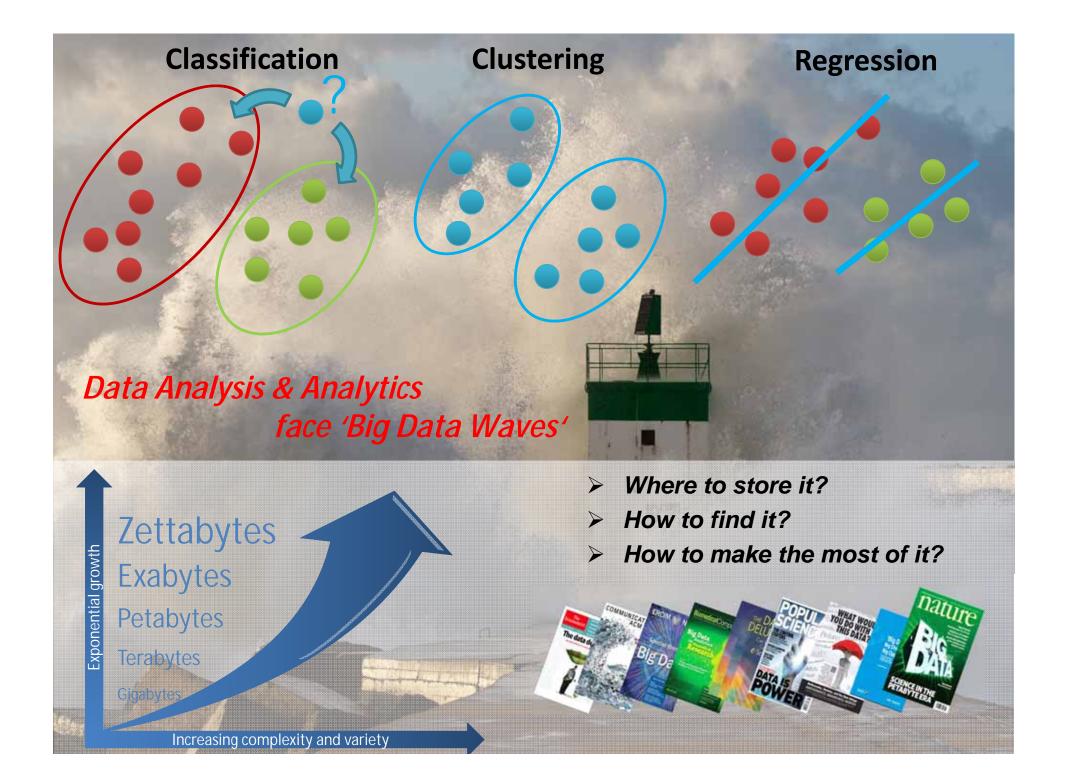
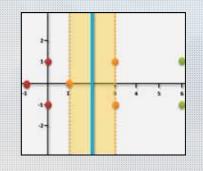
EUDAT

Towards a Pan-European Collaborative Data Infrastructure


Dr. - Ing. Morris Riedel

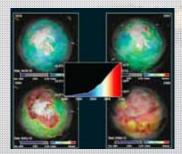
Head of Research Group 'High Productivity Data Processing', Juelich Supercomputing Centre, Germany Adjunct Associated Professor, University of Iceland, Iceland

VSC User Day, Brussels 16th January 2014



HPC Simulation Pre-/Post-processing

Data results need to be analyzed and understood Computed data must be stored and re-located Subsets of data might be referenced in publications Sampling vs. whole 'big data' sets (serial/parallel) Pre-/Post-Processing & visualizations as new data


Data Analysis & Analytics in HPC facing limits & challenges

HPC Simulation & Computational Science

Increasing complexity and granularity: data $\rightarrow \infty$ How data is organized has impact on performance Multi-physics simulations & multi-model ensemble E.g. physical processes in climate science (land, atmosphere, ocean, sea ice) & observation validation

[7] DOE ASCAC report

Better Prediction Accuracy... ... means 'Bigger Data'

tank	Site	System				Cores	(TFlop/s)	(TFlop/s)	(kW)		
0	Guangzhou China		Tianhe-2 (MilkyWay-2) - TH-IV6-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT		3,120,000	33,862.7	54,902.4	17,808	TOP 500 HPC		
0	DOE/SC/Oak Ridge National Laboratory United States		Titan - Cray XX7 . Opteron 6274 16C 2 200GHz, Cray Gemini Interconnect, NVIDIA K20x Cray Inc.		560,640	17,590.0	27,112.5	8,209	Systems		
Ð	DOE/NNSA/LINE United States		Sequela - B Custom IBM	lueGene/Q, Power BQC 160	C 1.60 GHz	1,572,864	17,173.2	20,132.7	7,890	11/2013	
				domain (800x400x100							
	simulated 240 second period, 100		ike domain 0x80 km^3)	domain (800x400x100		A					
	simulated 240 second period, 100	(600x30		domain (800x400x100				,	We	are	
	simulated 240 second period, 100 hour run-time Fault system	(600×30	0x80 km^3)	domain (800x400x100 km^3)							
	simulated 240 second period, 100 hour run-time Fault system interaction	(600×30	0x80 km^3) NO	domain (800x400x100 km^3) YES			u	nable	e to	store the	
	simulated 240 second period, 100 hour run-time Fault system interaction Inner Scale Resolution of	(600×30)	0x80 km^3) NO 00m lion mesh	domain (800x400x100 km^3) YES 25m 2.0 trillion mesh			u	nable	e to tput	store the	
	simulated 240 second period, 100 hour run-time Fault system interaction Inner Scale Resolution of terrain grid Magnitude of	(600×30)	0x80 km^3) NO 00m lion mesh oints	domain (800x400x100 km^3) YES 25m 2.0 trillion mesh points			u	nable out	to tput of a	store the t data all	
-	simulated 240 second period, 100 hour run-time Fault system interaction Inner Scale Resolution of terrain grid Magnitude of Earthquake	(600×30)	0x80 km^3) NO 00m lion mesh oints 7.7 0,000	domain (800x400x100 km^3) YES 25m 2.0 trillion mesh points 8.1 160,000			u	nable out	to tput of a	store the	

panda

2 Rensselaer

Earthquake Center

F. Berman: 'Maximising the Potential of Research Data' Information courtesy of the Southern California

[4] F. Berman

Summarizing Big Data Waves & Surfboards How to engage in the rising tide of scientific data?

Unsolved Questions:

Scale Heterogeneity Stewardship Curation Long-Term Access and Storage

Research Challenges: Collection, Trust, Usability Interoperability, Diversity Security, Smart Analytics, Education and training Data publication and access Commercial exploitation New social paradigms Preservation and sustainability

A SURFBOARD FOR RIDING THE WAVE

IC F

[2] KE Report

[1] HLEG Report

A framework for the future? Collaborative Data Infrastructure User functionalities, data capture Data & transfer, virtual research Users environments Generators **Riding the wave Data Curation** Data discovery & navigation, Trust workflow generation, annotation, [1] HLEG Report **Community Support Services** interpretability EUDAT Persistent storage, identification, authenticity, workflow execution, **Common Data Services** mining [3] EUDAT Web Page

Breakwaters – Offer Concrete Solutions for Researchers Is there a common set of services often needed by scientists?

'Concrete'

Next Steps ->

Identified Common Data Services

....

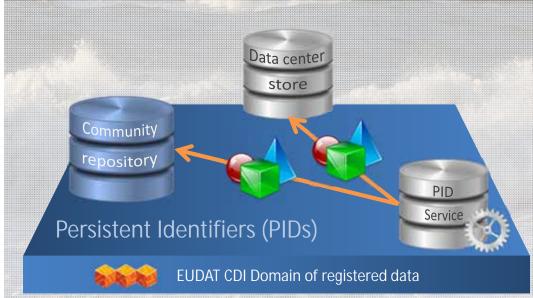
Research

Community

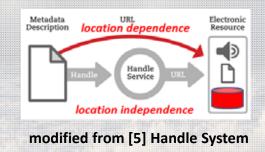
Persistent Identifiers for Research Data Safe Replication of Scientific Data Transfer of Data to/from Computing Simple Sharing of Research Data Metadata Catalogue

Research

munity specific services

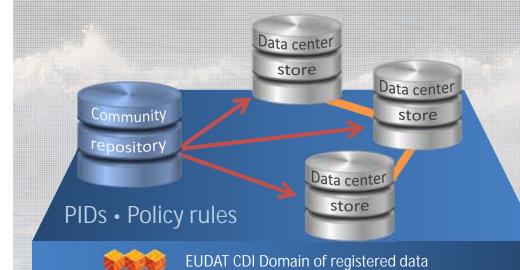

Services needed by some

Services common to all


Track the Origins and Characteristics of Information

Domain of Registered Research Data

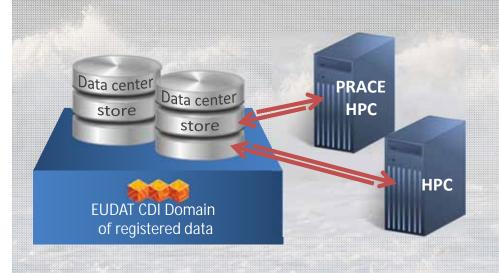
Persistent Identification of Scientific Datasets


Provides PID for each data/digital object
Based on the 'Handle System'

Providing a robust, safe, and highly available...

Data Replication Service

...to guard against data loss in long-term archiving & preservation

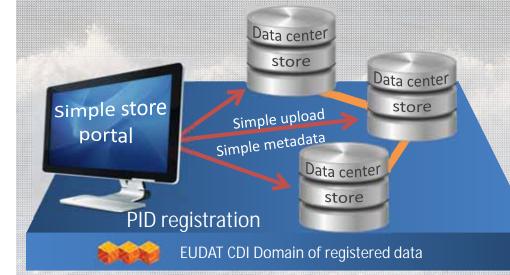


- ✓ Realized in registered data domain
- ✓ Enables reliable data curation
- Optimize data access for users
- ✓ Provides adaptable policy mechanisms

Bringing research data closer to powerful computers with a...

Data Staging Service

...for compute-intensive scientific data analysis



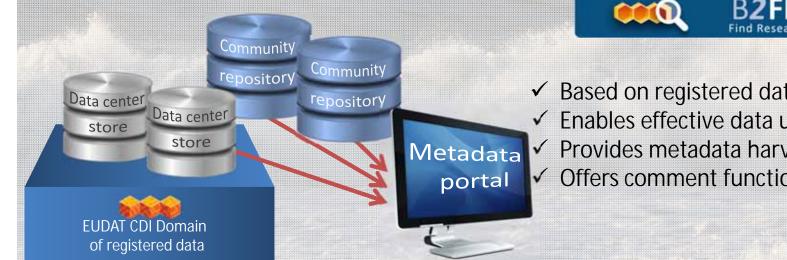
- ✓ Realized in registered data domain
- ✓ Enables easy access to execution services
- ✓ Offers CPU-intensive data transformations

Offering an easy data deposit and upload via the...

Simple Store Service

... to share data & collections with other researchers

✓ Think as 'YouTube for Scientific Data'


✓ Realized in registered data domain

✓ Upload 'long tail' research data

Find and access research data collections via the...

MetaData Service

... in a simple and user-friendly way

✓ Based on registered data domain ✓ Enables effective data understanding Provides metadata harvesting Offers comment functions on metadata

[6] M. Riedel, P. Wittenburg et al., 2013 B2FIND **Find Research Data** B2SHARE Store and Share Research Data B2STAGE ∞ Get Data to Computation

Long-term Data Preservation and Curation... bears potentials to lower 'Data Waves'

and supports data analytics & analysis

Addressed requirements of the High Level Expert Group on Scientific Data :

High reliability, so data scientists can count on its availability
Open deposit, allowing user-community centres to store data easily
Persistent identification, allowing data centres to register a huge amount of markers to track the origins and characteristics of the information
Metadata support to allow effective management, use and understanding
Avoids re-creation of datasets through easy data lookups and re-use
Enables easier identification of duplicates to remove them & save storage

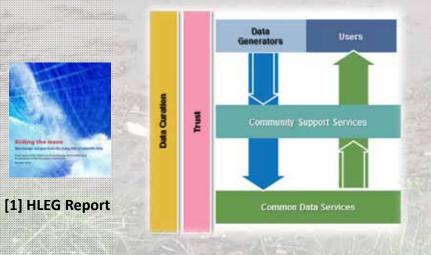
[1] HLEG Report

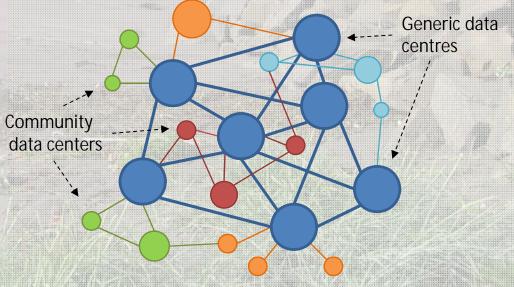
[3] EUDAT Web Page

	Suggestions for Requirements of a Data Infrastructure						
#	Long description	Short description					
HLR1	Open deposit, allowing user-community centres to store data easily	Simple data storing					
HLR2	Bit-stream preservation, ensuring that data authenticity will be guaranteed for a specified number of years	Bit-stream and long-term preservation					
HLR3	Format and content migration, executing CPU- intensive trans-formations on large data sets at the command of the communities	CPU-intensive transformations on large data sets					
HLR4	Persistent identification, allowing data centres to register a huge amount of markers to track the origins and characteristics of the Information	Persistent identification of research data					
HLR5	Metadata support to allow effective management, use and understanding	Metadata services and harvesting					
HLR6	Maintaining proper access rights as the basis of all trust	Proper access rights					
HLR7	A variety of access and curation services that will vary between scientific disciplines and over time	Data access and curation services					
HLR8	Execution services that allow a large group of researchers to operate on the stored data	Execution services for data analysis					
HLR9	High reliability, so researchers can count on its availability	Reliable services					
HLR10	Regular quality assessment to ensure adherence to all agreements	Quality assessment					
HLR11	Distributed and collaborative authentication, authorisation and accounting	Authentication, authorization & accounting					
HLR12	A high degree of interoperability at format and semantic Level	Interoperability					

Supporting...

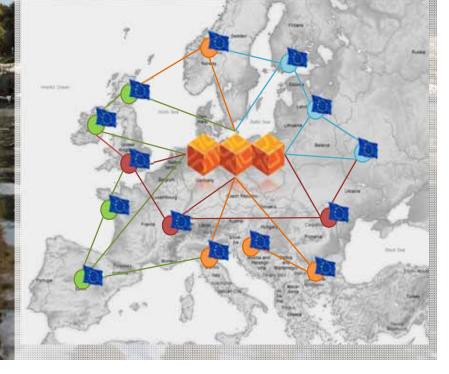
Proper Access Rights





Strong and Sustainable Community & Generic Data Centers

..to enable federated data services together with users

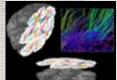


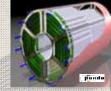
Key Approaches:

Bridging National & EU Solutions Not 'one single data infrastructure' Federated Network of Trusted Centers

Key Benefits for Scientific Users:

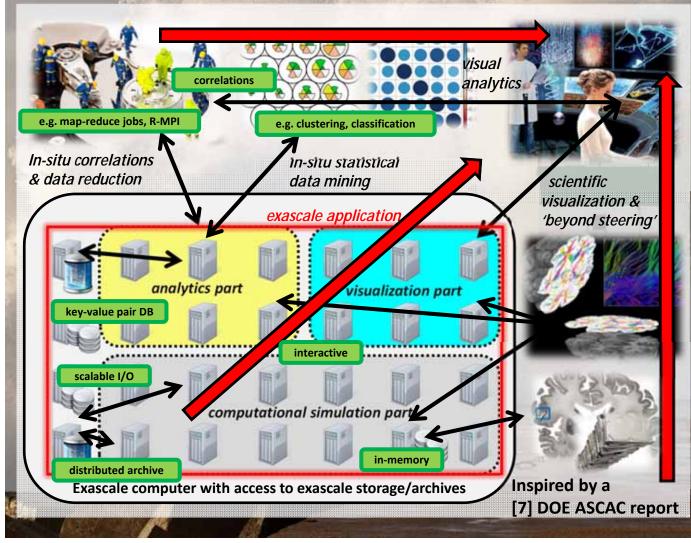
Trust, Sustainability, Interoperability, Diversity, Extensibility (e.g. Belgium?), New Social Paradigms & Sustainability

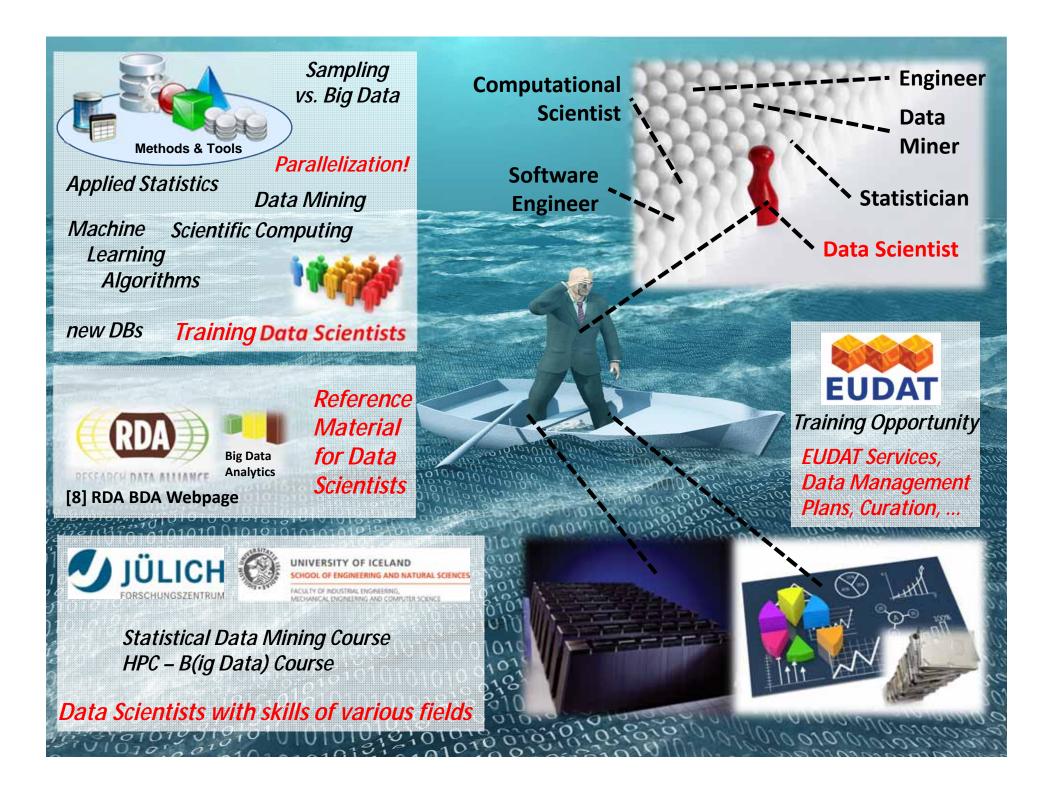

Preparing for new data challenges on the horizon ...

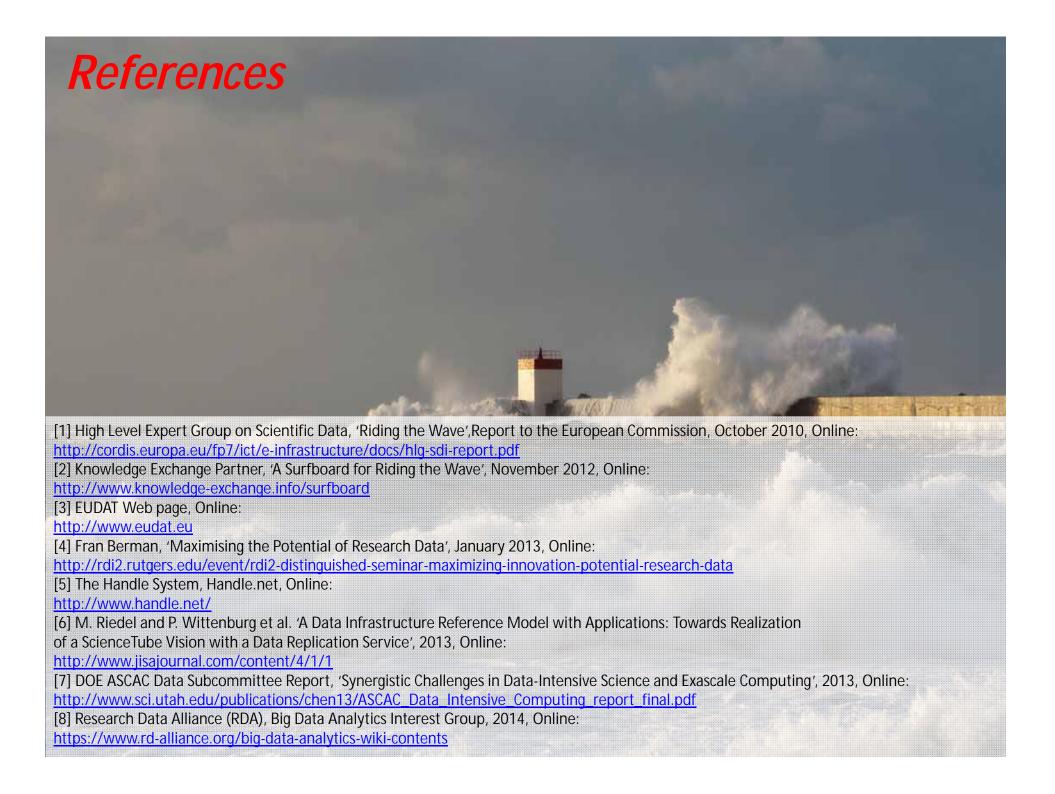

The square kilometre array ... 1 PB in 20 seconds

New EUDAT Services in development with users:

'EUDAT Box' dropbox-like service easy sharing


'Dynamic Data' immediate handling




Towards Exascale: Applications with combined characteristics of simulations & data analytics

'In-Situ Analytics'

Talk available at:

www.morrisriedel.de/talks

Contact:

m.riedel@fz-juelich.de