al. (2009), respectively). Since CO

can cause a higher HO2 /RO2 ratio than cyclohexane and bu-

tanol, different OH scavengers could result in different radi-

cal chemistry which could further alter the reaction pathways

and products, and finally could affect particle growth.

4.2 New particle formation and SOA yield

Figure 5 shows the particle number concentration, mass

concentration, surface concentration and median diameter

of aerosols from each monoterpene by OH oxidation and

ozonolysis. The particle number concentrations of OH ox-

idation experiments were around 2× 103
− 6× 103 cm−3.

The particle number concentrations from the ozonolysis of
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Figure 4. Particle size growth rate, mass growth rate and reaction rate of OH or O3 with α-pinene (a, d), β-pinene (b, e) and limonene (c,

f). The left panels are from OH oxidation (the shaded area shows the dark period) and right panels from ozonolysis in the presence of CO as

OH scavenger. For the OH oxidation, the overall reaction rate of OH with total organics (reaction rate(OH+Org)) is also shown.

monoterpene were around 0.4×105
−1.6×105 cm−3, which

were much higher than that generated by OH oxidation of the

respective monoterpene. However, we have no indications

what compounds eventually initiated the NPF from ozonol-

ysis in the SAPHIR chamber made of Teflon FEP. The role

of OH oxidation and ozonolysis in the SOA nucleation and

growth from monoterpenes have been reported by a num-

ber of studies before with inclusive results (Bonn and Moort-

gat, 2002; Burkholder et al., 2007; Hao et al., 2009; Mentel

et al., 2009); however, experiments were performed often

at higher VOC and aerosol concentrations. In addition, the

role of monoterpene ozonolysis in nucleation in the pres-

ence of SO2 (without OH scavenger) was shown by Ortega

et al. (2012).

In our JPAC glass chamber (Mentel et al., 2009), OH

and H2SO4 are needed to initiate NPF (Mentel et al., 2009;

Kiendler-Scharr et al., 2009a, 2012; Ehn et al., 2014); it is

possible that in Teflon chambers in absence of OH and sig-

nificant H2SO4 formation, other unknown compounds (per-

fluorinated acids) may play a role.

SOA yields observed in this study are similar to those

observed before. SOA yield of α-pinene, β-pinene and

limonene by OH oxidation was 2.5, 6.8 and 16.9 % at the

aerosol loading of 0.5, 0.8 and 2.1 µg m−3, respectively

(Fig. S2). Since the multi-generation oxidation was the rate-

limiting step, the dynamic yield from OH oxidation was not

used (Presto and Donahue, 2006; Ng et al., 2006) and only

the final yield was derived. The aerosol yield of α-pinene OH

oxidation is roughly consistent with a previous study (Henry

www.atmos-chem-phys.net/15/991/2015/ Atmos. Chem. Phys., 15, 991–1012, 2015
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Figure 5. Particle number concentration, mass concentration (not corrected for losses), surface concentration and median diameter of the

aerosols from α-pinene (a, d), β-pinene (b, e) and limonene (c, f). The left panels are from OH oxidation (the gray shaded area shows the

dark period) and right panels from ozonolysis. The gray hatched area corresponds to the flushing out period.

et al., 2012), although there were only few data points in

that study overlapping the range of our study (< 1 µg m−3,

exact data not available from Henry et al., 2012), and thus

not shown in the figure). For β-pinene and limonene, there

are few data of the aerosol yield of OH oxidation available

especially at a low aerosol loading similar to this study in the

literature (Griffin et al., 1999; Hoffmann et al., 1997; Kim et

al., 2012).

The particle yields for the ozonolysis experiments for α-

pinene, β-pinene and limonene (shown in Fig. S2, together

with selected literature data at similar mass loadings) are

approximately in the range of or slightly higher than liter-

ature values (Pathak et al., 2007, 2008; Shilling et al., 2009;

Saathoff et al., 2009; Zhang et al., 2006). The difference

can be attributed to the difference in experimental conditions

such as OH scavenger type, the temperature, RH, etc. The

aerosol yields of ozonolysis for α-pinene and limonene were

higher than that of OH oxidation, while similar between both

oxidation cases for β-pinene. The difference in the aerosol

yield could be due to the difference in reaction pathways and

products composition between the OH oxidation and ozonol-

ysis. Also the temperature of the ozonolysis was lower than

the OH oxidation, which may affect the SOA yield. How-

ever, Pathak et al. (2007) only observed weak dependence

of SOA yield from α-pinene ozonolysis on temperature from

288 to 303 K, and especially at low α-pinene there was lit-

tle temperature dependence. Therefore, temperature is likely

to have only a minor effect on the SOA yield of ozonolysis

here.

Atmos. Chem. Phys., 15, 991–1012, 2015 www.atmos-chem-phys.net/15/991/2015/
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4.3 Chemical composition

The H /C ratio vs. the O /C ratio plot, known as Van Kreve-

len diagram, for the aerosols from OH oxidation and ozonol-

ysis is shown in Fig. 6. The O /C ranges for both oxida-

tion cases were similar, around 0.3–0.6. The O /C ranges

are consistent with the O /C range from α-pinene photoox-

idation and ozonolysis (Chhabra et al., 2011; Ng et al.,

2011; Pfaffenberger et al., 2013). They also agree with the

O /C value (0.33–0.68) in a plant chamber observations for

monoterpene-dominated emission mixtures (Kiendler-Scharr

et al., 2009b) when one calculates O /C from f 44 (the ratio

of signal atm/z 44 (CO+2 ) to total organics) (Ng et al., 2010).

The H /C ratio of SOA from OH oxidation was around

1.4–1.6, slightly lower than that of the precursor monoter-

pene (H /C= 1.6). This indicates that during the reaction

oxygen was added to the monoterpene without significant

loss of hydrogen especially in the initial period of the re-

action. SOA from OH oxidation of all three monoterpenes

tended to follow a slope of shallower than −1 starting from

monoterpene in the Van Krevelen diagram (Fig. 6a–c). This

is in contrast with the findings by Heald et al. (2010), but

consistent with those of Chhabra et al. (2011) and Ng et

al. (2011). Heald et al. (2010) found atmospheric OA fol-

lows a slope of −1 in the Van Krevelen diagram based on

a variety of ambient and laboratory studies, which indicates

the addition of the carboxylic group or equal addition of the

carbonyl and hydroxyl groups to average saturated hydrocar-

bon. However, in this study, monoterpenes are unsaturated

hydrocarbons. Therefore, oxidation such as adding two car-

bonyl or carboxylic acid groups per double bond can hap-

pen without significant loss of hydrogen, resulting in a slope

shallower than −1. This finding agrees with that of Chhabra

et al. (2011) who investigated a series of unsaturated hy-

drocarbons. Oxidation without significant loss of hydrogen

can also be achieved by a non-classical path, inserting O

(O–O) into C–H (C–C) bonds (Ehn et al., 2012, 2014). In

the classical path, increasing carbonylization/carboxylization

in saturated parts of the condensable molecules leads to in-

crease of O /C at simultaneous decrease of H /C. After the

initial period of particle formation (around one lifetime of

monoterpene), elemental composition of SOA from OH ox-

idation seemed to follow a slope more close to −1. This

indicates that the condensable species forming SOA under-

went more efficient hydrogen loss upon oxidation. Since the

double bond is more reactive and reacted first, the carbon

chain in the initial products became more saturated. Fur-

ther classical oxidation of these products required hydrogen

loss as ambient OAs (Heald et al., 2010). For the SOA from

OH oxidation, H /C decreased and O /C increased gener-

ally during the reaction. In the later period of the reaction

the change in O /C and H /C was quite minor (Fig. 3). The

relative stability of the O /C and H /C is likely to be at-

tributed to that, in the early period of the reaction (before

O /C reaches the maximum value), low concentrations of

multi-generation products were generated via functionaliza-

tion and had already condensed on the particle phase. As the

reaction proceeded, more of these similar multi-generation

products were formed and continued to condense on the par-

ticle. Further oxidation of the multi-generation products may

cause the fragmentation resulting in the formation of high-

volatility oxidation products, which did not condense signif-

icantly on the particle. As a result, the O /C ratio did not

manifest significant increase in the particle phase. This is

consistent with the analysis of functionalization and frag-

mentation via the evolution of GEOH(t). For β-pinene and

limonene, O /C even decreased slightly at the later period of

the reaction (Fig. 6b). This could be due to oligomerization

after condensation forming larger units while releasing water

(formation of esters) or O2 (dimerization of hydroperoxides)

or be due to fragmentation of the products leading to more

volatile products.

For SOA from ozonolysis, the H /C was around 1.2–1.4,

which was distinctively lower than that of the OH oxidation.

The lower H /C in the ozonolysis compared to photooxida-

tion was reported by Chhabra et al. (2011). It seemed that

a process with significant hydrogen loss such as addition of

carbonyl plays a more important role in the SOA formation

from ozonolysis compared to OH oxidation. In the reaction

of monoterpene with O3, taking α-pinene as an example, the

–CH2– group can be converted to the –C=O group which

reduces the H /C and increase O /C. One path way is shown

in Fig. S7. Monoterpene reacts with O3 producing RO2· rad-

ical, which can undergo an internal hydrogen shift forming

another R1O2· radical (Ehn et al., 2014). The R1O2· radical

can react with other RO2· radical forming the –C=O group

at the same time losing two hydrogen atoms.

In the individual ozonolysis experiments, the O /C and

H /C reached a stable value shortly (< 1 h) after the reaction

started and then did not show significant change. The differ-

ent trend with time between the OH oxidation and ozonolysis

was caused by the different reaction process. In the OH ox-

idation, after the particle formed, the reaction products were

subject to further reaction with OH. Hence the reaction prod-

ucts H /C and O /C kept evolving. In contrast, in the ozonol-

ysis the reaction ceased once O3 reacted with monoterpene.

Therefore, there was no further significant change in the

O /C and H /C in the ozonolysis.

4.4 Uncertainty of particle mass concentration

The particle mass concentration is used to derive the parti-

cle growth efficiency in this study. Uncertainty of the par-

ticle mass concentration relates to uncertainties in particle

wall loss, dilution and vapor wall loss. The particle mass

concentration has been corrected for the dilution and parti-

cle wall loss. The corrected particle mass concentration may

be affected by the uncertainty of different particle correction

methods. In this study, we determined the particle wall-loss

rate using an exponential fit of the decay of the particle num-

www.atmos-chem-phys.net/15/991/2015/ Atmos. Chem. Phys., 15, 991–1012, 2015



1004 D. F. Zhao et al.: Secondary organic aerosol formation

2.0

1.8

1.6

1.4

1.2

1.0

H
/C

1.00.80.60.40.20.0

O/C

2.0

1.8

1.6

1.4

1.2

1.0

H
/C

1.00.80.60.40.20.0

O/C

2.0

1.8

1.6

1.4

1.2

1.0

H
/C

1.00.80.60.40.20.0

O/C

2.0

1.8

1.6

1.4

1.2

1.0
H

/C

1.00.80.60.40.20.0

O/C

2.0

1.8

1.6

1.4

1.2

1.0

H
/C

1.00.80.60.40.20.0

O/C

2.0

1.8

1.6

1.4

1.2

1.0

H
/C

1.00.80.60.40.20.0

O/C

A

B

C

D

E

F

Figure 6. H /C and O /C ratios of SOA from the OH oxidation and ozonolysis of α-pinene (a, d), β-pinene (b, e) and limonene (c, f). The

left panels are from OH oxidation and right panels from ozonolysis. Dark color denotes the beginning of the experiments and yellow denotes

the later period. The red dashed line correspond to H /C= 1.6. The black dashed lines correspond to the slope of −2, −1 and −0.5.

ber concentration after the nucleation has stopped for sev-

eral hours (Carter et al., 2005; Fry et al., 2011; Pierce et al.,

2008). Another method that has been used to determine the

particle wall-loss rate is by fitting the decay particle mass

concentration after the condensation has finished (Presto and

Donahue, 2006; Pathak et al., 2007). In this study, we found

in most of our experiments, the particle wall-loss rate de-

termined through the decay particle mass concentration kept

evolving until the end during the photooxidation experiment;

this decay rate was lower than that of the period right after the

roof was closed and photooxidation stopped. This indicates

that particle formation (condensation) was still active and not

finished in the light period. In contrast, the particle wall-loss

rate through decay of particle number concentration was con-

stant during the later period of the photooxidation reaction

and higher than that determined through the decay of particle

mass concentration, which supports the condensation did not

finish. Therefore, the second method, which used the mass

concentration, did not apply to our study and we used the

first method, determining the wall-loss rate by particle num-

ber concentration. Once the wall-loss coefficient was deter-

mined, the particle mass concentration was corrected in ev-

ery step of the SMPS scans by the dilution and wall-loss rate.

Pierce et al. (2008) compared the results from different wall-

loss correction methods including these two methods men-

tioned here and a model approach, showing that different

methods agree within 10 % for the faster limonene ozonol-

ysis experiment and a factor of two for the slow toluene ox-

idation experiment. Unfortunately, we cannot compare the

difference of these two methods, since the method using the

particle mass concentration is not suitable for this study. We

estimated the uncertainty by investigating the variability of

Atmos. Chem. Phys., 15, 991–1012, 2015 www.atmos-chem-phys.net/15/991/2015/
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the particle wall-loss rate among different experiments. The

relative standard deviation of the particle wall-loss rate is

11 %. We did a sensitivity analysis to check the effect of un-

certainty of particle wall-loss rate on the corrected mass as

shown in Fig. S5. We found the corrected aerosol mass con-

centration is not sensitive to the uncertainty of the particle

wall-loss rate. For α-pinene experiment, a change of 10 and

50 % only results in a change of approximately 2 and 9 % of

the final corrected particle mass concentration. Considering

the uncertainty of our SMPS system (±10 %), we estimate

uncertainty of the corrected particle mass concentration is

12 %.

The wall loss of vapor and dilution can also affect the par-

ticle concentration which can result in an underestimation of

the particle concentration. But in the presence of pre-existing

particles, condensation on them will be able to compete with

wall loss, depending on the S/V (surface-to-volume ratio)

of the chamber, which is very favorable in our large cham-

ber, and surface density of the particles. The wall loss of

vapor was investigated in our SAPHIR chamber using ex-

periments in which pinonaldehyde, one important first gen-

eration product from α-pinene oxidation, was injected into

the chamber. The concentration was monitored over several

hours. Constant first-order decay with a rate constant of 2.8

× 10−6 s−1 was observed over a period of 14 h and no equi-

librium was observed. It was not possible to detect rapid ini-

tial losses of pinonaldehyde in the SAPHIR chamber due to

the chamber setup and injection procedures. The vapor wall-

loss rate is on the same order of magnitude as described by

Loza et al. (2014) but lower than that given by Matsunaga

and Ziemann (2010) and Zhang et al. (2014). Different va-

por wall-loss rates in different chambers are expected, since

vapor wall-loss rates depend on the mixing in the respective

chamber, the thickness of the diffusive boundary layer and

penetration into the chamber wall (Zhang et al., 2014). Mat-

sunaga and Ziemann (2010) found that vapor wall loss de-

pends on structure and compound vapor pressure in contrast

with Zhang et al. (2014) who used one vapor wall-loss rate

for all compounds in the whole reaction system. It will result

in uncertainties to extrapolate wall-loss rates of pinonalde-

hyde to all products from monoterpene oxidation. However,

as a first approach, we estimate the effect on the particle mass

concentration, assuming the wall-loss rate of pinonaldehyde

and same particle yields for all lost vapors (the same as in the

reaction system). The particle mass concentration would then

be underestimated by approximately 17 %. Combining the

particle wall loss and vapor loss by wall loss and dilution, the

uncertainty of the particle mass concentration is estimated to

be approximately 30 %. Without correcting the vapor wall

loss, the particle mass concentration is underestimated, and

so is the particle growth efficiency. In addition, the dilution

may also affect particle mass concentration through altering

the gas-particle equilibrium. Due to the unknown identities,

vapor pressure of the compounds and unknown amounts on

the particle, it is not possible in this study to correct this

effect. However, the compounds contributing to the particle

growth here have very low vapor pressure, which may make

the effect of dilution on the gas-particle equilibrium less sig-

nificant.

5 Conclusions

In this study, the SOA formation from OH oxidation of sev-

eral monoterpenes (α-pinene, β-pinene and limonene) was

investigated at ambient relevant conditions (low OA concen-

tration, low VOC and NOx concentrations) and was com-

pared with the SOA formation from ozonolysis (CO as the

OH scavenger). The OH dominant oxidation was achieved

at low O3 concentration. Multi-generation reaction process,

particle growth, NPF particle yield and chemical composi-

tion were analyzed.

The aerosol growth curve reflected the importance of

multi-generation products in the OH oxidation of three

monoterpenes. In the OH oxidation, we found the transi-

tion of functionalization and fragmentation correlated with

the evolution of particle size and particle mass as a function

of OH dose. A novel method was developed which quantita-

tively linked the particle mass growth rate to the reaction rate

of OH with organics via a metric of particle growth efficiency

of OH reaction. This method was also used to examine the

role of functionalization and fragmentation during the parti-

cle formation of monoterpenes by OH oxidation. Functional-

ization was found dominant in the beginning of the reaction

(within approximately two lifetimes of the monoterpene) and

fragmentation started to play an important role after that. The

particle growth efficiency of the OH reaction was high in

the beginning of the experiment, although the mass growth

rate was low due to the low particle mass. This new method

also provided an estimation of overall vapor pressure of the

products when functionalization was dominant. We show that

the overall vapor pressures vary from 10−5 to 10−3 Pa in the

OH oxidation. The method of quantitatively linking particle

mass growth rate to the OH reaction rate with organics will

be used in other VOC systems and ambient measurements to

further investigate the influence of OH oxidation on the par-

ticle growth. The relationship of overall reaction rates of the

total organics with OH with the particle growth rates applies

well in well-characterized chamber systems. Such a relation-

ship is being planned to be tested using more VOC systems

in the chamber. For the atmosphere, it is much more com-

plex to apply such a method. Different VOC types (such as

sesquiterpene, isoprene or linear alkenes) contribute to over-

all reaction rate of total organics with OH but may have dif-

ferent particle growth efficiencies resulting in different par-

ticle growth rates. This still needs to be characterized in ex-

periments.

The particle size growth rate did not necessarily correlate

directly with the reaction rate of monoterpenes with OH and

O3 in individual experiments. Particle size growth rates in-
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duced by the reaction with OH and ozonolysis were compa-

rable in this study at similar reaction rates of the monoter-

penes with OH and O3. This indicates that OH oxidation and

ozonolysis have comparable efficiency in particle growth.

The SOA yields of OH oxidation and ozonolysis in this

study are generally consistent with the values in the litera-

ture. Ozonolysis of α-pinene and limonene produced a higher

aerosol yield than the respective OH oxidation.

SOA from monoterpene OH oxidation generally followed

a slope of shallower than −1 in the Van Krevelen diagrams,

indicative of a process without significant loss of hydrogen

during the oxidation. In the later period of the reaction (af-

ter around one lifetime of monoterpene), SOA followed a

slope of close to −1. SOA from OH oxidation had a higher

H /C than that from ozonolysis. In ozonolysis, a process with

significant hydrogen loss, such as the addition of carbonyl,

seemed to play an important role in SOA formation.

In this study, we designed the experiment to study mech-

anistically the particle formation and growth; therefore, we

used two extreme cases: pure OH oxidation and pure ozonol-

ysis case. We did not do experiments with both OH and O3.

In the atmosphere, where both OH and O3 are present, prod-

ucts from the reaction of monoterpene with O3 can further re-

act with OH; hence, the chemical composition of aerosol (in

terms of elemental composition) may keep evolving continu-

ously. In the atmosphere, both OH oxidation and ozonolysis

of monoterpene are important pathways for particle forma-

tion and growth, with their relative importance depending on

the specific ambient conditions.

Atmos. Chem. Phys., 15, 991–1012, 2015 www.atmos-chem-phys.net/15/991/2015/
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Appendix A: Additional equations for the relationship

of particle mass growth and the reaction rate with OH

In the case of fragmentation, there could be more than one

product, i+1, i+2, i+p. Equation (11) in the main text is in

a slightly different form.(
dm

dt

)
i

=
dC

g

i

dt
·mt

(
p∑
k=1

1

C0
i+k

−
1

C0
i

)
(A1)

One can define

1

C0
avg,i+

=

p∑
k=1

1

C0
i+k

. (A2)

Fragmentation usually generates one small volatile molecule

and one less volatile molecule (assuming species Pi+1
).

1

C0
avg,i+

≈
1

C0
i+1

(A3)

Thus, i+1 can directly correspond to i+ in Eq. (11) in the

main text and will not change the format of Eq. (11).

We assume that the molecular weight of i+ is similar

to that of i, i.e., neither functionalization nor fragmentation

change the molecular dramatically. In the case of fragmenta-

tion, the molecular weight could change significantly if the

fragmentation happened in the middle of the carbon bone. In

this case we keep the molecular weight of each species.

Equation (14) becomes

dmt

dt
=

∑
i

ROH,imt

(
Mi+

M

C0
i+

−

Mi

M

C0
i

)
. (A4)

Equation (17) becomes

GEOH(t, i)=

Mi+

M

C0
i+

−

Mi

M

C0
i

. (A5)

Mi and Mi+ can be incorporated in the definition of the over-

all vapor pressure with a slight change:

∑
i

ROH,i ·

Mi+
M

C0
i+

ROH,i∑
i

=
1

C
0

i+

, (A6)

∑
i

ROH,i ·

Mi+
M

C0
i

ROH,i∑
i

=
1

C
0

i

. (A7)
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