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Abstract

Using powerful Multicanonical Ensemble Monte Carlo methé@m statistical physics we
explore the realization space of random K satisfiability fA¥in search for computational
hard problems, most likely the 'hardest problems’. We dedoc realizations with unique
satisfying assignments (USA) at ratio of clause to spin nermb= )/ /N that is minimal.
USA realizations are found far-values that approach = 1 from above with increasing
number of spinsV. We consider small spin numbers in< N < 18. The ensemble
mean exhibits very special properties. We find that the dgn$istates of the first excited
state with energy on®; = g(E = 1) is consistent with an exponential divergenceNin
(; « exp[+rN]. The rate constants fak = 2,3,4,5 and K = 6 of KSAT with USA
realizations atv = 1 are determined numerically to be in the intervak 0.348 at K = 2
andr = 0.680 at K = 6. These approach the unstructured search JValugvith increasing
K. Our ensemble of hard problems is expected to provide a ¢ektdy studies of quantum
searches with Hamiltonians that have the form of genenagisiodels.

Keywords: Spin Glass, Monte Carlo, Quantum Adiabatic Computation

1. Introduction

Random satisfiability problems like three satisfiabilit$$£8') and its generalization KSAT
form a corner stone of complexity theory, a very active regearanch in formal logic and
computer science. In these theories one is concerned vgibaloforms 7 (X') defined on
some bit spacX and one discusses the question whether or not there exiasfssaynment
Xy that turns the value of the logical forth(X,) into “true”. The decision problem of
KSAT and its accompanying function problem: the actualaltton of X, at givenF(X)
for K > 3 belong to the class of NP complete theorles [1], which fopeadictical purposes
implies computational intractability. In these theoriesivery common that worst case re-
alization ensembles of forni5(X) exhibit an algorithm dependent complexéty that rises
exponentiallyC' o< exp[+r/N| with the number of bitsV. The rate constantsare smaller
than the unstructured search value In2 but at the same time can take values that are finite
fractions ofln2. This implies, that there exist problems which are not dadlvaven for small
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numbers of bits likeV = 100, neither by analytic nor numeric methods, even usung brute
computational force.

It is the privilege of statistical physics to turn the abstraotion of satisfiability into
studies of Hamiltonian systems upon mapping the bit degoédéieedom X; = 0,1 via
s; = 2X; — 1fori = 1,..., N to Ising degrees of freedom) + 1, and upon introducing a
suitable Hamiltonian{ksat Whose ground-states at enerfy= 0 map one by one to the
satisfying assignments gf(X). One may either consider classical statistical physicsahe
the theory is supplied by artificial thermal fluctuations mteirse temperaturg = 7!
within the framework of the canonical partition functiéfe, = > . . exp[—SHksar] Or
alternatively, consider the quantum statistical theoryPafili spinsS?, SY and S7? with the
guantum partition function

Zq=Tr < U |exp[-B[(1 = X)) S+ MHysar(S])]] | ¥ >, (1.1)

where quantum fluctuations at Idiv ~ 0 are tuned via an external paramekerFor both
cases the mathematical intractability is encoded into igaytheories and it is an exciting
research topic to study its consequences i.e., phasetioassand correlations from various
points of view. For the classical theory it was shown, thahpatational intractability is
related to a phase transition - the SAT transition - alongpttiecipal parameter direction
a = M/N of random KSAT theories [2], the ratio hereby denoting the ratio of claudé
to spin N numbers. In a later effort complexity related observablesanwdetermined ana-
lytically within the framework of replica symmetry breakjirtheory for random 3SAT [3],
and also numerically in large scale simulations [4]. In jeatar the critical point of the
3SAT transition was determined to bg = 4.267... analytically. For the quantum theory,
and within quantum information theory it was conjecturedt thdiabatic quantum compu-
tations (AQC) based on the properties£f could possibly obtain ground states fsar

in polynomial physical time[5,/6]. For hard 3SAT realizatsoit turned out however, that
early findings on polynomial ground state search times hdwtcorrected to exponentially
large ones [7] for the simplest case of AQC making use of astrarse magnetic field and a
linear A\-parameter schedule. A similar finding was made recentla famother satisfiability
theory: Exact Cover [8].

Within the current work we execute a very use-full exercigerpto the actual studies
of complexity related observables in physical theories. régétrict the admissible set of all
KSAT Hamiltonians, namely random KSAT realizations with semble mean
< ... >RaNDOM KsaT, 10 @ much smaller ’hard’ set ... >yarp Of Hjlq, Hamiltonian's
with corresponding ensemble mean. The ingalenotes the ensemble members which for
reasons of computer time limitations have finite numper 1, ..., 1000 throughout the paper.
As far as ground-state searches are concerned our probtasitageted at hard problems
- most likely the "hardest problems’ - which otherwise andhivi < ... >ranpoM KsaT are
exponentially rare. Our problems are constructed undaifgpeonstraints:

 The ground-state to an¥ /. .1 is unique, which ify”( E)) denotes the density of states
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Figure 1: We display an example for Logarithmic scale dgnsitstates functiong”(F) forn = 1,...,10
realizations for the theory 3SAT &f = 16 spins. Density of states functions have finite support eteglues
but for optical reconnaissance reasons are connected wligggns. Some functional values are identified by
circles and triangles. It is remarkable: the density ofestgamps frony(E = 0) = 1 (USA) to a large value
0 = g(E =1) ~ %3 ~ 11000. As far as ground-state searches are concerned: any sfograsind-state
search can easily reach tihe= 1 surface. Beyond that and in front & = 0 the search has to enumerate an
exponential large number of possibilities.

function (DOS) impliesyy”(E£ = 0) = 1. Such problem realizations possess unique
satisfying assignment’s (USA).

* For a given number of spin¥ and for realizations witly( £ = 0) = 1 the number of
clausesV! is minimal. The parameter is then minimal toax = «,,,;,,. E.g. : we find
that USA realizations in 3SAT fat,,,;, follow «,,;, = (N 4+ 4)/N.

» The set of problem realizations ... >yarp IS drawn with unique probability from
the set of< ... >ranpDoM KsaT Fealizations.

Similar realizations have lately been considered for 33ARef. [9] with a weaker constraint
on the valuey, which had the value: = 3. The minimal KSAT values within this work turn
out to approach,,;, = 1 from above independent & with increasingV. In short: we are
constructing USA realizations in KSAT at= 1 asymptotically.

At the heart of our numerical calculations is a Markov Chaianté Carlo study of the
partition function

P =N" > Ou-gE=0), (1.2)
Random KSAT

which partitions the realization space of random KSAT wittespect tq:, the ground-state
multiplicity. Once the Markov Chain Monte Carlo visits the= 1 sector (USA) corre-
sponding problems are collected on the disk of a computeril&iflat histogram sampling
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methods, like Wang-Landau [10] and Multicanonicall [11] siations have recently been
used in complexity theory in an attempt to sample the derditstates functiory(E) in
3SAT for spin numbersV that prohibit exact enumeration [12]. The final part of thpgra
classifies measures of complexity within typical proble@igtions in< ... >y arp.

Today'’s understanding on the origin on the complexity ofghgsical search in frustrated
and disordered systems pictures a free energy landscagach @as a function of the value
N, a finite number of solution clusters is accompanied by ameaptially large number of
almost solution clusters at energy near but above the gretatd. All clusters are separated
by finite free energy barriers. The situation resembles &aech for a needle - or several
needles - in a haystack. A simplified mechanism operatesmotlr hard problem ensemble
< ... >uarp- We find, that the phase space volufheat £ = 1 is exponentially large in the
number of degrees of freedoiv, see the examples ¢f F) displayed in Fig[(ll). Thus first:
for all of the considered KSAT theories withi = 2 up to K = 6 we encounter the generic
situation: a single needle is searched in a haystack of e large sizdl. Second: we
find numeric evidence that actual valueghfare extremal i.e., maximal under the condition
of minimal o, which in turn justifies the notion of most likely the 'hard@soblems’.

2. Theory, Hard Problems and Monte Carlo Simulation

2.1. Theory and Observables

In KSAT one considers logical formg - a function - whose truth value can either be true
or false and which are defined on a spacédBoolean degrees of freedom - bits; with
1 = 1,...,N. In the satisfiability problem one asks for the existenceassignment’s i.e.,
bits X, that would evaluate the functiaf at the value true. Solving the function problem
implies the explicit calculation of a single satisfyingigssnent or, of all different satisfying
assignments if there are several of those. The logical fBrimithe conjunctive normal form
of M claused (1, ...,Cy }: F = Cy ACy A ... AC)yy, which only evaluates true if all clauses
C, with o = 1, ..., M evaluate true simultaneously. Any of thé clauses is the disjunction
of integerK literals L, ; with K > 2andj =1, ..., K:

Co="La1VLasV ...V Lok (2.1)

A clause is true, if at least one of its literals evaluates.tdgor example, in 3SAT there are
7 configurations of literals on the clause which evaluate &meé just one with truth value
false. In addition, a literal is either a b¥ or its negationX and, the actual identification of
a literal with a specific bit - or its negation - is controllegd ® map(«, j) — i : i = 1], j],
that associates clauses and clause-positionso the index set of bits. The map = i[a, j]
and the possibility o2 negations at the literal positions are free parameterseattiory.

1The theories at > 3 are NP-complete while ak = 2 there exist mathematical polynomial time
algorithms that find the ground-state even thofighs exponentially large.



1.2

Q

(K=2) 0g(K=3) og(K=4)

0.8

0.6

PunsaT

0.4 r

0.2

Figure 2: ProbabilityPynsaT of un-satisfiable formulas withir: ... >ranpom ksaT for K = 2,3 and
K = 4 als a function ofx. Exact and numerical values for the SAT to UNSAT threshaldK) are indicated
by arrows. The numerical data are obtained from the pantftioctionI' () of eq.[2.1b) via ed.(2.18).

In an Hamiltonian theory they can be used to introduce enk=lith mean< ... > over
random disorder as well as random frustration, a posgitifiait is heavily exploited in this
work. It is implicitly understood, that tautologies i.egridradicting pairs within clauses like
X, X, as well as redundancies i.e., duplicate literals I&eX; or X, X, are not admitted to
the theory.

The physical degrees of freedom are classical Ising spias+1 withi = 1, ..., N and
without loss of generality, true on each B is identified with spin ups; = +1. Let us
introduce functiong,, in an attempt to write the Hamiltonialixsat as a sum of\/ terms:
Hysar = Y, ha, Where each term corresponds to a clause and, where thedgstates of
Hysar at energyEl = 0 can be identified one by one with the satisfying assignmenis. o
For this purpose we note that spinssy, ..., sx of the clause& = X,V X5V ...V X add up
tothe sum> = 3% s;, which takesk + 1 different values: = —K, —K +2,..., K —2, K.
Consequently the polynomial= h(sy, ..., Sk)

(_1)1( K N
h= i [TO si+ K —2m) (2.2)

m=1 i=1
has the valué = 0 for all spin configurations except one, if only all spins aovd: s, = —1
with i =1, ..., N. For the latter cask = 1, which implies an energy-gap of value unity. For
K > 2 the functionh is a linear combination of the spins n-point functidis I't, ... ,I'%
with a maximumn, of valuen,,,, = K. For purposes of illustration we present the 2SAT
and 3SAT cases. For 2SAT we obtain the anti-ferromagnetite field

1
hZSAT = 1[8182 — (81 + 82) + 1], (23)
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Figure 3: Monte Carlo data fan < p > of random KSAT in accord with ed.(2.116) for select¥dvalues as a
function of and for K = 2,3 and K = 4. The straight lines match the Monte Carlo data and corrasfmn
the exact result of e@.(2.117).

while in 3SAT
h3SAT = %[818283 + (8182 -+ 51853 —+ 8283) -+ (81 -+ So + 83) — 1] (24)
The necessary frustrations are encoded in a matrix afray= +1 which for each clause
« and positionj with j = 1,..., K follows the pattern of negations withif, a negation
induces arr = —1 while otherwisee = +1. We mention that in random KSAT, which
we denote by the ensemble mean... >granpom ksaT, Values ofe are drawn with equal
probabilityp(e = +1) = p(e = —1) = 1. The final form of the KSAT Ising Hamiltonian
Hygsar is
M
Hygar = Z hKSAT(Ea,lsi[a,l}> €a,2S5i[,2] «++s €, K —1Si[a, K —1] Ea,KSi[a,K])> (2.5)
a=1
and is the basis of our studies. Its principal parameter&fare the ratio of clause numbers
M over N namelya = M /N, and the particular assignments of spins to clauses via épe m
ila, j], as well as the settings within the frustration matjx = +1. We denote a specific
setting of the latter map and matrix a realization and studgmble mean expectation values
of observables at fixed throughout the paper.
Once the Hamiltonian is given we formally define the candrpeatition functionZ(5) =
> cont. € PH which at temperatur@ = 3~ allows the definition of physical observables as
there are the internal ener@y = 9sInZ, or the specific heat,, = 3?0;U. The canonical
partition function has the spectral representation

Z(B) = g(E)e ", (2.6)
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Figure 4: Ground state entropy density = % < Inp > |,>o for random KSAT atK' = 2 andK = 3 as

a function ofa. The arrows denote exact positions of the SAT to UNSAT tholsht ;. The data sets are
superimposed by series expansion resultsddor a-values belowy;. The curves lie on top of the data.

whereg(E) denotes the density of states (DOS):

g(B)= > 6V(H - E). (2.7)

Conf.

For KSAT theoriesg(E) is integer valued, has finite support on the integer valueth®f
compact intervall < E < M and an integrap_,. g(E) = 2V. A satisfiable Boolean form
inducesg(E = 0) > 0, while g(E = 0) = 1 corresponds to ai that only has one unique
satisfying assignment (USA). Boolean forms, that cannatdiesfied haveg(E = 0) = 0.
The quantityg(E = 1) also is denoted the microcanonic phase space volumef the
energy one energy surface.

Our knowledge of the statistical properties of K satisfigtdtems from extensive analyt-
ical [3] and numerical studies|[2] of random KSAT, which halemonstrated the existence
of a transition, possibly a phase transition at valugd<). The SAT to UNSAT transition
separates at low < «, a phase where formulas are satisfied in the mean, from a phase
at largea > «, where formulasF can not be satisfied. Numerical data for the probability
0 < Pynsat < 1 of un-satisfiable formulas within the mean of random KSAT displayed
in Fig.(2) and illustrate the statement. The data are oflamgjuality as the data obtained
by Selman and Kickpatrick in 1996/[2]. The consensus is thalbgble realizations within
random KSAT are 'hardest’, i.e. computational most intahé, at and in the vicinity of the
transition pointy ~ «,. However, this does not exclude the existence of still "bdrde.,
worst case realizations which at arbitraryare hidden in the tails of probability distribution
functions for complexity related observables with smadlsgibly very small probabilities.



2.2. Search for Hard Problems

The starting point of our search for ’hard’ realizations abservations that concern real-
izations with USA. If one considers USA realizations in 3SfAf the smallest spin number
N = 3 and clause numbé¥/ one inevitably arrives at th& = 7 = 3 + 4 realization

fUSA(N = 3)
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(2.8)

e e e
<< << <<
No o ol oo N
ST << << <<
@ ol o wl W Wl w
> > > > >

= (
(
(
(
(
(
(

)

which encodes the unique ground state= s, = s3 = +1. This particular example is one
of eight that all encode USA's faN = 3, and is turned in a readable form upon permuting
clause and literal indices. It has interesting specific progs:

e FORN = 3 Fuyga is the minimal form with a USA. FolN = 3 andM = 6 there are
no USA realizations in 3SAT.

» The density of stateg(£) only has two valueg(F = 0) = 1 andg(F = 1) = 7.
All spin flips acting on the ground-state lift the = 0 energy surface by just one
unitto £ = 1. The states withF = 1 have dis-proportional large multiplicity and
thereforeE’ = 0 is hidden. This suggests that still 'minimal’ but largerrfos g4 at
valuesN > 3 could inherit a similar property. These must existat (N + 4)/N
as one can introduce additional spins and clauses one by lBomeexample, if we
introduce a fourth spin and extetf;sx by one clause to aqV, M) = (4,8) form
with comparable property, then

stA(N = 4) = stA(N = 3) A ( 4 v 1 v 2 ) (2.9)

The latter form encodes the unique ground state- s; = s3 = s, = +1 and has
the density of stateg(F = 0) = 1 andg(E = 1) = 15 respectively. Againt = 1
configurations have large multiplicity.

» Within Fysa of eq.[2.8) there are exactly; = 3 clauses - those with two negations
- which in the unique solution are solved by just one truediteThere are in addition
my = 3 clauses which are solved by two literals ang = 1 clauses which are solved
by three literals. Also, there exists a polynomial transfation of 3SAT to maximal
independent set (MIS) [13]. It is easy to show, that a uniqoeigd-state of the 3SAT
problem transforms into a degenerate ground-state in tiesgmonding MIS problem.
The ground-state multiplicity MIS ), \iis, has the value

Qoans = 2723™8 =24 (3SAT,N =3, M =T), (2.10)
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Figure 5: ProbabilityPys4 of eq.[2.19) for the occurrence of problem realizationshwihique satisfying
assignment (USA) in 3SAT as a function@f= M /N. Spin numbers ar&/ = 8,10 andN = 12. The inset
of the figure displays the decreaselfs 4 for aparp, see eql{2.12) as a function bf.

on Fusa. We note thain, of Fysa(N = 4) turns out to ben; = 4 while m, andms
remain having values:, = 3 andmgs = 1, and thus alsdFysa (N = 4) is constant at
Qoas = 24. It is suggested that 'minimal’ but largeN( > 3) forms Fyga can have
indicesm, that are of magnitud€ (), which in turn limits the volume?, ;s to
finite values. Finite values imply vanishing ground stateagy densityln{ \is /N
under the polynomial transformation from 3SAT to MIS.

The existence of examples with interesting propertiesegialir expectations. The question
is raised whether USA and 3SAT realizations at the ratioafigk to spin numbers

N +4
QHARD =— — =7 (2-11)

N
exist for arbitraryN > 3 and what their properties are ? In absence of useful matheahat
methods we use Monte Carlo simulations in order to actuahstruct members of the en-
semble atvyArp, and in a later measurement step we determine their prepehti particular
we calculate);, the multiplicity of the energy one surface. It is then neegg to employ
biased Monte Carlo sampling techniques, as in the vicirfity & 1 USA realizations within
random 3SAT have exponentially small probability. Finatlys easy to generalize our ar-
guments to arbitrarys. For KSAT with K > 2 we expect USA realizations with minimum

clause number at N K_ g
+2% K -1
OéHARD(K) = N s

(2.12)

under the condition thaV > K.



2.3. Monte Carlo Search and Checks
The Monte Carlo simulation performs a stochastic estimittestbiased partition function

Dl Wawea) = N1 Y eFMaoealgT, — g(B = 0)], (2.13)
RANDOM KSAT

which for0 < p < 2% is evaluated on the phase space of all possible random KS#T re
izations for a given KSAT Hamiltonian ef1.(2.5). The biasgapressed by the Boltzmann
factor exp[+Wnuca(1)], is introduced along the lines of Multicanonical Ensembieus
lations [11] and serves the purpose to lift the probabdité rare, configurations in the
Markov chain. The Monte Carlo is expected to perform a randaik in © and whenever
thep = 1 sector is visited an ensemble membekof.. >yarp IS Sstored on the disk of a
computer. Our Monte Carlo is quite un-conventional andrsseemarks are in order:

» The Markov chain of configurations consists of realizagias specified by their maps
ila, j] and frustration matrix, ;. Each problem realization is attached to a Hamilto-
nian theory with density of stateg £') that can be evaluated &t= 0, u = g(E = 0).

The calculation ofu for a given configuration unfortunately takéy2") computa-
tional steps. Our Monte Carlo simulation therefore is lgdito small numbers of
spins. We studied KSAT theories fégf = 2,3,4,5 and K = 6. We were able to
generate ensembles 00 statistical independent members each for maximum spin
numbersV,,.,x = 18,16, 14, 12 and N,,., = 10 respectively. Minimum spin numbers
always areV,,;, = K..

» Configurations are updated with Metropolis updates [14he Thitial problem real-
ization aty; is subject to a trial-update which targets. The Markov chain accept
probability for the move is

Pycc = minl[l, 6+WMUCA(HF)_WMUCA(HI)]7 (2.14)

and as usual, if the update is rejected the initial configomadtays within the Markov
Chain.

 Trial updates are generated randomly on the space of raK@®h realizations. One
chooses a random clausgand clause positiofy and at(«y, jo) trial valuesiy;,; and
etrial, Which are uniformly distributed on the measure of the thiedihe absence of
redundancies and tautologies constrains the admissible sei. The typical number
of Monte Carlo moves for the simulation bf) is 10°. For the largerV values it was
necessary to repeat the simulations with different randomber sequences possibly
10, up to several 10 times. The numerical data, as presemtée ipaper, consumed
one month of computer time on2&6 processor workstation cluster.
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» The biasiWyuca (i) has to be chosen properly in order to guarantee efficienbrand
walk behavior in the variablg. In a preparation step we use Wang Landau simulations
[1C] to generate sufficiently accurat®,uca (i) weight functions, which then enter
the Multicanonical simulation of €q(Z.113).

The biased partition function of eg.(2]13) serves as a tofadilitate Monte Carlo sampling
of differenty, sectors in random KSAT and in particular the segtor 1 (USA) is sampled

efficiently. There is however an additional benefit. Afteidimng the biased Monte Carlo
simulation a final reweighing step(W = 0) = exp[—W (u)|I'(W (p)) restores the un-
biased partition function

L) =N" > Ou-g(E=0), (2.15)

RANDOM KSAT

which on the space of random KSAT realizations simply cotimsprobability of £ = 0
multiplicities p. GivenI'() we can determine expectation values of known observables
within random KSAT, which provide consistency checks on ¢bherectness of the Monte
Carlo simulation. A list and a comparison to numerical datbvs:

* In random KSAT there is always a finite probability of praileealizations with?' =
0 non-vanishing multiplicity. In fact one can calculate the= 0 mean multiplicity

< g(E = 0) >RANDOM KSAT=< U >= N_l Z F(,u)u (216)
m

on combinatorial grounds at arbitrafy exactly [12], which simply yields

1
<pu>=(1- 2—K)M2N. (2.17)
In Fig.(3) we compare selected measurement data far> with the exact result for
various values of, N and M. The Monte Carlo data agree with the combinatorial
result very well.

» One may wonder whether a theory with an entirely regutay, > will contain a
non-regular structure at the SAT to UNSAT transition However, the constraint
expectation value of the quanti%r < Inp > |,0, under omission of the = 0 sector
does in fact show non-trivial behavior. Within the SAT phése< «;) it equals the
ground-state entropy density = % < Inp >, for which long time agol[15] and
for the theories 2SAT and 3SAT anseries-expansion was calculated within replica
symmetry breaking theory up to ordé«'%). In Fig.(4) we compare our numerical
data< sg > in 2SAT and 3SAT with the series expansions results. Thedigantains
two curves, which for 2SAT forv < a, = 1 and for 3SAT fora < a, = 4.267 are
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indistinguishable from the numerical data points. Finally note for random KSAT,
that the probabilityPynsat Of an un-satisfiable formula has the simple representation

Pynsar = N7 'T(u = 0). (2.18)
The data are displayed in Figl.(2).

The main reason for the use of quite elaborate Monte Carlantgues is the rareness of
USA realizations forv = 1, in particular for the conjectured exact point= ayarp(K),
as given in eq.(2.12). For all our theories with = 2,3,4,5 and K = 6 and for typical
N like N = 10 we search thev-parameter space also atvalues belowayarp(K) for
USA realizations. Neither Multicanonical Ensemble sintiolas for several weight functions
Whuca, nor Wang Landau simulations or, alternatively simulatedealing runs inu -
ever produced a USA realization farbelow ayarp. However, atoarp €q.[2.12) USA
realizations are found. The relative probabilRys, for the occurrence of unique satisfying
assignment’s within random KSAT is

Pysa = N7'T(u=1). (2.19)

We display in Fig[(b)Pysa datain 3SAT forV = 8, 10, 12 spins. Pysa appears to be a slowly
varying function abovey, = 4.267, with a maximum around,; and with a rapid decrease
towards minimal and very small values @tarp and, problems with largeN appear to
be increasingly improbable. The asymptotic decay’ef (anarp) iS consistent with an
exponential decayysa (anarp) x exp(—rN) with r &~ 2.58 in 3SAT and is depicted in the
inset of Fig[(b). In addition at fixed spin numbatvalues of Pysa (anarp) turn out to be
even smaller if largef values are considered. We quaté’ysa (agarp) = —11.4, —31.39
andinPysa (agarp) =~ —84.3 for the twelve spin theory witlk’ = 2, 3 and in 4SAT. Finally
we present for purposes of illustration a specific 3SAT padion for N = 16 spins and
M = 20 clauses:

Fusa= (11 v 12 vV 3 ) A (14 v 13 Vv 8 ) A
(11 v 2 v 12 ) A (4 vV 6 voo12 ) A
(6 v 12 v 13 ) A (6 Vv 14 Vv 7)) A
( 8 VvV 6 v 9 ) A (5 v 12 vV 3 ) A
(13 v 16 VvV 4 ) AN ( 8 V 6 voo12 ) A
(3 v 12 v 6 ) A ( 5V 3 v 12 ) A
(15 Vv 5 v o 12) A (12v 11 v 3 ) A
(6 v 11 v 15 ) A (15 V 3 v 12 ) A
(13 v 15 v 12 ) A (15 Vv 16 Vv 10 ) A
(1v 3 v 12) A (1 v 12 Vv 9)

(2.20)
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Figure 6: Ten density of states (DOS) curves in 2SAT (lefg 48AT (right) for a number of spiny = 18
andN = 14 respectively.
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6SAT

12 In(2)

N=12

Figure 7: Ten density of states (DOS) curves in 5SAT (leff) &AT (right) for N = 13 and N = 12
respectively.

For agarp = 24/16 = 1.5 it encodes the unique ground stat®)0100111001000 - zero
corresponding to spin down and one corresponding to spin apd-is characterized by
the phase space volum&s = 1, 2; = 19687 and Qo \us = 24. USA realizations for
the given parameter values have probabilgy, ~ 0.000000000000000004 to occur by
chance within random 3SAT. The full density of states of[2@Q) is depicted in Fid.(1),
see the triangles in the figure. Finally the stochastic eabfithe Monte Carlo search result
is apparent if one compares the random structure of eq)(220 the regular structure in

eq.[2.8).
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Figure 8: The mean density of stateq2; > on the energy one surface averaged in the hard problem efesemb
< ... >gaRrp for the theories 2SAT, 3SAT and 6SAT in logarithmic scale &snation V.

K r(K) Xiof
0.34762(112)| 0.65
0.56918(096)| 1.87
0.63620(015)| 0.66
0.66574(025)| 2.55
0.67934(014)| 0.30

OO WN

Table 1: Fit parameters af? ; fits to < €, > data with the form ed.(3.2). The rate constar(ts’) approach
the unstructured search valug = 0.6931... rapidly for large values of.

3. Properties of Hard KSAT Realizations

For each of the generated problem realizations within tisemble< ... >y rp and as
defined by the partition functiofi(x) of eq.[2.15) foru = 1, we calculate the density of
states ed.(217). We determine its mean onithe 1 surface

< Ql >=< g(E = 1) >HARD - (31)

Selected data for the density of stat@$E) with n = 1, ..., 10 are displayed in Figures
Fig.(6) and Fig[{7) for the = 2,4,5,6 KSAT theories. They complement the 3SAT data
displayed in Figl(ll). In each case the multiplicity 8f= 1 configurations exhibits a step
AlnQ) = In)y = Ing(F = 1) that is of magnitud& (N) for the given number of spin¥.
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Figure 9: Position of the freezing transition fig, the inverse temperature. For laryevaluesgr asymptoti-
cally approaches valugs: = In{2; and thus the slopes the linear behavior approach valU€s as given in
Table 1.

Our final numerical data for the mean multiplicity 6f = 1 configurations< €2; >, in the
theories 2SAT, 3SAT and 6SAT are displayed in Fig.(8). Thmerical data are consistent
with an exponential growth

< Q> = const etV (3.2)

for large values ofV with finite growth rate constantg K'). Subsequently, we performed
X3¢ fits to the< Q; > data in order to determine the shape of the singularity &).éhd to
measure values of the rate constarit&’) in KSAT theories withK' = 2, 3..., 6. Restricting
the fit interval to the cases withl > 10 we obtain acceptablg? ;-values for the fit. The final
rate constants(K) andy?_,-values of the fits are contained in Table 1. Thedependence
of the rate constantg K) is also depicted in the inset of Fig.(8). Starting from a nratke
value for the rate constant in 2SAT/K = 2) = 0.348(2), we obtain-(K = 3) = 0.54(1) in
3SAT and, beyond( = 3 the rate constants rapidly approach the unstructuredtsgalae

r =1n2 = 0.6931... . For 6SAT the rate constantigX = 6) = 0.6793(2).

A classical statistical model with a density of staté#’), that squeezes an exponential
large number of configurations into the first energy levelvabtihe ground-state, see the
right panel of Fig[(I7) is certainly a very special theoryt s recall the ferromagnetic Ising
model, which in any dimensioP® has a ground-state degenerg¢y’ = 0) = 2 as well as
a multiplicity Q; = g(E = 2D) = 2N at the first energy level. Polynomial singularities in
(2, are the consequence of theories with local interactionsvewer, the class of problems

15



300

250 r oA

200 r oS

150 r

H(ogsc)

100 r

50 r

-20 -15 -10 -5 0 5 10 15 20

Ogsc

Figure 10: Overlap distribution to the ground state in adasith eq.[3.8) for a singléV = 18 problem in
2SAT.

considered here does not possess this property.

The spin configurations at enerdgy = 1 will have a phase space distribution and it is in-
teresting to know, whether that distribution is biasseda@s the ground state configuration.
For this purpose we calculate the overlap to the ground state

N
oGsc = Z $is) (3.3)
=1

wheres? denotes ground state spins. For purposes of illustratiodigmay in in Fig.[20)
the number histograni/ (ogsc) for a singleN = 18 problem in 2SAT. We obtain a bell-
shaped overlap distribution which actually is slightlyssad away form the ground state to
the negative half space. We note that the histogram camiegeg atoqsc = 16 and thus the
ground state is accessible via single spin flips fromihe 1 surface. We also have analyzed
the connectivity off = 1 configurations. Usingallistic shootingwe find that any twot =
1 configurations are connected by sequences of single spwithout leaving = 1. This
is different from spin glasses where in general there areratgonnectivity components and
corresponding free energy barriers. Any single spin flipadgits e.g. Metropolis updates
can easily explore th& = 1 surface.

We also consider the canonical ensembleled.(2.6). We esdcthe internal energy:
E >=< U >parp With U = 0slnZ, as well as the specific heat Cy > () =<
B%205U >uarp, as a function of the inverse temperature= 7—!. For 3SAT we display
< F >and< Cy >for N = 4,8 and N = 16 spins in Fig[(1ll). A theory with a fi-
nite energy gap is expected to possess a freezing phasgitraas low, possible very low
temperatured below which and for value§ < Ty the internal energy approaches its

16
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Figure 11: Expectation value E > of the energy in 3SAT as a function of the inverse temperatutel /T'.
The inset displays specific heatCy, > data. At the freezing transition marked by the position efrttaximum
of the specific heat an exponentially large numferof energyFE = 1 configurations coexists with the single
ground-state at’ = 0.

asymptotic ground-state valye £ >= 0. The numerical data in fact confirm the presence
of freezing, with a position as given by the position of a moenced peak in the specific heat,
see the inset of Fig.(11). Figure (9) displagis = 7' data in 3SAT, which as a function
of N exhibit a blatant linear dependence, see the straight imegy.(11). We remark that
at the freezing point configurations withh = 1 coexist with a single configuration at the
ground-state energy.

A popular algorithm within the canonical ensemble for thiigon of optimization prob-
lems is simulated annealing (SA) [16]. Simulated annealurgs will have to use tempera-
ture annealing schedules with temperatures low enouglathrhe freezing point &t e.g.

T =~ 0.1 for 16 spins in 3SAT and, then will have to expldige number of possibilities to
finally arrive at the ground-state. The process will consame&xponentially large amount
of time, if 2, is exponentially large. We do not expect, that other algarit improvements
like kinetic Monte Carlo methods [17] can avoid the exporaisingularity.

We have implemented simulated annealing for the problemn SSAT. We use the canon-
ical partition function eq.(2]6) and choose a random ihi#t#al spin-configuration. We then
perform local Metropolis spin updates in a multi-spin codethputer program [18, 19]. We
employ compute time farming on a parallel computer with aj@rrandom number gener-
ator of Marsaglia [20]. Each annealing trajectory is sthetthe very high temperature

Ty = 100 (3.4)
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Figure 12: 3SAT correlation of run times in simulated animepéq.[3.7) with the density of statgéF = 1).
We combine run-times at variou$ into a single plot. Plotted is a subset of the set of all protsle

and terminates after000 Sweeps i.e.1000 x N Monte Carlo steps wherd' is the spin

number, at the exact temperature
1

Tena = —- 3.5
bt = 35 (3:5)
We use a polynomial temperature schedule

ﬂ = ai_b (3.6)

wherei is the sweep numbeér= 1, ..., 1000 and constants, b are determined to meet the
boundary conditions on the temperature. For each problenepeat the annealing trajecto-
ries 6400 times with different random numbers and determine the meeacess probability
P34 with 0 < P94 < 1 of successful ground-state searches after the sw@®#phas

Success Success

been finished. Our measure of SA search run-time is

In[1 — PgA ]

Target

In[l — Pg4 ]

Success

TsA = 1000 x N [Monte Carlo Steps] (3.7)

at target success rate one-halP;, ... = 5. The procedure is repeated for a possitilé0

realizations and at all values 6f. The correlation of run-times;, with the density of states
g(E = 1) is linear for 3SAT, as can be inspected in Higl(12) for a detkset of problems
at variousN. These run times are quite short. If e.g. Mat= 16 the energy surface has

16000 degenerate spin configurations a typical numbe®¢20000) Monte Carlo Steps is
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Figure 13: Preliminary quantum gap-correlation lengthuea\éq 4 p at the quantum phase transition 4,

in eq.[1.2).

sufficient to solve the problem at a success rate of one halfveder if the target success
rate is demanded to be very close to unity larger times ardeatke Our findings imply
that the classical compute time for solving problems witinidated annealing goes like
Tenssical ¢ eT"ON with valuesr(K) as given in Table 1. It is this kind of singularity a
guantum search has to compete with.

4. Conclusion

Within the scope of the present work, we have generated fypgroblem realizations
within KSAT theories, which under the constraint of a unigatisfying assignment (USA)
at minimal clause number develop extremal statistical @riogs. The phase space volume
(2, at the minimal energy gap is exponentially large and likevitg a given KSAT theory
maximal. The idea was formulated2005 by Znidaric [9] but in absence of efficient Monte
Carlo methods it was not worked out at minimal clause numhdrat large values of the
rate constants(K'). The class of problems as presented here exemplifies ow@ntwmder-
standing of physical search complexity in random systengsstraight and simple way: A
single ground state is hidden in an exponentially large @lspace volume at the first energy
gap. For the theories with larg€ almost all spin configurations are collapsed to the- 1
surface, except the one ground state configuratiofl at 0. In this situation there exists
no distance measure or cluster property which within he- 1 surface would allow the
detection of a direction, as to where the ground state cogilsklarched for. Representatives
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of the ensemble ... >yarp Can be obtained at request from the author.

The given problems ak” = 3,4,5 and K = 6 in this work are constructed on problem
Hamiltonians that contain higher order interactions ofspikea; ; 1.s;s;s;. From a physics
point of view it would possibly be nicer to eliminate such agpical couplings and stay with
only 2-point spin couplings, as well as magnetic fields. Wetma that all the Hamiltonians
at K > 3 can be transformed via polynomial transformations to Matimdependent Set
(MIS),see [18], which in fact can be represented by 2-ponat nagnetic field spin cou-
plings only. It is plausible to assume that these after pmiyial transformation retain their
“hardness”.

The design of problem realizations with specific propeffaesitates the subsequent study
of proper defined search efficiency’s in processes, that oasilply be implemented on a
physical device e.g., a quantum computer. For purposedustriition we mention here
quantum annealing within the quantum partition functiég of eq.[1.1). Search times
for ground-state calculations via quantum annealing apeeted to be bounded by below
through a gap-correlation lengithé; 4 p, Which is determined from spin-spin correlations
along the imaginary Trotter Suzuki time &f, at the quantum critical point. For 3SAT we
present in Figl(13) preliminary numerical results fdé; 4» in the median average of the
hard problem ensemble. The data, as indicated by the stdaighin the figure, show in
fact also an exponential singularity{cap o exp[+rgN| of a similar type as in eq.(3.2),
that now is governed by a quantum rate constant=~ 0.60(1), a value that is close to
r(K = 3) =0.569(1) of Table 1. The caveat however is, that in presence of a Laddaar
avoided level crossings quantum run-times for linear quandnnealing schedules show a
quadratic singular behaviotyanum < ALZ 4 » [21], which leaves the quantum search effi-
ciency far behind the classical search. Similar exponksitigularities at smaller values of
ro were already observed for quantum 3SAT on a set of 'weakeblpms [7]. A detailed
study of quantum search complexities on the set of hard enoblin 2SAT has just been
completed|[22] and complements the less physical findindisiefvork.

Finally we mention that the spin numbeksin this work are embarrassing small, as the
Monte Carlo search on the problem set consumes expongrtalje resources. We can
safely say that with current methods it is not possible tcegate a corresponding ensemble
of problems even for spin numbers as smallN\as- 30. It is however not excluded, that sin-
gle problem representatives can be found by clever herigstistruction. We emphasize that
we do not want to give up the ensemble property because adeewe would be studying
arbitrary mathematical problems. This will be relevantdearch complexity distributions
which are expected to exhibit ensemble properties.

Acknowledgement: Calculations were performed under the VSR grant JJSC02 iand a
Institute account SLQIPOO at Julich Supercomputing Cemterarious computers.
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