
ar
X

iv
:1

41
2.

53
61

v1
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  1
7 

D
ec

 2
01

4 Monte Carlo Search for Very Hard KSAT Realizations
for Use in Quantum Annealing

T. Neuhausa

aJülich Supercomputing Centre, Forschungszentrum Jülich,D-52425 Jülich, Germany

Abstract

Using powerful Multicanonical Ensemble Monte Carlo methods from statistical physics we
explore the realization space of random K satisfiability (KSAT) in search for computational
hard problems, most likely the ’hardest problems’. We search for realizations with unique
satisfying assignments (USA) at ratio of clause to spin numberα = M/N that is minimal.
USA realizations are found forα-values that approachα = 1 from above with increasing
number of spinsN . We consider small spin numbers in2 ≤ N ≤ 18. The ensemble
mean exhibits very special properties. We find that the density of states of the first excited
state with energy oneΩ1 = g(E = 1) is consistent with an exponential divergence inN :
Ω1 ∝ exp[+rN ]. The rate constants forK = 2, 3, 4, 5 andK = 6 of KSAT with USA
realizations atα = 1 are determined numerically to be in the intervalr = 0.348 atK = 2
andr = 0.680 atK = 6. These approach the unstructured search valueln2 with increasing
K. Our ensemble of hard problems is expected to provide a test bed for studies of quantum
searches with Hamiltonians that have the form of general Ising models.

Keywords: Spin Glass, Monte Carlo, Quantum Adiabatic Computation

1. Introduction

Random satisfiability problems like three satisfiability (3SAT) and its generalization KSAT
form a corner stone of complexity theory, a very active research branch in formal logic and
computer science. In these theories one is concerned with logical formsF(X) defined on
some bit spaceX and one discusses the question whether or not there exists anassignment
X0 that turns the value of the logical formF(X0) into “true”. The decision problem of
KSAT and its accompanying function problem: the actual calculation ofX0 at givenF(X)
for K ≥ 3 belong to the class of NP complete theories [1], which for allpractical purposes
implies computational intractability. In these theories it is very common that worst case re-
alization ensembles of formsF(X) exhibit an algorithm dependent complexityC, that rises
exponentiallyC ∝ exp[+rN ] with the number of bitsN . The rate constantsr are smaller
than the unstructured search valuer = ln2 but at the same time can take values that are finite
fractions ofln2. This implies, that there exist problems which are not solvable even for small
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numbers of bits likeN = 100, neither by analytic nor numeric methods, even usung brute
computational force.

It is the privilege of statistical physics to turn the abstract notion of satisfiability into
studies of Hamiltonian systems upon mapping the bit degreesof freedomXi = 0, 1 via
si = 2Xi − 1 for i = 1, ..., N to Ising degrees of freedomsi ± 1, and upon introducing a
suitable HamiltonianHKSAT whose ground-states at energyE = 0 map one by one to the
satisfying assignments ofF(X). One may either consider classical statistical physics where
the theory is supplied by artificial thermal fluctuations at inverse temperatureβ = T−1

within the framework of the canonical partition functionZC =
∑

Conf. exp[−βHKSAT] or
alternatively, consider the quantum statistical theory ofPauli spinsSx

i , S
y
i andSz

i with the
quantum partition function

ZQ = Tr < Ψ | exp[−β[(1− λ)
∑

i

Sx
i + λHKSAT(S

z
i )]] | Ψ >, (1.1)

where quantum fluctuations at lowT ≈ 0 are tuned via an external parameterλ. For both
cases the mathematical intractability is encoded into physical theories and it is an exciting
research topic to study its consequences i.e., phase transitions and correlations from various
points of view. For the classical theory it was shown, that computational intractability is
related to a phase transition - the SAT transition - along theprincipal parameter direction
α = M/N of random KSAT theories [2], the ratioα hereby denoting the ratio of clauseM
to spinN numbers. In a later effort complexity related observables were determined ana-
lytically within the framework of replica symmetry breaking theory for random 3SAT [3],
and also numerically in large scale simulations [4]. In particular the critical point of the
3SAT transition was determined to beαS = 4.267... analytically. For the quantum theory,
and within quantum information theory it was conjectured that adiabatic quantum compu-
tations (AQC) based on the properties ofZQ could possibly obtain ground states ofHKSAT

in polynomial physical time [5, 6]. For hard 3SAT realizations it turned out however, that
early findings on polynomial ground state search times had tobe corrected to exponentially
large ones [7] for the simplest case of AQC making use of a transverse magnetic field and a
linearλ-parameter schedule. A similar finding was made recently fora another satisfiability
theory: Exact Cover [8].

Within the current work we execute a very use-full exercise prior to the actual studies
of complexity related observables in physical theories. Werestrict the admissible set of all
KSAT Hamiltonians, namely random KSAT realizations with ensemble mean
< ... >RANDOM KSAT, to a much smaller ’hard’ set< ... >HARD of Hη

KSAT Hamiltonian’s
with corresponding ensemble mean. The indexη denotes the ensemble members which for
reasons of computer time limitations have finite numberη = 1, ..., 1000 throughout the paper.
As far as ground-state searches are concerned our problem set is targeted at hard problems
- most likely the ’hardest problems’ - which otherwise and within < ... >RANDOM KSAT are
exponentially rare. Our problems are constructed under specific constraints:

• The ground-state to anyHη
KSAT is unique, which ifgη(E) denotes the density of states
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Figure 1: We display an example for Logarithmic scale density of states functionsgη(E) for η = 1, ..., 10
realizations for the theory 3SAT atN = 16 spins. Density of states functions have finite support integer values
but for optical reconnaissance reasons are connected with polygons. Some functional values are identified by
circles and triangles. It is remarkable: the density of states jumps fromg(E = 0) = 1 (USA) to a large value
Ω1 = g(E = 1) ≈ e9.3 ≈ 11000. As far as ground-state searches are concerned: any stochastic ground-state
search can easily reach theE = 1 surface. Beyond that and in front ofE = 0 the search has to enumerate an
exponential large number of possibilities.

function (DOS) impliesgη(E = 0) = 1. Such problem realizations possess unique
satisfying assignment’s (USA).

• For a given number of spinsN and for realizations withg(E = 0) = 1 the number of
clausesM is minimal. The parameterα is then minimal tooα = αmin. E.g. : we find
that USA realizations in 3SAT forαmin follow αmin = (N + 4)/N .

• The set of problem realizations< ... >HARD is drawn with unique probability from
the set of< ... >RANDOM KSAT realizations.

Similar realizations have lately been considered for 3SAT in Ref. [9] with a weaker constraint
on the valueα, which had the valueα = 3. The minimal KSAT values within this work turn
out to approachαmin = 1 from above independent ofK with increasingN . In short: we are
constructing USA realizations in KSAT atα = 1 asymptotically.

At the heart of our numerical calculations is a Markov Chain Monte Carlo study of the
partition function

Γ(µ) = N−1
∑

Random KSAT

δ(1)[µ− g(E = 0)], (1.2)

which partitions the realization space of random KSAT within respect toµ, the ground-state
multiplicity. Once the Markov Chain Monte Carlo visits theµ = 1 sector (USA) corre-
sponding problems are collected on the disk of a computer. Similar flat histogram sampling
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methods, like Wang-Landau [10] and Multicanonical [11] simulations have recently been
used in complexity theory in an attempt to sample the densityof states functiong(E) in
3SAT for spin numbersN that prohibit exact enumeration [12]. The final part of the paper
classifies measures of complexity within typical problem realizations in< ... >HARD.

Today’s understanding on the origin on the complexity of thephysical search in frustrated
and disordered systems pictures a free energy landscape in which as a function of the value
N , a finite number of solution clusters is accompanied by an exponentially large number of
almost solution clusters at energy near but above the ground-state. All clusters are separated
by finite free energy barriers. The situation resembles the search for a needle - or several
needles - in a haystack. A simplified mechanism operates within our hard problem ensemble
< ... >HARD. We find, that the phase space volumeΩ1 atE = 1 is exponentially large in the
number of degrees of freedomN , see the examples ofg(E) displayed in Fig.(1). Thus first:
for all of the considered KSAT theories withK = 2 up toK = 6 we encounter the generic
situation: a single needle is searched in a haystack of exponential large size1. Second: we
find numeric evidence that actual values ofΩ1 are extremal i.e., maximal under the condition
of minimalα, which in turn justifies the notion of most likely the ’hardest problems’.

2. Theory, Hard Problems and Monte Carlo Simulation

2.1. Theory and Observables

In KSAT one considers logical formsF - a function - whose truth value can either be true
or false and which are defined on a space ofN Boolean degrees of freedom - bits -Xi with
i = 1, ..., N . In the satisfiability problem one asks for the existences ofassignment’s i.e.,
bitsX0 that would evaluate the functionF at the value true. Solving the function problem
implies the explicit calculation of a single satisfying assignment or, of all different satisfying
assignments if there are several of those. The logical formF is the conjunctive normal form
of M clauses{C1, ..., CM}: F = C1∧C2 ∧ ...∧CM , which only evaluates true if all clauses
Cα with α = 1, ...,M evaluate true simultaneously. Any of theM clauses is the disjunction
of integerK literalsLα,j with K ≥ 2 andj = 1, ..., K:

Cα = Lα,1 ∨ Lα,2 ∨ ... ∨ Lα,K . (2.1)

A clause is true, if at least one of its literals evaluates true. For example, in 3SAT there are
7 configurations of literals on the clause which evaluate trueand just one with truth value
false. In addition, a literal is either a bitX or its negationX and, the actual identification of
a literal with a specific bit - or its negation - is controlled by a map(α, j) → i : i = i[α, j],
that associates clauses and clause-positionsα, j to the index seti of bits. The mapi = i[α, j]
and the possibility of2KM negations at the literal positions are free parameters of the theory.

1The theories atK ≥ 3 are NP-complete while atK = 2 there exist mathematical polynomial time
algorithms that find the ground-state even thoughΩ1 is exponentially large.
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Figure 2: ProbabilityPUNSAT of un-satisfiable formulas within< ... >RANDOM KSAT for K = 2, 3 and
K = 4 als a function ofα. Exact and numerical values for the SAT to UNSAT thresholdαs(K) are indicated
by arrows. The numerical data are obtained from the partition functionΓ(µ) of eq.(2.15) via eq.(2.18).

In an Hamiltonian theory they can be used to introduce ensembles with mean< ... > over
random disorder as well as random frustration, a possibility that is heavily exploited in this
work. It is implicitly understood, that tautologies i.e., contradicting pairs within clauses like
XiXi as well as redundancies i.e., duplicate literals likeXiXi or X iX i are not admitted to
the theory.

The physical degrees of freedom are classical Ising spinssi = ±1 with i = 1, ..., N and
without loss of generality, true on each bitXi is identified with spin upsi = +1. Let us
introduce functionshα in an attempt to write the HamiltonianHKSAT as a sum ofM terms:
HKSAT =

∑
α hα, where each term corresponds to a clause and, where the ground-states of

HKSAT at energyE = 0 can be identified one by one with the satisfying assignments of F .
For this purpose we note thatK spinss1, ..., sK of the clauseC = X1∨X2∨ ...∨XK add up
to the sumΣ =

∑K
i=1 si, which takesK+1 different valuesΣ = −K,−K+2, ..., K−2, K.

Consequently the polynomialh = h(s1, ..., sK)

h =
(−1)K

2KK!

K∏

m=1

(

N∑

i=1

si +K − 2m) (2.2)

has the valueh = 0 for all spin configurations except one, if only all spins are down: si = −1
with i = 1, ..., N . For the latter caseh = 1, which implies an energy-gap of value unity. For
K ≥ 2 the functionh is a linear combination of the spins n-point functionsΓ0, Γ1, ... ,ΓK

with a maximumn of valuenmax = K. For purposes of illustration we present the 2SAT
and 3SAT cases. For 2SAT we obtain the anti-ferromagnet at finite field

h2SAT =
1

4
[s1s2 − (s1 + s2) + 1], (2.3)
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Figure 3: Monte Carlo data forln < µ > of random KSAT in accord with eq.(2.16) for selectedN values as a
function ofα and forK = 2, 3 andK = 4. The straight lines match the Monte Carlo data and correspond to
the exact result of eq.(2.17).

while in 3SAT

h3SAT =
1

8
[s1s2s3 + (s1s2 + s1s3 + s2s3) + (s1 + s2 + s3)− 1]. (2.4)

The necessary frustrations are encoded in a matrix arrayǫα,j = ±1 which for each clause
α and positionj with j = 1, ..., K follows the pattern of negations withinF , a negation
induces anǫ = −1 while otherwiseǫ = +1. We mention that in random KSAT, which
we denote by the ensemble mean< ... >RANDOM KSAT, values ofǫ are drawn with equal
probabilityp(ǫ = +1) = p(ǫ = −1) = 1

2
. The final form of the KSAT Ising Hamiltonian

HKSAT is

HKSAT =

M∑

α=1

hKSAT(ǫα,1si[α,1], ǫα,2si[α,2], ..., ǫα,K−1si[α,K−1], ǫα,Ksi[α,K]), (2.5)

and is the basis of our studies. Its principal parameters forK are the ratio of clause numbers
M overN namelyα = M/N , and the particular assignments of spins to clauses via the map
i[α, j], as well as the settings within the frustration matrixǫα,j = ±1. We denote a specific
setting of the latter map and matrix a realization and study ensemble mean expectation values
of observables at fixedα throughout the paper.

Once the Hamiltonian is given we formally define the canonical partition functionZ(β) =∑
Conf. e

−βH which at temperatureT = β−1 allows the definition of physical observables as
there are the internal energyU = ∂β lnZ, or the specific heatCV = β2∂βU . The canonical
partition function has the spectral representation

Z(β) =
∑

E

g(E)e−βE, (2.6)

6



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  1  2  3  4  5  6

<
 ln

 µ
>

/N

α

ln2

αs(K=2)

αs(K=3)

2SAT N=14
3SAT N=12

Figure 4: Ground state entropy densitys0 = 1
N
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whereg(E) denotes the density of states (DOS):

g(E) =
∑

Conf.

δ(1)(H −E). (2.7)

For KSAT theoriesg(E) is integer valued, has finite support on the integer values ofthe
compact interval0 ≤ E ≤ M and an integral

∑
E g(E) = 2N . A satisfiable Boolean form

inducesg(E = 0) > 0, while g(E = 0) = 1 corresponds to anF that only has one unique
satisfying assignment (USA). Boolean forms, that cannot besatisfied haveg(E = 0) = 0.
The quantityg(E = 1) also is denoted the microcanonic phase space volumeΩ1 of the
energy one energy surface.

Our knowledge of the statistical properties of K satisfiablity stems from extensive analyt-
ical [3] and numerical studies [2] of random KSAT, which havedemonstrated the existence
of a transition, possibly a phase transition at valuesαs(K). The SAT to UNSAT transition
separates at lowα < αs a phase where formulasF are satisfied in the mean, from a phase
at largeα > αs where formulasF can not be satisfied. Numerical data for the probability
0 ≤ PUNSAT ≤ 1 of un-satisfiable formulas within the mean of random KSAT aredisplayed
in Fig.(2) and illustrate the statement. The data are of similar quality as the data obtained
by Selman and Kickpatrick in 1996 [2]. The consensus is that probable realizations within
random KSAT are ’hardest’, i.e. computational most intractable, at and in the vicinity of the
transition pointα ≈ αs. However, this does not exclude the existence of still ’harder’ i.e.,
worst case realizations which at arbitraryα are hidden in the tails of probability distribution
functions for complexity related observables with small, possibly very small probabilities.
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2.2. Search for Hard Problems
The starting point of our search for ’hard’ realizations areobservations that concern real-

izations with USA. If one considers USA realizations in 3SATfor the smallest spin number
N = 3 and clause numberM one inevitably arrives at theM = 7 = 3 + 4 realization

FUSA(N = 3) = ( 1 ∨ 2 ∨ 3 ) ∧

( 1 ∨ 2 ∨ 3 ) ∧

( 1 ∨ 2 ∨ 3 ) ∧

( 1 ∨ 2 ∨ 3 ) ∧

( 1 ∨ 2 ∨ 3 ) ∧

( 1 ∨ 2 ∨ 3 ) ∧

( 1 ∨ 2 ∨ 3 ) ,

(2.8)

which encodes the unique ground states1 = s2 = s3 = +1. This particular example is one
of eight that all encode USA’s forN = 3, and is turned in a readable form upon permuting
clause and literal indices. It has interesting specific properties:

• FORN = 3 FUSA is the minimal form with a USA. ForN = 3 andM = 6 there are
no USA realizations in 3SAT.

• The density of statesg(E) only has two valuesg(E = 0) = 1 andg(E = 1) = 7.
All spin flips acting on the ground-state lift theE = 0 energy surface by just one
unit to E = 1. The states withE = 1 have dis-proportional large multiplicity and
thereforeE = 0 is hidden. This suggests that still ’minimal’ but larger formsFUSA at
valuesN > 3 could inherit a similar property. These must exist atα = (N + 4)/N
as one can introduce additional spins and clauses one by one.For example, if we
introduce a fourth spin and extendFUSA by one clause to an(N,M) = (4, 8) form
with comparable property, then

FUSA(N = 4) = FUSA(N = 3) ∧ ( 4 ∨ 1 ∨ 2 ). (2.9)

The latter form encodes the unique ground states1 = s2 = s3 = s4 = +1 and has
the density of statesg(E = 0) = 1 andg(E = 1) = 15 respectively. AgainE = 1
configurations have large multiplicity.

• Within FUSA of eq.(2.8) there are exactlym1 = 3 clauses - those with two negations
- which in the unique solution are solved by just one true literal. There are in addition
m2 = 3 clauses which are solved by two literals andm3 = 1 clauses which are solved
by three literals. Also, there exists a polynomial transformation of 3SAT to maximal
independent set (MIS) [13]. It is easy to show, that a unique ground-state of the 3SAT
problem transforms into a degenerate ground-state in the corresponding MIS problem.
The ground-state multiplicity MIS,Ω0,MIS, has the value

Ω0,MIS = 2m23m3 = 24 (3SAT,N = 3,M = 7), (2.10)
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Figure 5: ProbabilityPUSA of eq.(2.19) for the occurrence of problem realizations with unique satisfying
assignment (USA) in 3SAT as a function ofα = M/N . Spin numbers areN = 8, 10 andN = 12. The inset
of the figure displays the decrease ofPUSA for αHARD, see eq.(2.12) as a function ofN .

onFUSA. We note thatm1 of FUSA(N = 4) turns out to bem1 = 4 while m2 andm3

remain having valuesm2 = 3 andm3 = 1, and thus alsoFUSA(N = 4) is constant at
Ω0,MIS = 24. It is suggested that ’minimal’ but larger (N > 3) formsFUSA can have
indicesm1 that are of magnitudeO(N), which in turn limits the volumeΩ0,MIS to
finite values. Finite values imply vanishing ground state entropy densitylnΩ0,MIS/N
under the polynomial transformation from 3SAT to MIS.

The existence of examples with interesting properties guides our expectations. The question
is raised whether USA and 3SAT realizations at the ratio of clause to spin numbers

αHARD =
N + 4

N
(2.11)

exist for arbitraryN ≥ 3 and what their properties are ? In absence of useful mathematical
methods we use Monte Carlo simulations in order to actually construct members of the en-
semble atαHARD, and in a later measurement step we determine their properties. In particular
we calculateΩ1, the multiplicity of the energy one surface. It is then necessary to employ
biased Monte Carlo sampling techniques, as in the vicinity of α = 1 USA realizations within
random 3SAT have exponentially small probability. Finallyit is easy to generalize our ar-
guments to arbitraryK. For KSAT withK ≥ 2 we expect USA realizations with minimum
clause number at

αHARD(K) =
N + 2K −K − 1

N
, (2.12)

under the condition thatN ≥ K.
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2.3. Monte Carlo Search and Checks

The Monte Carlo simulation performs a stochastic estimate of the biased partition function

Γ(µ,WMUCA) = N−1
∑

RANDOM KSAT

e+WMUCA(µ)δ(1)[µ− g(E = 0)], (2.13)

which for 0 ≤ µ ≤ 2N is evaluated on the phase space of all possible random KSAT real-
izations for a given KSAT Hamiltonian eq.(2.5). The bias, asexpressed by the Boltzmann
factor exp[+WMUCA(µ)], is introduced along the lines of Multicanonical Ensemble simu-
lations [11] and serves the purpose to lift the probabilities of rareµ configurations in the
Markov chain. The Monte Carlo is expected to perform a randomwalk in µ and whenever
theµ = 1 sector is visited an ensemble member of< ... >HARD is stored on the disk of a
computer. Our Monte Carlo is quite un-conventional and essential remarks are in order:

• The Markov chain of configurations consists of realizations as specified by their maps
i[α, j] and frustration matrixǫα,j . Each problem realization is attached to a Hamilto-
nian theory with density of statesg(E) that can be evaluated atE = 0, µ = g(E = 0).
The calculation ofµ for a given configuration unfortunately takesO(2N) computa-
tional steps. Our Monte Carlo simulation therefore is limited to small numbers of
spins. We studied KSAT theories forK = 2, 3, 4, 5 andK = 6. We were able to
generate ensembles of1000 statistical independent members each for maximum spin
numbersNmax = 18, 16, 14, 12 andNmax = 10 respectively. Minimum spin numbers
always areNmin = K..

• Configurations are updated with Metropolis updates [14]. The initial problem real-
ization atµI is subject to a trial-update which targetsµF. The Markov chain accept
probability for the move is

PACC = min[1, e+WMUCA(µF)−WMUCA(µI)], (2.14)

and as usual, if the update is rejected the initial configuration stays within the Markov
Chain.

• Trial updates are generated randomly on the space of randomKSAT realizations. One
chooses a random clauseα0 and clause positionj0 and at(α0, j0) trial valuesiTrial and
ǫTrial, which are uniformly distributed on the measure of the theory. The absence of
redundancies and tautologies constrains the admissible move set. The typical number
of Monte Carlo moves for the simulation ofΓ(µ) is 109. For the largerN values it was
necessary to repeat the simulations with different random number sequences possibly
10, up to several 10 times. The numerical data, as presented in the paper, consumed
one month of computer time on a256 processor workstation cluster.
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• The biasWMUCA(µ) has to be chosen properly in order to guarantee efficient random
walk behavior in the variableµ. In a preparation step we use Wang Landau simulations
[10] to generate sufficiently accurateWMUCA(µ) weight functions, which then enter
the Multicanonical simulation of eq(2.13).

The biased partition function of eq.(2.13) serves as a tool to facilitate Monte Carlo sampling
of differentµ sectors in random KSAT and in particular the sectorµ = 1 (USA) is sampled
efficiently. There is however an additional benefit. After finishing the biased Monte Carlo
simulation a final reweighing stepΓ(W = 0) = exp[−W (µ)]Γ(W (µ)) restores the un-
biased partition function

Γ(µ) = N−1
∑

RANDOM KSAT

δ(1)[µ− g(E = 0)], (2.15)

which on the space of random KSAT realizations simply countsthe probability ofE = 0
multiplicities µ. GivenΓ(µ) we can determine expectation values of known observables
within random KSAT, which provide consistency checks on thecorrectness of the Monte
Carlo simulation. A list and a comparison to numerical data follows:

• In random KSAT there is always a finite probability of problem realizations withE =
0 non-vanishing multiplicity. In fact one can calculate theE = 0 mean multiplicity

< g(E = 0) >RANDOM KSAT=< µ >= N−1
∑

µ

Γ(µ)µ (2.16)

on combinatorial grounds at arbitraryK exactly [12], which simply yields

< µ >= (1−
1

2K
)M2N . (2.17)

In Fig.(3) we compare selected measurement data for< µ > with the exact result for
various values ofK, N andM . The Monte Carlo data agree with the combinatorial
result very well.

• One may wonder whether a theory with an entirely regular< µ > will contain a
non-regular structure at the SAT to UNSAT transitionαs. However, the constraint
expectation value of the quantity1

N
< lnµ > |µ>0, under omission of theµ = 0 sector

does in fact show non-trivial behavior. Within the SAT phase(α < αs) it equals the
ground-state entropy densitys0 = 1

N
< lnµ >, for which long time ago [15] and

for the theories 2SAT and 3SAT anα series-expansion was calculated within replica
symmetry breaking theory up to orderO(α10). In Fig.(4) we compare our numerical
data< s0 > in 2SAT and 3SAT with the series expansions results. The figure contains
two curves, which for 2SAT forα < αs = 1 and for 3SAT forα < αs = 4.267 are
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indistinguishable from the numerical data points. Finallywe note for random KSAT,
that the probabilityPUNSAT of an un-satisfiable formula has the simple representation

PUNSAT = N−1Γ(µ = 0). (2.18)

The data are displayed in Fig.(2).

The main reason for the use of quite elaborate Monte Carlo techniques is the rareness of
USA realizations forα ≈ 1, in particular for the conjectured exact pointα = αHARD(K),
as given in eq.(2.12). For all our theories withK = 2, 3, 4, 5 andK = 6 and for typical
N like N = 10 we search theα-parameter space also atα-values belowαHARD(K) for
USA realizations. Neither Multicanonical Ensemble simulations for several weight functions
WMUCA, nor Wang Landau simulations or, alternatively simulated annealing runs inµ -
ever produced a USA realization forα belowαHARD. However, atαHARD eq.(2.12) USA
realizations are found. The relative probabilityPUSA for the occurrence of unique satisfying
assignment’s within random KSAT is

PUSA = N−1Γ(µ = 1). (2.19)

We display in Fig.(5)PUSA data in 3SAT forN = 8, 10, 12 spins.PUSA appears to be a slowly
varying function aboveαs = 4.267, with a maximum aroundαs and with a rapid decrease
towards minimal and very small values atαHARD and, problems with largerN appear to
be increasingly improbable. The asymptotic decay ofPUSA(αHARD) is consistent with an
exponential decayPUSA(αHARD) ∝ exp(−rN) with r ≈ 2.58 in 3SAT and is depicted in the
inset of Fig.(5). In addition at fixed spin numberN values ofPUSA(αHARD) turn out to be
even smaller if largerK values are considered. We quotelnPUSA(αHARD) = −11.4,−31.39
andlnPUSA(αHARD) ≈ −84.3 for the twelve spin theory withK = 2, 3 and in 4SAT. Finally
we present for purposes of illustration a specific 3SAT realization forN = 16 spins and
M = 20 clauses:

FUSA = ( 11 ∨ 12 ∨ 3 ) ∧ ( 14 ∨ 13 ∨ 8 ) ∧

( 11 ∨ 2 ∨ 12 ) ∧ ( 4 ∨ 6 ∨ 12 ) ∧

( 6 ∨ 12 ∨ 13 ) ∧ ( 6 ∨ 14 ∨ 7 ) ∧

( 8 ∨ 6 ∨ 9 ) ∧ ( 5 ∨ 12 ∨ 3 ) ∧

( 13 ∨ 16 ∨ 4 ) ∧ ( 8 ∨ 6 ∨ 12 ) ∧

( 3 ∨ 12 ∨ 6 ) ∧ ( 5 ∨ 3 ∨ 12 ) ∧

( 15 ∨ 5 ∨ 12 ) ∧ ( 12 ∨ 11 ∨ 3 ) ∧

( 6 ∨ 11 ∨ 15 ) ∧ ( 15 ∨ 3 ∨ 12 ) ∧

( 13 ∨ 15 ∨ 12 ) ∧ ( 15 ∨ 16 ∨ 10 ) ∧

( 15 ∨ 3 ∨ 12 ) ∧ ( 1 ∨ 12 ∨ 9 )
(2.20)

12



 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12

ln
 g

(E
)

E

2SAT

18 ln(2)
N=18

 0

 2

 4

 6

 8

 10

-1  0  1  2  3  4  5  6  7  8

ln
 g

(E
)

E

4SAT

14 ln(2)
N=14

Figure 6: Ten density of states (DOS) curves in 2SAT (left) and 4SAT (right) for a number of spinsN = 18
andN = 14 respectively.
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Figure 7: Ten density of states (DOS) curves in 5SAT (left) and 6SAT (right) forN = 13 andN = 12
respectively.

For αHARD = 24/16 = 1.5 it encodes the unique ground state1100100111001000 - zero
corresponding to spin down and one corresponding to spin up -and is characterized by
the phase space volumesΩ0 = 1, Ω1 = 19687 andΩ0,MIS = 24. USA realizations for
the given parameter values have probabilityPUSA ≈ 0.000000000000000004 to occur by
chance within random 3SAT. The full density of states of eq.(2.20) is depicted in Fig.(1),
see the triangles in the figure. Finally the stochastic nature of the Monte Carlo search result
is apparent if one compares the random structure of eq.(2.20) with the regular structure in
eq.(2.8).
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K r(K) χ2
dof

2 0.34762(112) 0.65
3 0.56918(096) 1.87
4 0.63620(015) 0.66
5 0.66574(025) 2.55
6 0.67934(014) 0.30

Table 1: Fit parameters ofχ2
dof fits to< Ω1 > data with the form eq.(3.2). The rate constantsr(K) approach

the unstructured search valueln2 = 0.6931... rapidly for large values ofK.

3. Properties of Hard KSAT Realizations

For each of the generated problem realizations within the ensemble< ... >HARD and as
defined by the partition functionΓ(µ) of eq.(2.15) forµ = 1, we calculate the density of
states eq.(2.7). We determine its mean on theE = 1 surface

< Ω1 >=< g(E = 1) >HARD . (3.1)

Selected data for the density of statesgη(E) with η = 1, ..., 10 are displayed in Figures
Fig.(6) and Fig.(7) for theK = 2, 4, 5, 6 KSAT theories. They complement the 3SAT data
displayed in Fig.(1). In each case the multiplicity ofE = 1 configurations exhibits a step
∆lnΩ = lnΩ1 = lng(E = 1) that is of magnitudeO(N) for the given number of spinsN .
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Our final numerical data for the mean multiplicity ofE = 1 configurations< Ω1 >, in the
theories 2SAT, 3SAT and 6SAT are displayed in Fig.(8). The numerical data are consistent
with an exponential growth

< Ω1 > = const e+r(K)N , (3.2)

for large values ofN with finite growth rate constantsr(K). Subsequently, we performed
χ2
dof fits to the< Ω1 > data in order to determine the shape of the singularity eq.(3.2) and to

measure values of the rate constantsr(K) in KSAT theories withK = 2, 3..., 6. Restricting
the fit interval to the cases withN ≥ 10 we obtain acceptableχ2

dof-values for the fit. The final
rate constantsr(K) andχ2

dof-values of the fits are contained in Table 1. TheK-dependence
of the rate constantsr(K) is also depicted in the inset of Fig.(8). Starting from a moderate
value for the rate constant in 2SAT,r(K = 2) = 0.348(2), we obtainr(K = 3) = 0.54(1) in
3SAT and, beyondK = 3 the rate constants rapidly approach the unstructured search value
r = ln2 = 0.6931... . For 6SAT the rate constant isr(K = 6) = 0.6793(2).

A classical statistical model with a density of statesg(E), that squeezes an exponential
large number of configurations into the first energy level above the ground-state, see the
right panel of Fig.(7) is certainly a very special theory. Let us recall the ferromagnetic Ising
model, which in any dimensionD has a ground-state degeneracyg(E = 0) = 2 as well as
a multiplicity Ω1 = g(E = 2D) = 2N at the first energy level. Polynomial singularities in
Ω1 are the consequence of theories with local interactions. However, the class of problems
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Figure 10: Overlap distribution to the ground state in accord with eq.(3.3) for a singleN = 18 problem in
2SAT.

considered here does not possess this property.
The spin configurations at energyE = 1 will have a phase space distribution and it is in-

teresting to know, whether that distribution is biassed towards the ground state configuration.
For this purpose we calculate the overlap to the ground state

oGSC =
N∑

i=1

sis
0
i (3.3)

wheres0i denotes ground state spins. For purposes of illustration wedisplay in in Fig.(10)
the number histogramH(oGSC) for a singleN = 18 problem in 2SAT. We obtain a bell-
shaped overlap distribution which actually is slightly biassed away form the ground state to
the negative half space. We note that the histogram carries entries atoGSC = 16 and thus the
ground state is accessible via single spin flips from theE = 1 surface. We also have analyzed
the connectivity ofE = 1 configurations. Usingballistic shootingwe find that any twoE =
1 configurations are connected by sequences of single spin flips without leavingE = 1. This
is different from spin glasses where in general there are several connectivity components and
corresponding free energy barriers. Any single spin flip dynamics e.g. Metropolis updates
can easily explore theE = 1 surface.

We also consider the canonical ensemble eq.(2.6). We calculate the internal energy<
E >=< U >HARD with U = ∂β lnZ, as well as the specific heat< CV > (β) =<
β2∂βU >HARD, as a function of the inverse temperatureβ = T−1. For 3SAT we display
< E > and< CV > for N = 4, 8 andN = 16 spins in Fig.(11). A theory with a fi-
nite energy gap is expected to possess a freezing phase transition at low, possible very low
temperaturesTF below which and for valuesT < TF the internal energy approaches its
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asymptotic ground-state value< E >= 0. The numerical data in fact confirm the presence
of freezing, with a position as given by the position of a pronounced peak in the specific heat,
see the inset of Fig.(11). Figure (9) displaysβF = T−1

F data in 3SAT, which as a function
of N exhibit a blatant linear dependence, see the straight linesin Fig.(11). We remark that
at the freezing point configurations withE = 1 coexist with a single configuration at the
ground-state energy.

A popular algorithm within the canonical ensemble for the solution of optimization prob-
lems is simulated annealing (SA) [16]. Simulated annealingruns will have to use tempera-
ture annealing schedules with temperatures low enough to reach the freezing point atTF e.g.
T ≈ 0.1 for 16 spins in 3SAT and, then will have to exploreΩ1 number of possibilities to
finally arrive at the ground-state. The process will consumean exponentially large amount
of time, if Ω1 is exponentially large. We do not expect, that other algorithmic improvements
like kinetic Monte Carlo methods [17] can avoid the exponential singularity.

We have implemented simulated annealing for the problem setin 3SAT. We use the canon-
ical partition function eq.(2.6) and choose a random initialized spin-configuration. We then
perform local Metropolis spin updates in a multi-spin codedcomputer program [18, 19]. We
employ compute time farming on a parallel computer with a parallel random number gener-
ator of Marsaglia [20]. Each annealing trajectory is started at the very high temperature

T0 = 100 (3.4)
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and terminates after1000 Sweeps i.e.,1000 × N Monte Carlo steps whereN is the spin
number, at the exact temperature

TEnd =
1

30
. (3.5)

We use a polynomial temperature schedule

Ti = a i−b (3.6)

wherei is the sweep numberi = 1, ..., 1000 and constantsa, b are determined to meet the
boundary conditions on the temperature. For each problem werepeat the annealing trajecto-
ries6400 times with different random numbers and determine the mean success probability
P SA
Success with 0 ≤ P SA

Success ≤ 1 of successful ground-state searches after the sweep1000 has
been finished. Our measure of SA search run-time is

τSA =
ln[1− P SA

Target]

ln[1− P SA
Success]

× 1000 ×N [Monte Carlo Steps] (3.7)

at target success rate one-half :PTarget =
1
2
. The procedure is repeated for a possible1000

realizations and at all values ofN . The correlation of run-timesτSA with the density of states
g(E = 1) is linear for 3SAT, as can be inspected in Fig.(12) for a selected set of problems
at variousN . These run times are quite short. If e.g. atN = 16 the energy surface has
16000 degenerate spin configurations a typical number ofO(20000) Monte Carlo Steps is
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in eq.(1.1).

sufficient to solve the problem at a success rate of one half. However if the target success
rate is demanded to be very close to unity larger times are needed. Our findings imply
that the classical compute time for solving problems with simulated annealing goes like
τClassical ∝ e+r(K)N with valuesr(K) as given in Table 1. It is this kind of singularity a
quantum search has to compete with.

4. Conclusion

Within the scope of the present work, we have generated prototype problem realizations
within KSAT theories, which under the constraint of a uniquesatisfying assignment (USA)
at minimal clause number develop extremal statistical properties. The phase space volume
Ω1 at the minimal energy gap is exponentially large and likewise for a given KSAT theory
maximal. The idea was formulated in2005 by Znidaric [9] but in absence of efficient Monte
Carlo methods it was not worked out at minimal clause number and at large values of the
rate constantsr(K). The class of problems as presented here exemplifies our current under-
standing of physical search complexity in random systems ina straight and simple way: A
single ground state is hidden in an exponentially large phase space volume at the first energy
gap. For the theories with largeK almost all spin configurations are collapsed to theE = 1
surface, except the one ground state configuration atE = 0. In this situation there exists
no distance measure or cluster property which within theE = 1 surface would allow the
detection of a direction, as to where the ground state could be searched for. Representatives
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of the ensemble< ... >HARD can be obtained at request from the author.
The given problems atK = 3, 4, 5 andK = 6 in this work are constructed on problem

Hamiltonians that contain higher order interactions of spins likeai,j,ksisjsk. From a physics
point of view it would possibly be nicer to eliminate such unphysical couplings and stay with
only 2-point spin couplings, as well as magnetic fields. We mention that all the Hamiltonians
atK ≥ 3 can be transformed via polynomial transformations to Maximal Independent Set
(MIS),see [13], which in fact can be represented by 2-point and magnetic field spin cou-
plings only. It is plausible to assume that these after polynomial transformation retain their
“hardness”.

The design of problem realizations with specific propertiesfacilitates the subsequent study
of proper defined search efficiency’s in processes, that can possibly be implemented on a
physical device e.g., a quantum computer. For purposes of illustration we mention here
quantum annealing within the quantum partition functionZQ of eq.(1.1). Search times
for ground-state calculations via quantum annealing are expected to be bounded by below
through a gap-correlation length∆ξGAP , which is determined from spin-spin correlations
along the imaginary Trotter Suzuki time ofZQ at the quantum critical point. For 3SAT we
present in Fig.(13) preliminary numerical results for∆ξGAP in the median average of the
hard problem ensemble. The data, as indicated by the straight line in the figure, show in
fact also an exponential singularity∆ξGAP ∝ exp[+rQN ] of a similar type as in eq.(3.2),
that now is governed by a quantum rate constantrQ ≈ 0.60(1), a value that is close to
r(K = 3) = 0.569(1) of Table 1. The caveat however is, that in presence of a LandauZener
avoided level crossings quantum run-times for linear quantum annealing schedules show a
quadratic singular behaviorτQuantum ∝ ∆ξ2GAP [21], which leaves the quantum search effi-
ciency far behind the classical search. Similar exponential singularities at smaller values of
rQ were already observed for quantum 3SAT on a set of ’weaker’ problems [7]. A detailed
study of quantum search complexities on the set of hard problems in 2SAT has just been
completed [22] and complements the less physical findings ofthis work.

Finally we mention that the spin numbersN in this work are embarrassing small, as the
Monte Carlo search on the problem set consumes exponentially large resources. We can
safely say that with current methods it is not possible to generate a corresponding ensemble
of problems even for spin numbers as small asN = 30. It is however not excluded, that sin-
gle problem representatives can be found by clever heuristic construction. We emphasize that
we do not want to give up the ensemble property because otherwise we would be studying
arbitrary mathematical problems. This will be relevant forsearch complexity distributions
which are expected to exhibit ensemble properties.
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