Validity of ChPT – is $M_{\pi} = 135 \,\mathrm{MeV}$ small enough ?

Stephan Dürr

University of Wuppertal Jülich Supercomputing Center

thanks to BMW-collaboration and Regensburg

Lattice 2014 – Columbia University – New York

- ChPT expansion principles
- Warning about finite-volume effects
- Staggered 2-stout results
- Wilson 2-HEX results
- LEC section of FLAG review
- Assorted remarks and Summary

Overview (1): Rationale for ChPT

• Chiral SU(2) Lagrangian

LO: 2 LECs $[F \text{ and } B = \Sigma/F^2 \text{ defined via } m_{u,d} \rightarrow 0$, often denoted $F^{(2)}, B^{(2)}]$ NLO: 7 LECs $[\bar{\ell}_{1...7} \equiv \ln(\Lambda_{1...7}^2/[135 \text{MeV}]^2)]$ NNLO: plethora of LECs Value $m_{ud}^{\text{phys}} \simeq 3.5 \text{ MeV}$ ($\overline{\text{MS}}$, 2 GeV) small enough for good convergence. Phenomenological LECs depend implicitly on m_s^{phys} and heavier flavors.

• Chiral SU(3) Lagrangian

LO: 2 LECs $[F \text{ and } B = \Sigma/F^2 \text{ defined via } m_{u,d,s} \rightarrow 0$, often denoted $F^{(3)}, B^{(3)}]$ NLO: 10 LECs $[L_{1...10}^{\text{ren}}(\mu \sim 770 \text{MeV})]$ NNLO: plethora of LECs Value $m_s^{\text{phys}} \simeq 95 \text{ MeV}$ ($\overline{\text{MS}}$, 2 GeV) at the edge of applicability window. Phenomenological LECs depend implicitly on m_c^{phys} and heavier flavors.

Here f and $F = f/\sqrt{2}$ used in parallel with $f_{\pi}^{\rm phys} \simeq 130.4 \,\mathrm{MeV}$ or $F_{\pi}^{\rm phys} \simeq 92.2 \,\mathrm{MeV}$.

 \oplus combine different channels \longleftrightarrow \ominus chiral limit implicit

Overview (2): Employing SU(2) versus SU(3) ChPT

Issues: (i) practical convergence in $m_{u,d}$ or M_{π}^2 , (ii) whether m_s^{phys} still small enough, (iii) potential challenge through $m^{\text{sea}} \neq m^{\text{val}}$, (iv) potential challenge through a > 0.

Overview (3): Expansion in x versus ξ versus X

• plot data versus $m_q^{\rm ren}$, expand formulas in $x\equiv M^2/(4\pi F)^2$ where $M^2\equiv B(m_1+m_2)$

$$M_{\pi}^{2} = M^{2} \left\{ 1 + \frac{1}{2} x \ln \frac{M^{2}}{\Lambda_{3}^{2}} + \frac{17}{8} x^{2} \left(\ln \frac{M^{2}}{\Lambda_{M}^{2}} \right)^{2} + x^{2} k_{M} + O(x^{3}) \right\}$$
$$F_{\pi} = F \left\{ 1 - x \ln \frac{M^{2}}{\Lambda_{4}^{2}} - \frac{5}{4} x^{2} \left(\ln \frac{M^{2}}{\Lambda_{F}^{2}} \right)^{2} + x^{2} k_{F} + O(x^{3}) \right\}$$

• plot data versus M_{π}^2/F_{π}^2 , expand formulas in $\xi \equiv M_{\pi}^2/(4\pi F_{\pi})^2 = M_{\pi}^2/(8\pi^2 f_{\pi}^2)$

$$M^{2} = M_{\pi}^{2} \left\{ 1 - \frac{1}{2} \xi \ln \frac{M_{\pi}^{2}}{\Lambda_{3}^{2}} - \frac{5}{8} \xi^{2} \left(\ln \frac{M_{\pi}^{2}}{\Omega_{M}^{2}} \right)^{2} + \xi^{2} c_{M} + O(\xi^{3}) \right\}$$
$$F = F_{\pi} \left\{ 1 + \xi \ln \frac{M_{\pi}^{2}}{\Lambda_{4}^{2}} - \frac{1}{4} \xi^{2} \left(\ln \frac{M_{\pi}^{2}}{\Omega_{F}^{2}} \right)^{2} + \xi^{2} c_{F} + O(\xi^{3}) \right\}$$

• plot data versus M_{π}^2/GeV^2 , expand formulas in $X \equiv M_{\pi}^2/(4\pi F)^2 = M_{\pi}^2/(8\pi^2 f^2)$ Coefficients in ξ -expansion smaller in abs. mag. than in x-expansion [cf. FLAG-report]. Lattice: 0806.0894 [JLQCD/TWQCD], 0911.5061 [ETMC], 1108.1380 [NPLQCD]

Overview (4): Curvature and chiral logarithms

Usual logs: $M_{\pi}^2/(4\pi F_{\pi})^2 \cdot \log(M_{\pi}^2/\mu^2)$ and powers thereof, e.g. $M_{\pi}(m_q), F_{\pi}(m_q)$ Naked logs: $\log(M_{\pi}^2/\mu^2)$ and thus *divergent* in chiral limit, e.g. $\langle r^2 \rangle_{S,V}$ of pion

Golterman 0912.4042: "In order to confirm the existence of the chiral logarithm in the data, clearly data points *in the region of the curvature of the logarithm* are needed."

Usual logs in combination with analytic terms: $c_0\xi + c_1\xi \log(M_\pi^2/\mu_1^2)$ Appropriate shift $\mu_1 \rightarrow \mu_2$ may remove analytic term: $c_1\xi \log(M_\pi^2/\mu_2^2)$

 $f(M^2) = M^2 \log(M^2/\Lambda_i^2) \longrightarrow f'(M^2) = \log(M^2/\Lambda_i^2) + 1 \longrightarrow f''(M^2) = 1/M^2$

- Must go sufficiently chiral to discriminate f'' against 0 (with given statistics).
- In principle the scales Λ_i and $\Lambda_{M,F}$ are arbitrary, but since they originate mostly from integrated vector-meson exchanges they are expected to deviate from $\Lambda \sim 1 \,\mathrm{GeV}$ by no more than 1 order of magnitude.

Overview (5): ChPT in finite (euclidean) volume

New scale: spatial box-length L implies $p_{\min} = 2\pi/L$ (with periodic b.c.). Example: L = 2 fm means $p_{\min} \simeq 2\pi 100 \text{ MeV} \simeq 630 \text{ MeV}$ [edge of applicab. of ChPT].

Finite volume effect on meson masses: $M_{\pi}(L) > M_{\pi} \equiv M_{\pi}(\infty)$. Finite volume effect on decay constant: $F_{\pi}(L) < F_{\pi} \equiv F_{\pi}(\infty)$.

• *p*-regime: $1 \ll M_{\pi}L \ll 4\pi F_{\pi}L$, count $m_q \sim M_{\pi}^2 \sim p^2 \sim L^{-2}$. Box large in absolute units and relative to $M_{\pi}^{-1} \equiv M_{\pi}^{-1}(\infty)$. Hierarchy of difficulty to access LECs at LO/NLO/NNLO.

- ϵ -regime: $M_{\pi}L \ll 1 \ll 4\pi F_{\pi}L$, count $m_q \sim M_{\pi}^2 \sim \epsilon^4 \sim L^{-4}$. Box large in absolute units but small relative to $M_{\pi}^{-1}(\infty)$, treat U_0 non-perturb. Reordering gives preferred access to LO constants $B = \Sigma/F^2$ and F.
- δ-regime: M_πL_s ≪ 1 ≪ M_πL_t ≪ 4πF_π{L_s, L_t}
 Ditto for spatial extent, but not for temporal one [classific. based on M_π ≡ M_π(∞)].
 Physics of quantum mechanical rotator [Leutwyler, Hasenfratz].

Overview(6): Warning about finite-volume effects

 \implies In fixed volume L^3 finite-volume effects will lift up $M^2_{\pi}(m_q)$ and push down $F_{\pi}(m_q)$ most prominently at small m_q , which may mimic/enhance chiral logs.

S. Dürr, BUW/JSC

Staggered paper (1): Simulation landscape and scale setting

Borsanyi *et al.* [Wuppertal-Regensburg], arXiv:1205.0788. "SU(2) ChPT low-energy constants from 2+1 flavor staggered lattice simulations"

2-stout staggered lattices with $N_f = 2+1$ at various $a = a(\beta)$. Only $m_{ud}^{\text{sea}} = m_{ud}^{\text{val}}$ varies, while $m_s^{\text{sea}} = m_s^{\text{val}}$ tuned to m_s^{phys} . Scale set via f_{π}^{phys} . Measure only taste-pseudo-scalar pions, and compensate finite-volume effects via 2-loop (3-loop) ChPT.

For each β : Interpolate/extrapolate M_{π}^2/f_{π}^2 to the point where this ratio assumes its physical value 1.06846, then read off $(am)^{\text{phys}}$.

For each β : Determine af_{π} for that $(am)^{\text{phys}}$ and thus a via f_{π}^{PDG}

S. Dürr, BUW/JSC

Lattice 2014

Joint fit to $M_{\pi}^2 = M_{\pi}^2(m)$ and $F_{\pi} = F_{\pi}(m)$ yields B, F and Λ_3, Λ_4 or $\overline{\ell}_3, \overline{\ell}_4$. Acceptable after restriction to $1.6 \,\text{GeV} < a^{-1}$ and $M_{\pi} \le 240 \,\text{MeV}$ (black data).

Staggered paper (3): Sensitivity of LECs on chiral range

Staggered paper (4): Sensitivity on cuts from above/below

Deliberately leaving out near-physical mass points barely affects results for $\overline{\ell}_3$ (left), but increases instability for $\overline{\ell}_4$ (right).

Staggered paper (5): Breakup into LO/NLO/NNLO parts

Split-up of LO+NLO+NNLO fit (priors for NNLO part) suggests good convergence at physical mass point and yields $\Lambda_{3,4}$ consistent with those from LO+NLO fit.

S. Dürr, BUW/JSC

Lattice 2014

Wilson paper (1): Global fit strategy and scale setting

Durr *et al.* [BMW collab.], arXiv:1310.3626 "Lattice QCD at the physical point meets SU(2) chiral perturbation theory"

2-HEX tree-level-clover lattices with $N_f = 2+1$ at various $a = a(\beta)$. Mainly $m_{ud}^{\text{sea}} = m_{ud}^{\text{val}}$ varies, while $m_s^{\text{sea}} = m_s^{\text{val}}$ scatter around m_s^{phys} . Scale set through Ω baryon mass.

Non-perturbative $Z_{A,S}$ via Rome-Southampton to determine F_{π} and m_q . Analysis via global fits with dedicated parameters to compensate cut-off and finite-volume effects.

Disentanglement of global fit into per-*a* values of $B^{\text{RGI}}[\text{GeV}]$ (left) and $F_{\pi}^{\text{phys}}[\text{MeV}]$ (right) suggest that cut-off effects are mild [left O(4%), right consistent with 0].

Wilson paper (2): NLO fit via x expansion

Snapshot fit with 4 lattice spacings and $M_{\pi} \leq 300 \,\mathrm{MeV}$:

Choice of M_{π}^{\max} affects F more strongly than B:

Wilson paper (3): NLO fit via ξ expansion

Snapshot fit with 4 lattice spacings and $M_{\pi} \leq 300 \,\mathrm{MeV}$:

Wilson paper (4): NNLO fit via x expansion

Snapshot fit with 4 lattice spacings and $M_{\pi} \leq 500 \,\mathrm{MeV}$:

Wilson paper (5): NNLO fit via ξ expansion

Snapshot fit with 4 lattice spacings and $M_{\pi} \leq 500 \,\mathrm{MeV}$:

Wilson paper (6): sensitivity on pruning data from below

Choice of M_{π}^{\min} affects F more strongly than B (gray band is final result):

Choice of M_{π}^{\min} affects $\overline{\ell}_4$ more strongly than $\overline{\ell}_3$ (gray band is final result):

Wilson paper (7): final results

	x-expansion	\mathcal{E} -expansion
$B_{\rm BCI}[{\rm GeV}]$	1.95(04)(01)	1.94(05)(02)
F [MeV]	87.9(1.3)(0.3)	87.7(1.4)(0.3)
$\Sigma_{ m RGI}^{1/3} [m MeV]$	246.9(3.3)(0.9)	246.4(3.5)(1.0)
$\overline{\ell_3}$	2.4(0.4)(0.2)	2.7(0.6)(0.3)
$\overline{ar{\ell}}_4$	3.6(0.3)(0.1)	4.0(0.4)(0.1)
$F_{\pi}^{\mathrm{phys}}\left[\mathrm{MeV}\right]$	92.7(0.9)(0.2)	92.7(0.9)(0.2)
$F_{\pi}^{\mathrm{phys}}/F$	1.054(06)(01)	1.057(07)(01)

Statistical error determined from 2000 bootstrap samples. Systematic error determined from width of distribution of legitimate fit results (canonical range $135 \text{MeV} \le M_{\pi} \le 300 \text{MeV}$).

- histograms for $B, F, \bar{\ell}_3, \bar{\ell}_4$ from top to bottom
- \bullet red/blue histogram for central values in $x/\xi\mbox{-expansion}$
- reddish/gray bands for statistical/overall error

Flag review (1): summary of SU(2) LECs

 $\bar{\ell}_3$ success: determinations from $N_f = 2, N_f = 2+1, N_f = 2+1+1$ data overall consistent and more precise than phenomenological determination "Gasser 84".

 $\overline{\ell}_4$ more challenging: dependence on N_f in principle possible, but should be monotonic in N_f , phenomenological determination "Colangelo 01" still quite precise.

Flag review (2): summary of SU(3) LECs

Lattice results available for $L_3, L_4, L_5, L_6, L_8, L_{10}$ and various linear combinations. In many cases precision significantly better than from phenomenological analyses.

Future: Check $L_{4,6} \xrightarrow{N_c \to \infty} 0$ and compute $F^{(2)}/F^{(3)}, \Sigma^{(2)}/\Sigma^{(3)}, B^{(2)}/B^{(3)}$ to test Zweig.

Remarks (1): log-free compounds

From the relations given on $x/\xi/X$ -expansion transparency one finds

$$M_{\pi}^{4}F_{\pi} = M^{4}F\left\{1 + x\ln\frac{\Lambda_{4}^{2}}{\Lambda_{3}^{2}} + O(x^{2})\right\}$$

- Due to $\gamma_3 = -\frac{1}{2}$, $\gamma_4 = 2$ the combination $M_\pi^4 F_\pi/m^2$ is linear in m, i.e. log-free up to NNLO corrections; slope yields NLO parameter $\ln(\Lambda_4^2/\Lambda_3^2) = \bar{\ell}_4 \bar{\ell}_3$.
- In addition, the combination $M_{\pi}^4 F_{\pi}$ is free of finite-volume effects through NLO.
- Orthogonal combination $\bar{\ell}_4 + \bar{\ell}_3$ from $M_\pi^4/(F_\pi m^2)$ with pronounced log and FVE.

Remarks (2): S-parameter in $N_f = 6, 8, ...$ theories

S-parameter decides whether QCD-type theory with $N_f = 6, 8, ...$ may explain EW-SB.

 \longrightarrow Chiral extrapolation under control for $N_f = 2$, issues remain for $N_f = 6, 8, ...$

- ChPT frameworks exist for 2 or more light quarks, various options for application to $N_f = 2$, $N_f = 2+1$ and $N_f = 2+1+1$ lattice data.
- Beware of finite-volume effects they mimic/enhance infinite-volume chiral logs.
- ChPT convergence challenged by any one of $\{m, p, 2\pi/L\} \not\ll \Lambda_{\rm QCD}$, in extended versions also by $m_{\rm sea} \neq m_{\rm val}$ and/or a > 0. In practice $135 \,{\rm MeV} \leq M_{\pi} \leq 400 \,{\rm MeV}$ seems sufficient to determine mesonic LO and NLO coefficients in most channels.
- Expansion in $\xi \equiv M_{\pi}^2/(4\pi F_{\pi})^2$ in principle better behaved than in $x \equiv 2Bm/(4\pi F)^2$. Sometimes comparing the two at NLO gives a reasonable estimate of NNLO effects.
- Results for QCD look mature; issues remain for EW-SB candidates (S-parameter).

>special thanks to A. Sastre and E.E. Scholz and colleagues from BMW and FLAG<

ChPT talks/posters at this conference

Horkel, Derek: Phase diagram of non-degenerate twisted mass fermions Nishigaki, Shinsuke: Individual [...] and determination of low-energy constants in two-color QCD+QED Tiburzi, Brian: Volume effects on the method of extracting form factors at zero momentum Lytle, Andrew: Hadron spectra and Delta_mix from overlap quarks on a HISQ sea Murphy, David: The Kaon Semileptonic Form Factor from Domain Wall QCD at the Physical Point

Brown, Nathan: Gradient Flow Analysis on MILC HISQ Ensembles Hansen, Maxwell: Beyond the Standard Model Kaon Mixing from Mixed-Action Lattice Simulations Golterman, Maarten: Vacuum alignment and lattice artifacts Creutz, Michael: Partial quenching and chiral symmetry breaking Soni, Amarjit: Improved statistics of proton decay matrix element Leem, Jaehoon: Calculation of BSM Kaon B-parameters using improved staggered quarks in N_f=2+1 QCD Munster, Gernot: The mass of the adjoint pion in N=1 supersymmetric Yang-Mills theory Hsieh, Tung-Han: Chiral Properties of Pseudoscalar Meson in Lattice QCD with Domain-Wall Fermion

Kallidonis, Christos: Baryon spectrum with Nf=2+1+1 twisted mass fermions Aoki, Sinya: Pion masses in 2-flavor QCD with eta-condensation Gerardin, Antoine: The scalar B meson in the static limit of HQET Komijani, Javad: Charmed and strange pseudoscalar meson decay constants from HISQ simulations Neil, Ethan: Leptonic B and D decay constants with 2+1 flavor asqtad fermions Chang, Chia Cheng: Matrix elements for D-meson mixing from 2+1 lattice QCD

Lujan, Michael: Electric polarizability of neutral hadrons from dynamical lattice QCD ensembles

Bernard, Claude: Finite volume effects and the electromagnetic contributions to kaon and pion masses Robaina, Daniel: Chiral dynamics in the low-temperature phase of QCD Du, Daping: B_to_pi semileptonic form factors from unquenched lattice QCD Kawanai, Taichi: The B_pilnu and Bs_Klnu form factors from 2+1 flavors of domain-wall fermions and relativistic b-quarks