
SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

SC’14 Tutorial:
Hands-on Practical Hybrid Parallel

Application Performance Engineering

Markus Geimer
Jülich Supercomputing Centre

Bert Wesarg
Technische Universität Dresden

Sameer Shende
University of Oregon

Brian Wylie
Jülich Supercomputing Centre

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Agenda

Time Topic Presenter
08:30 Introduction to VI-HPS & parallel performance engineering Wylie
09:15 VI-HPS Linux Live-ISO and MPI+OpenMP example code Wylie / all
09:30 Instrumentation & measurement with Score-P Wesarg
10:00 Break
10:30 Profile examination with CUBE Geimer
11:00 Configuration & customization of Score-P measurements Geimer
11:30 Profile examination with TAU ParaProf Shende
12:00 Lunch
13:30 Automated trace analysis with Scalasca Geimer
14:15 Interactive trace analysis with Vampir Wesarg
15:00 Break
15:30 Specialized Score-P measurements & analysis Wesarg
16:00 Performance data management with TAU PerfExplorer Shende
16:15 Finding typical parallel performance bottlenecks Wesarg
16:45 Review & conclusion Wylie
17:00 Adjourn

2

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Introduction to VI-HPS

Brian Wylie
Jülich Supercomputing Centre

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Virtual Institute – High Productivity Supercomputing

Mission: Improve the quality and accelerate the
development process of complex simulation codes
running on highly-parallel computer systems

• Start-up funding (2006–2011)
by Helmholtz Association of
German Research Centres

• Activities
– Development and integration of HPC programming tools

• diagnose programming errors and optimization opportunities
– Training & support to apply these tools
– Academic workshops

http://www.vi-hps.org
2

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

VI-HPS partners (founders)

3

Forschungszentrum Jülich
■ Jülich Supercomputing Centre

RWTH Aachen University
■ Centre for Computing & Communication

Technische Universität Dresden
■ Centre for Information Services & HPC

University of Tennessee (Knoxville)
■ Innovative Computing Laboratory

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

VI-HPS partners (cont.)

4

Barcelona Supercomputing Center
■ Centro Nacional de Supercomputación

German Research School
■ Laboratory of Parallel Programming

Lawrence Livermore National Lab.
■ Centre for Applied Scientific Computing

Technical University of Munich
■ Chair for Computer Architecture

University of Oregon
■ Performance Research Laboratory

University of Stuttgart
■ HPC Centre

University of Versailles St-Quentin
■ LRC ITACA

Allinea Software Ltd

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Productivity tools

MUST
■ MPI usage correctness checking

PAPI
■ Interfacing to hardware performance counters

Periscope
■ Automatic analysis via an on-line distributed search

Scalasca
■ Large-scale parallel performance analysis

TAU
■ Integrated parallel performance system

Vampir
■ Interactive graphical trace visualization & analysis

Score-P
■ Community instrumentation & measurement infrastructure

5

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Productivity tools (cont.)

DDT/MAP/PR
■ Parallel debugging & profiling

KCachegrind
■ Callgraph-based cache analysis [x86 only]

MAQAO
■ Assembly instrumentation & optimization [x86-64 only]

mpiP/mpiPview
■ MPI profiling tool and analysis viewer

Open MPI
■ Integrated memory checking

Open|Speedshop
■ Integrated parallel performance analysis environment

Paraver/Dimemas/Extrae
■ Event tracing and graphical trace visualization & analysis

Rubik
■ Process mapping generation & optimization [BG only]

SIONlib/Spindle
■ Optimized native parallel file I/O & library loading

STAT
■ Stack trace analysis tools

6

For a brief overview
of tools consult the
VI-HPS Tools Guide:

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Technologies and their integration

7

Optimization

Visual trace
analysis

Automatic
profile & trace

analysis

Debugging,
error & anomaly

detection

Hardware
monitoring

Execution

SCALASCA

VAMPIR / PARAVER

PAPI

MUST

PERISCOPE

KCACHEGRIND TAU

RUBIK /
MAQAO

SYSMON /
SPINDLE /
SIONLIB /
OPENMPI

STAT

SCORE-P

LWM2 / MAP /
MPIP / O|SS /
MAQAO

DDT

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Disclaimer

Tools will not automatically make you,
your applications or computer systems

more productive.
However, they can help you understand

how your parallel code executes and
when / where it's necessary to work on
correctness and performance issues.

8

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

VI-HPS training & Tuning Workshops

• Goals
– Give an overview of the programming tools suite
– Explain the functionality of individual tools
– Teach how to use the tools effectively
– Offer hands-on experience and expert assistance using tools
– Receive feedback from users to guide future development

• For best results, bring & analyze/tune your own code(s)!

• VI-HPS Hands-on Tutorial series
– SC’08, ICCS’09, SC’09, Cluster’10, SC’10, SC’11, EuroMPI’12,

XSEDE’13, SC’13, SC’14 (New Orleans)
• VI-HPS Tuning Workshop series

– 2008 (Aachen & Dresden), 2009 (Jülich & Bremen),
2010 (Garching & Amsterdam/NL), 2011 (Stuttgart & Aachen),
2012 (St-Quentin/F & Garching), 2013 (Saclay/F & Jülich)
2014 (Barcelona/Spain, Kobe/Japan, Saclay/France, Edinburgh/UK)

9

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Upcoming events

• 17th VI-HPS Tuning Workshop (23-27 February 2015)
– Hosted by HLRS, Stuttgart, Germany
– Using PRACE Tier-0 Hornet Cray XC40 system
– VI-HPS and Cray tools to be presented

• Further events to be determined
– (one-day) tutorials

• With guided exercises usually using a Live-ISO
– (multi-day) training workshops

• With your own applications on actual HPC systems

• Check www.vi-hps.org/training for announced events
• Contact us if you might be interested in hosting an event

10

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

VI-HPS Linux Live DVD/ISO

• Bootable Linux installation on DVD (or USB memory stick)
• Includes everything needed to try out our parallel tools on

an 64-bit x86-architecture notebook computer
• VI-HPS tools: MUST, PAPI, Score-P,

Periscope, Scalasca, TAU, Vampir*
• Also: Eclipse/PTP, DDT*, TotalView*

 * time/capability-limited
evaluation licences provided
for commercial products

• GCC (w/ OpenMP), OpenMPI
• Manuals/User Guides
• Tutorial exercises & examples

• Produced by U. Oregon PRL
• Sameer Shende

11

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

VI-HPS Linux Live ISO

• ISO image approximately 10GB
– download latest version from website
– http://www.vi-hps.org/training/live-iso/
– optionally create bootable DVD or USB drive

• Boot directly from disk
– enables hardware counter access and offers best performance,

but no save/resume

• Boot within virtual machine (e.g., VirtualBox)
– faster boot time and can save/resume state,

but may not allow hardware counter access

• Boots into Linux environment for HPC
– supports building and running provided MPI and/or OpenMP

parallel application codes
– and experimentation with VI-HPS (and third-party) tools

12

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Introduction to
Parallel Performance Engineering

Brian Wylie
Jülich Supercomputing Centre

(with content used with permission from tutorials

by Bernd Mohr/JSC and Luiz DeRose/Cray)

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance: an old problem

2

“The most constant difficulty in contriving
the engine has arisen from the desire to
reduce the time in which the calculations
were executed to the shortest which is
possible.”

Charles Babbage
1791 – 1871

Difference Engine

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Today: the “free lunch” is over

■ Moore's law is still in charge, but
■ Clock rates no longer increase
■ Performance gains only through

increased parallelism

■ Optimizations of applications more
difficult

■ Increasing application complexity
■ Multi-physics
■ Multi-scale

■ Increasing machine complexity
■ Hierarchical networks / memory
■ More CPUs / multi-core

Every doubling of scale reveals a new bottleneck!

3

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance factors of parallel applications

■ “Sequential” performance factors
■ Computation

Choose right algorithm, use optimizing compiler
■ Cache and memory

Tough! Only limited tool support, hope compiler gets it right
■ Input / output

Often not given enough attention

■ “Parallel” performance factors
■ Partitioning / decomposition
■ Communication (i.e., message passing)
■ Multithreading
■ Synchronization / locking

More or less understood, good tool support

4

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Tuning basics

■ Successful engineering is a combination of
■ The right algorithms and libraries
■ Compiler flags and directives
■ Thinking !!!

■ Measurement is better than guessing
■ To determine performance bottlenecks
■ To compare alternatives
■ To validate tuning decisions and optimizations

After each step!

5

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

However…

■ It's easier to optimize a slow correct program than to
debug a fast incorrect one
Nobody cares how fast you can compute a wrong answer...

6

“We should forget about small efficiencies,
say 97% of the time: premature optimization

is the root of all evil.”

Charles A. R. Hoare

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance engineering workflow

7

• Calculation of metrics
• Identification of

performance problems
• Presentation of results

• Modifications
intended to
eliminate/reduce
performance problem

• Collection of
performance data

• Aggregation of
performance data

• Prepare application
with symbols

• Insert extra code
(probes/hooks)

Preparation Measurement

Analysis Optimization

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

The 80/20 rule

■ Programs typically spend 80% of their time in 20% of
the code

■ Programmers typically spend 20% of their effort to get
80% of the total speedup possible for the application
Know when to stop!

■ Don't optimize what does not matter

Make the common case fast!

8

“If you optimize everything,
you will always be unhappy.”

Donald E. Knuth

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Metrics of performance

■ What can be measured?
■ A count of how often an event occurs

■ E.g., the number of MPI point-to-point messages sent
■ The duration of some interval

■ E.g., the time spent these send calls
■ The size of some parameter

■ E.g., the number of bytes transmitted by these calls

■ Derived metrics
■ E.g., rates / throughput
■ Needed for normalization

9

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Example metrics

■ Execution time
■ Number of function calls
■ CPI

■ CPU cycles per instruction

■ FLOPS
■ Floating-point operations executed per second

10

“math” Operations?
 HW Operations?
 HW Instructions?

 32-/64-bit? …

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Execution time

■ Wall-clock time
■ Includes waiting time: I/O, memory, other system activities
■ In time-sharing environments also the time consumed by other

applications

■ CPU time
■ Time spent by the CPU to execute the application
■ Does not include time the program was context-switched out

■ Problem: Does not include inherent waiting time (e.g., I/O)
■ Problem: Portability? What is user, what is system time?

■ Problem: Execution time is non-deterministic
■ Use mean or minimum of several runs

11

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

■ Inclusive
■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be subdivided further

Inclusive

Inclusive vs. Exclusive values

Exclusive

12

int foo()
{
 int a;
 a = 1 + 1;

 bar();

 a = a + 1;
 return a;
}

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Code instrumentation

■ How is performance data recorded?

■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem

13

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Sampling

14

■ Running program is periodically interrupted
to take measurement

■ Timer interrupt, OS signal, or HWC overflow
■ Service routine examines return-address stack
■ Addresses are mapped to routines using

symbol table information

■ Statistical inference of program behavior
■ Not very detailed information on highly

volatile metrics
■ Requires long-running applications

■ Works with unmodified executables

Time

main foo(0) foo(1) foo(2)

int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Measurement

t9 t7 t6 t5 t4 t1 t2 t3 t8

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Instrumentation

15

Time

Measurement

■ Measurement code is inserted such that
every event of interest is captured directly

■ Can be done in various ways

■ Advantage:
■ Much more detailed information

■ Disadvantage:
■ Processing of source-code / executable

necessary

■ Large relative overheads for small functions

int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Instrumentation techniques

■ Static instrumentation
■ Program is instrumented prior to execution

■ Dynamic instrumentation
■ Program is instrumented at runtime

■ Code is inserted
■ Manually
■ Automatically

■ By a preprocessor / source-to-source translation tool
■ By a compiler
■ By linking against a pre-instrumented library / runtime system
■ By binary-rewrite / dynamic instrumentation tool

16

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Critical issues

■ Accuracy
■ Intrusion overhead

■ Measurement itself needs time and thus lowers performance
■ Perturbation

■ Measurement alters program behaviour
■ E.g., memory access pattern

■ Accuracy of timers & counters

■ Granularity
■ How many measurements?
■ How much information / processing during each measurement?

Tradeoff: Accuracy vs. Expressiveness of data

17

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem

18

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Profiling / Runtime summarization

■ Recording of aggregated information
■ Total, maximum, minimum, …

■ For measurements
■ Time
■ Counts

■ Function calls
■ Bytes transferred
■ Hardware counters

■ Over program and system entities
■ Functions, call sites, basic blocks, loops, …
■ Processes, threads

Profile = summarization of events over execution interval

19

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Types of profiles

■ Flat profile
■ Shows distribution of metrics per routine / instrumented region
■ Calling context is not taken into account

■ Call-path profile
■ Shows distribution of metrics per executed call path
■ Sometimes only distinguished by partial calling context

(e.g., two levels)

■ Special-purpose profiles
■ Focus on specific aspects, e.g., MPI calls or OpenMP constructs
■ Comparing processes/threads

20

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Tracing

■ Recording detailed information about significant points
(events) during execution of the program

■ Enter / leave of a region (function, loop, …)
■ Send / receive a message, …

■ Save information in event record
■ Timestamp, location, event type
■ Plus event-specific information (e.g., communicator,

sender / receiver, …)

■ Abstract execution model on level of defined events

Event trace = Chronologically ordered sequence of
 event records

21

58 ENTER foo

62 SEND to B

64 EXIT foo

...

...

Local trace A

Local trace B

60 ENTER bar

68 RECV from A

69 EXIT bar

...

...

Event tracing

void foo() {

 ...

 send(B, tag, buf);
 ...

}

Process A

void bar() {

 ...
 recv(A, tag, buf);

 ...

}

Process B

MONITOR

MONITOR

sy
nc

hr
on

iz
e(

d)

void bar() {
 trc_enter("bar");
 ...
 recv(A, tag, buf);
 trc_recv(A);
 ...
 trc_exit("bar");
}

void foo() {
 trc_enter("foo");
 ...
 trc_send(B);
 send(B, tag, buf);
 ...
 trc_exit("foo");
}

instrument

Global trace view

58 A ENTER foo

60 B ENTER bar

62 A SEND to B

64 A EXIT foo

68 B RECV from A

...

69 B EXIT bar

...

merge

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Tracing Pros & Cons

■ Tracing advantages
■ Event traces preserve the temporal and spatial relationships

among individual events (context)
■ Allows reconstruction of dynamic application behaviour on any

required level of abstraction
■ Most general measurement technique

■ Profile data can be reconstructed from event traces

■ Disadvantages
■ Traces can very quickly become extremely large
■ Writing events to file at runtime may causes perturbation

23

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem

24

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Online analysis

■ Performance data is processed during measurement run
■ Process-local profile aggregation

■ More sophisticated inter-process analysis using

■ “Piggyback” messages

■ Hierarchical network of analysis agents

■ Inter-process analysis often involves application steering
to interrupt and re-configure the measurement

25

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Post-mortem analysis

■ Performance data is stored at end of measurement run

■ Data analysis is performed afterwards
■ Automatic search for bottlenecks

■ Visual trace analysis

■ Calculation of statistics

26

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Example: Time-line visualization

27

58 A ENTER foo

60 B ENTER bar

62 A SEND to B

64 A EXIT foo

68 B RECV from A

...

69 B EXIT bar

...

main
foo
bar

58 60 62 64 66 68 70

B

A

Global trace view

Post-Mortem

Analysis

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

No single solution is sufficient!

28

A combination of different methods, tools and techniques is
typically needed!

■ Analysis
■ Statistics, visualization, automatic analysis, data mining, ...

■ Measurement
■ Sampling / instrumentation, profiling / tracing, ...

■ Instrumentation
■ Source code / binary, manual / automatic, ...

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Typical performance analysis procedure

■ Do I have a performance problem at all?
■ Time / speedup / scalability measurements

■ What is the key bottleneck (computation / communication)?
■ MPI / OpenMP / flat profiling

■ Where is the key bottleneck?
■ Call-path profiling, detailed basic block profiling

■ Why is it there?
■ Hardware counter analysis, trace selected parts to keep trace size

manageable

■ Does the code have scalability problems?
■ Load imbalance analysis, compare profiles at various sizes

function-by-function

29

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Hands-on example code:

NPB-MZ-MPI / BT

(on Live-ISO/DVD)

VI-HPS Team

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance Analysis Steps

1. Reference preparation for validation

2. Program instrumentation

3. Summary measurement collection

4. Summary analysis report examination

5. Summary experiment scoring

6. Summary measurement collection with filtering

7. Filtered summary analysis report examination

8. Event trace collection

9. Event trace examination & analysis

2

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

NPB-MZ-MPI suite

• The NAS Parallel Benchmark suite (MPI+OpenMP version)

– Available from

http://www.nas.nasa.gov/Software/NPB
– 3 benchmarks in Fortran77

– Configurable for various sizes & classes

• Move into the NPB3.3-MZ-MPI root directory

• Subdirectories contain source code for each benchmark

– plus additional configuration and common code

• The provided distribution has already been configured for the
tutorial, such that it's ready to “make” one or more of the
benchmarks and install them into a (tool-specific) “bin”
subdirectory

3

% cd Tutorial; ls

bin/ common/ jobscript/ Makefile README.install SP-MZ/

BT-MZ/ config/ LU-MZ/ README README.tutorial sys/

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Building an NPB-MZ-MPI benchmark

• Type “make” for instructions

4

% make

 ===

 = NAS PARALLEL BENCHMARKS 3.3 =

 = MPI+OpenMP Multi-Zone Versions =

 = F77 =

 ===

 To make a NAS multi-zone benchmark type

 make <benchmark-name> CLASS=<class> NPROCS=<nprocs>

 where <benchmark-name> is “bt-mz”, “lu-mz”, or “sp-mz”

 <class> is “S”, “W”, “A” through “F”

 <nprocs> is number of processes

 [...]

 * Custom build configuration is specified in config/make.def *

 * Suggested tutorial exercise configuration for LiveISO/DVD: *

 * make bt-mz CLASS=W NPROCS=4 *

Hint: the recommended build

configuration is available via
% make suite

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Building an NPB-MZ-MPI benchmark

• Specify the benchmark configuration

– benchmark name: bt-mz, lu-mz, sp-mz

– the number of MPI processes: NPROCS=4

– the benchmark class (S, W, A, B, C, D, E): CLASS=W

5

% make bt-mz CLASS=W NPROCS=4

cd BT-MZ; make CLASS=W NPROCS=4 VERSION=

make: Entering directory 'BT-MZ'

cd ../sys; cc -o setparams setparams.c

../sys/setparams bt-mz 4 W

mpif77 -c -O3 -fopenmp bt.f

 [...]

cd ../common; mpif77 -c -O3 -fopenmp timers.f

mpif77 –O3 -fopenmp -o ../bin/bt-mz_W.4 \

bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \

adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \

solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \

../common/print_results.o ../common/timers.o

Built executable ../bin/bt-mz_W.4

make: Leaving directory 'BT-MZ'

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

NPB-MZ-MPI / BT (Block Tridiagonal solver)

• What does it do?

– Solves a discretized version of unsteady, compressible Navier-

Stokes equations in three spatial dimensions

– Performs 200 time-steps on a regular 3-dimensional grid

• Implemented in 20 or so Fortran77 source modules

• Uses MPI & OpenMP in combination

– 4 processes with 4 threads each should be reasonable

• don’t expect to see speed-up when run on a laptop!

– bt-mz_W.4 should run in around 5 to 12 seconds on a laptop

– bt-mz_B.4 is more suitable for dedicated HPC compute nodes

• Each class step takes around 10-15x longer

6

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

NPB-MZ-MPI / BT reference execution

• Launch as a hybrid MPI+OpenMP application

7

% cd bin

% OMP_NUM_THREADS=4 mpiexec -np 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 Number of zones: 4 x 4

 Iterations: 200 dt: 0.000800

 Number of active processes: 4

 Total number of threads: 16 (4.0 threads/process)

 Time step 1

 Time step 20

 Time step 40

 [...]

 Time step 160

 Time step 180

 Time step 200

 Verification Successful

 BT-MZ Benchmark Completed.

 Time in seconds = 5.57

Hint: save the benchmark

output (or note the run time)

to be able to refer to it later

Alternatively execute script:
% sh ../jobscript/ISO/run.sh

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 1

Score-P – A Joint Performance

Measurement Run-Time Infrastructure for

Periscope, Scalasca, TAU, and Vampir

 Markus Geimer2), Bert Wesarg1), Brian Wylie2)

With contributions from

Andreas Knüpfer1) and Christian Rössel2)

1)ZIH TU Dresden , 2)FZ Jülich

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 2

Fragmentation of Tools Landscape

• Several performance tools co-exist

• Separate measurement systems and output formats

• Complementary features and overlapping functionality

• Redundant effort for development and maintenance

• Limited or expensive interoperability

• Complications for user experience, support, training

Vampir

VampirTrace

OTF

Scalasca

EPILOG /

CUBE

TAU

TAU native

formats

Periscope

Online

measurement

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 3

SILC Project Idea

• Start a community effort for a common infrastructure

– Score-P instrumentation and measurement system

– Common data formats OTF2 and CUBE4

• Developer perspective:

– Save manpower by sharing development resources

– Invest in new analysis functionality and scalability

– Save efforts for maintenance, testing, porting, support, training

• User perspective:

– Single learning curve

– Single installation, fewer version updates

– Interoperability and data exchange

• SILC project funded by BMBF

• Close collaboration PRIMA project

funded by DOE

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 4

Partners

• Forschungszentrum Jülich, Germany

• German Research School for Simulation Sciences,

Aachen, Germany

• Gesellschaft für numerische Simulation mbH

Braunschweig, Germany

• RWTH Aachen, Germany

• Technische Universität Dresden, Germany

• Technische Universität München, Germany

• University of Oregon, Eugene, USA

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 5

Score-P Functionality

• Provide typical functionality for HPC performance tools

• Support all fundamental concepts of partner’s tools

• Instrumentation (various methods)

• Flexible measurement without re-compilation:

– Basic and advanced profile generation

– Event trace recording

– Online access to profiling data

• MPI/SHMEM, OpenMP/Pthreads, and hybrid parallelism

(and serial)

• Enhanced functionality (OpenMP 3.0, CUDA, highly

scalable I/O)

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 6

Design Goals

• Functional requirements

– Generation of call-path profiles and event traces

– Using direct instrumentation, later also sampling

– Recording time, visits, communication data, hardware counters

– Access and reconfiguration also at runtime

– Support for MPI, OpenMP, basic CUDA, and all combinations

• Later also OpenCL/OpenACC/…

• Non-functional requirements

– Portability: all major HPC platforms

– Scalability: petascale

– Low measurement overhead

– Easy and uniform installation through UNITE framework

– Robustness

– Open Source: New BSD License

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 7

Score-P Architecture

Application

Vampir Scalasca Periscope TAU

Accelerator-based
parallelism

(CUDA)

Score-P measurement infrastructure

Event traces (OTF2)

User instrumentation

Call-path profiles
(CUBE4, TAU)

Online
interface Hardware counter (PAPI, rusage)

Process-level
parallelism

(MPI, SHMEM)

Thread-level
parallelism

(OpenMP, Pthreads)

Instrumentation wrapper

Source code
instrumentation

CUBE TAUdb

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 8

Future Features and Management

• Scalability to maximum available CPU core count

• Support for OpenCL, OpenACC, Intel MIC

• Support for sampling, binary instrumentation

• Support for new programming models, e.g., PGAS

• Support for new architectures

• Ensure a single official release version at all times

which will always work with the tools

• Allow experimental versions for new features or research

• Commitment to joint long-term cooperation

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 9

Score-P hands-on:

NPB-MZ-MPI / BT

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 10

Performance Analysis Steps

1. Reference preparation for validation

2. Program instrumentation

3. Summary measurement collection

4. Summary analysis report examination

5. Summary experiment scoring

6. Summary measurement collection with filtering

7. Filtered summary analysis report examination

8. Event trace collection

9. Event trace examination & analysis

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 11

NPB-MZ-MPI / BT Instrumentation

• Change back to directory containing NPB BT-MZ

• Edit config/make.def to adjust build configuration

– Modify specification of compiler/linker: MPIF77

...

#---

The Fortran compiler used for MPI programs

#---

#MPIF77 = mpif77

Alternative variants to perform instrumentation

...

MPIF77 = scorep mpif77

This links MPI Fortran programs; usually the same as ${MPIF77}

FLINK = $(MPIF77)

...

Uncomment the

Score-P compiler

wrapper specification

% cd ..

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 12

NPB-MZ-MPI / BT Instrumented Build

• Return to root directory and clean-up

• Re-build executable using Score-P instrumenter

% make clean

% make bt-mz CLASS=W NPROCS=4

cd BT-MZ; make CLASS=W NPROCS=4 VERSION=

make: Entering directory 'BT-MZ'

cd ../sys; cc -o setparams setparams.c -lm

../sys/setparams bt-mz 4 W

scorep mpif77 -c -O3 -fopenmp bt.f

 [...]

cd ../common; scorep mpif77 -c -O3 -fopenmp timers.f

scorep mpif77 –O3 -fopenmp -o ../bin.scorep/bt-mz_W.4 \

bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \

adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \

solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \

../common/print_results.o ../common/timers.o

Built executable ../bin.scorep/bt-mz_W.4

make: Leaving directory 'BT-MZ'

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 13

Performance Analysis Steps

1. Reference preparation for validation

2. Program instrumentation

3. Summary measurement collection

4. Summary analysis report examination

5. Summary experiment scoring

6. Summary measurement collection with filtering

7. Filtered summary analysis report examination

8. Event trace collection

9. Event trace examination & analysis

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 14

Measurement Configuration: scorep-info

• Score-P measurements are configured via environment

variables:

 % scorep-info config-vars --full
SCOREP_ENABLE_PROFILING

 Description: Enable profiling

 [...]

SCOREP_ENABLE_TRACING

 Description: Enable tracing

 [...]

SCOREP_TOTAL_MEMORY

 Description: Total memory in bytes for the measurement system

 [...]

SCOREP_EXPERIMENT_DIRECTORY

 Description: Name of the experiment directory

 [...]

SCOREP_FILTERING_FILE

 Description: A file name which contain the filter rules

 [...]

SCOREP_METRIC_PAPI

 Description: PAPI metric names to measure

 [...]

SCOREP_METRIC_RUSAGE

 Description: Resource usage metric names to measure

 [... More configuration variables ...]

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 15

Summary Measurement Collection

• Change to the directory containing the new executable

adjust configuration and run application

% cd bin.scorep

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum

% OMP_NUM_THREADS=4 mpiexec -np 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 Number of zones: 4 x 4

 Iterations: 200 dt: 0.000800

 Number of active processes: 4

 Use the default load factors with threads

 Total number of threads: 16 (4.0 threads/process)

 Use the default load factors with threads

 Time step 1

 Time step 20

 [...]

 Time step 180

 Time step 200

 Verification Successful

 BT-MZ Benchmark Completed.

 Time in seconds = 54.39

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 16

BT-MZ Summary Analysis Report Examination

• Creates experiment directory ./scorep_bt-mz_W_4x4_sum

containing

– a record of the measurement configuration (scorep.cfg)

– the analysis report that was collated after measurement

(profile.cubex)

• Interactive exploration with CUBE / ParaProf

% ls

... scorep_bt-mz_W_4x4_sum

% ls scorep_bt-mz_W_4x4_sum

profile.cubex scorep.cfg

% cube scorep_bt-mz_W_4x4_sum/profile.cubex

[CUBE GUI showing summary analysis report]

% paraprof scorep_bt-mz_W_4x4_sum/profile.cubex

[TAU ParaProf GUI showing summary analysis report]

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Analysis report examination

with CUBE

Markus Geimer

Jülich Supercomputing Centre

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

CUBE

• Parallel program analysis report exploration tools

– Libraries for XML report reading & writing

– Algebra utilities for report processing

– GUI for interactive analysis exploration

• requires Qt4

• Originally developed as part of Scalasca toolset

• Now available as a separate component

– Can be installed independently of Score-P, e.g.,

on laptop or desktop

– Latest release: CUBE 4.2.3 (June 2014)

2

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Analysis presentation and exploration

• Representation of values (severity matrix)

on three hierarchical axes

– Performance property (metric)

– Call path (program location)

– System location (process/thread)

• Three coupled tree browsers

• CUBE displays severities

– As value: for precise comparison

– As colour: for easy identification of hotspots

– Inclusive value when closed & exclusive value when expanded

– Customizable via display modes

 3

Call

path

P
ro

p
e

rt
y

Location

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Analysis presentation

4

How is it

distributed across

the processes/threads?

What kind of

performance

metric?

Where is it in the

source code?

In what context?

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance Analysis Steps

1. Reference preparation for validation

2. Program instrumentation

3. Summary measurement collection

4. Summary analysis report examination

5. Summary experiment scoring

6. Summary measurement collection with filtering

7. Filtered summary analysis report examination

8. Event trace collection

9. Event trace examination & analysis

5

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Analysis report exploration (opening view)

6

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Metric selection

7

Selecting the “Time” metric

shows total execution time

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Expanding the system tree

8

Distribution of

selected metric

for call path by

process/thread

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Expanding the call tree

9

Distribution of

selected metric

across the call tree

Collapsed: inclusive value

Expanded: exclusive value

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

■ Inclusive

■ Information of all sub-elements aggregated into single value

■ Exclusive

■ Information cannot be subdivided further

Inclusive Exclusive

10

int foo()

{

 int a;

 a = 1 + 1;

 bar();

 a = a + 1;

 return a;

}

Inclusive vs. Exclusive values

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Selecting a call path

11

Selection updates

metric values shown

in columns to right

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Source-code view via context menu

12

Right-click opens

context menu

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Source-code view

13

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Flat profile view

14

Select flat view tab,

expand all nodes,

and sort by value

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Box plot view

15

Box plot shows distribution

across the system; with

min/max/avg/median/quartiles

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Alternative display modes

16

Data can be

shown in various

percentage modes

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Important display modes

17

• Absolute

– Absolute value shown in seconds/bytes/counts

• Selection percent

– Value shown as percentage w.r.t. the selected node

“on the left“ (metric/call path)

• Peer percent (system tree only)

– Value shown as percentage relative to the maximum peer value

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Multiple selection

18

Select multiple

nodes with

Ctrl-click

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Context-sensitive help

19

Context-sensitive

help available for

all GUI items

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

CUBE algebra utilities

• Extracting solver sub-tree from analysis report

• Calculating difference of two reports

• Additional utilities for merging, calculating mean, etc.

– Default output of cube_utility is a new report utility.cubex

• Further utilities for report scoring & statistics

• Run utility with “-h” (or no arguments) for brief usage info

20

% cube_cut -r '<<ITERATION>>' scorep_bt-mz_W_4x4_sum/profile.cubex

Writing cut.cubex... done.

% cube_diff scorep_bt-mz_W_4x4_sum/profile.cubex cut.cubex

Writing diff.cubex... done.

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Further information

• CUBE

– Parallel program analysis report exploration tools

• Libraries for XML report reading & writing

• Algebra utilities for report processing

• GUI for interactive analysis exploration

– Available under New BSD open-source license

– Documentation & sources:

• http://www.scalasca.org

– User guide also part of installation:

• `cube-config --cube-dir`/share/doc/CubeGuide.pdf

– Contact:

• mailto: scalasca@fz-juelich.de

21

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 1

Score-P hands-on:

NPB-MZ-MPI / BT (filtered)

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 2

Performance Analysis Steps

1. Reference preparation for validation

2. Program instrumentation

3. Summary measurement collection

4. Summary analysis report examination

5. Summary experiment scoring

6. Summary measurement collection with filtering

7. Filtered summary analysis report examination

8. Event trace collection

9. Event trace examination & analysis

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 3

Congratulations!?

• If you made it this far, you successfully used Score-P to

– instrument the application

– analyze its execution with a summary measurement, and

– examine it with one the interactive analysis report explorer GUIs

• ... revealing the call-path profile annotated with

– the “Time” metric

– Visit counts

– MPI message statistics (bytes sent/received)

• ... but how good was the measurement?

– The measured execution produced the desired valid result

– however, the execution took rather longer than expected!

• even when ignoring measurement start-up/completion, therefore

• it was probably dilated by instrumentation/measurement overhead

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 4

BT-MZ Summary Analysis Result Scoring

• Report scoring as textual output

• Region/callpath classification

– MPI (pure MPI library functions)

– OMP (pure OpenMP functions/regions)

– USR (user-level source local computation)

– COM (“combined” USR + OpenMP/MPI)

– ANY/ALL (aggregate of all region types)

% scorep-score scorep_bt-mz_W_4x4_sum/profile.cubex

Estimated aggregate size of event trace: 1025MB

Estimated requirements for largest trace buffer (max_buf): 265MB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 273MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=273MB to avoid intermediate flushes

 or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 ALL 277,799,918 41,157,533 91.76 100.0 2.23 ALL

 USR 274,792,492 40,418,321 11.38 12.4 0.28 USR

 OMP 6,882,860 685,952 51.42 56.0 74.96 OMP

 COM 371,956 45,944 15.20 16.6 330.81 COM

 MPI 102,286 7,316 13.76 15.0 1880.84 MPI

USR

USR

COM

COM USR

OMP MPI

1 GB total memory (265 MB per rank)!

High visit count, but very low time/visit ration!

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 5

BT-MZ Summary Analysis Report Breakdown

• Score report breakdown by region

 % scorep-score -r scorep_bt-mz_W_4x4_sum/profile.cubex
 [...]

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 USR 85,774,338 12,516,672 3.56 3.9 0.28 matmul_sub_

 USR 85,774,338 12,516,672 2.87 3.1 0.23 matvec_sub_

 USR 85,774,338 12,516,672 4.15 4.5 0.33 binvcrhs_

 USR 7,974,876 1,170,624 0.34 0.4 0.29 lhsinit_

 USR 7,974,876 1,170,624 0.32 0.3 0.27 binvrhs_

 USR 3,473,912 526,848 0.14 0.1 0.26 exact_solution…

 OMP 410,040 25,728 0.01 0.0 0.50 !$omp parallel…

 OMP 410,040 25,728 0.01 0.0 0.49 !$omp parallel…

 OMP 410,040 25,728 0.01 0.0 0.48 !$omp parallel…

 OMP 410,040 25,728 0.01 0.0 0.47 !$omp parallel…

 OMP 209,040 25,728 0.03 0.0 0.98 !$omp do @exch…

 OMP 209,040 25,728 0.02 0.0 0.97 !$omp do @exch…

 OMP 209,040 25,728 0.25 0.3 9.69 !$omp implicit…

 OMP 209,040 25,728 0.25 0.3 9.66 !$omp implicit…

 OMP 209,040 25,728 0.02 0.0 0.95 !$omp do @exch…

 OMP 209,040 25,728 0.24 0.3 9.52 !$omp implicit…

 OMP 209,040 25,728 0.02 0.0 0.93 !$omp do @exch…

 [...]

USR

USR

COM

COM USR

OMP MPI

More than

270 MB just for

these 6 regions

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 6

BT-MZ Summary Analysis Score

• Summary measurement analysis score reveals

– Total size of event trace would be ~1 GB

– Maximum trace buffer size would be ~265 MB per rank

• smaller buffer would require flushes to disk during measurement

resulting in substantial perturbation

– 99.8% of the trace requirements are for USR regions

• purely computational routines never found on COM call-paths

common to communication routines or OpenMP parallel regions

– These USR regions contribute around 12.4% of total time

• however, much of that is very likely to be measurement overhead

for frequently-executed small routines (high visit count but very low

time/visit ratio)

• Advisable to tune measurement configuration

– Specify an adequate trace buffer size

– Specify a filter file listing (USR) regions not to be measured

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 7

Performance Analysis Steps

1. Reference preparation for validation

2. Program instrumentation

3. Summary measurement collection

4. Summary analysis report examination

5. Summary experiment scoring

6. Summary measurement collection with filtering

7. Filtered summary analysis report examination

8. Event trace collection

9. Event trace examination & analysis

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 8

BT-MZ Summary Analysis Report Filtering

• Report scoring with prospective filter listing

6 USR regions
% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN EXCLUDE

binvcrhs*

matmul_sub*

matvec_sub*

exact_solution*

binvrhs*

lhs*init*

timer_*

% scorep-score -f ../config/scorep.filt scorep_bt-mz_W_4x4_sum/profile.cubex

Estimated aggregate size of event trace: 23MB

Estimated requirements for largest trace buffer (max_buf): 8MB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 16MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=16MB to avoid intermediate flushes

 or reduce requirements using USR regions filters.)

23 MB of memory in total,

8 MB per rank!

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 9

BT-MZ Summary Analysis Report Filtering

• Score report breakdown by region

% scorep-score -r –f ../config/scorep.filt \

> scorep_bt-mz_W_4x4_sum/profile.cubex

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 - ALL 277,799,918 41,157,533 91.76 100.0 2.23 ALL

 - USR 274,792,492 40,418,321 11.38 12.4 0.28 USR

 - OMP 6,882,860 685,952 51.42 56.0 74.96 OMP

 - COM 371,956 45,944 15.20 16.6 330.81 COM

 - MPI 102,286 7,316 13.76 15.0 1880.84 MPI

 * ALL 7,357,804 739,321 80.38 87.6 108.72 ALL-FLT

 + FLT 274,791,764 40,418,212 11.37 12.4 0.28 FLT

 - OMP 6,882,860 685,952 51.42 56.0 74.96 OMP-FLT

 * COM 371,956 45,944 15.20 16.6 330.81 COM-FLT

 - MPI 102,286 7,316 13.76 15.0 1880.84 MPI-FLT

 * USR 728 109 0.00 0.0 2.38 USR-FLT

 [...]

Filtered routines

marked with ‘+’

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 10

BT-MZ Filtered Summary Measurement

• Set new experiment directory and re-run measurement

with new filter configuration

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum_filtered

% export SCOREP_FILTERING_FILE=../config/scorep.filt

% OMP_NUM_THREADS=4 mpiexec -np 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 Number of zones: 4 x 4

 Iterations: 200 dt: 0.000800

 Number of active processes: 4

 Use the default load factors with threads

 Total number of threads: 16 (4.0 threads/process)

 Use the default load factors with threads

 Time step 1

 Time step 20

 [...]

 Time step 180

 Time step 200

 Verification Successful

 BT-MZ Benchmark Completed.

 Time in seconds = 8.11

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 11

BT-MZ Tuned Summary Analysis Report Score

• Scoring of new analysis report as textual output

• Significant reduction in runtime (measurement overhead)
– Not only reduced time for USR regions, but MPI/OMP reduced

too!

• Further measurement tuning (filtering) may be
appropriate
– e.g., use “timer_*” to filter timer_start_, timer_read_, etc.

% scorep-score scorep_bt-mz_W_4x4_sum_filtered/profile.cubex
Estimated aggregate size of event trace: 23MB

Estimated requirements for largest trace buffer (max_buf): 8MB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 16MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=16MB to avoid intermediate flushes

 or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 ALL 7,357,804 739,321 25.32 100.0 34.25 ALL

 OMP 6,882,860 685,952 16.64 65.7 24.26 OMP

 COM 371,956 45,944 3.90 15.4 84.87 COM

 MPI 102,286 7,316 4.78 18.9 653.21 MPI

 USR 728 109 0.00 0.0 2.41 USR

Profile Examination with TAU ParaProf

Sameer Shende

Performance Research Lab, University of Oregon

http://TAU.uoregon.edu

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

TAU Performance System®

• Parallel performance framework and toolkit

– Supports all HPC platforms, compilers, runtime system

– Provides portable instrumentation, measurement, analysis

2

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

TAU Performance System®

• Instrumentation

– Fortran, C++, C, UPC, Java, Python, Chapel

– Automatic instrumentation

• Measurement and analysis support

– MPI, OpenSHMEM, ARMCI, PGAS, DMAPP

– pthreads, OpenMP, hybrid, other thread models

– GPU, CUDA, OpenCL, OpenACC

– Parallel profiling and tracing

– Use of Score-P for native OTF2 and CUBEX generation

– Efficient callpath proflles and trace generation using Score-P

• Analysis

– Parallel profile analysis (ParaProf), data mining (PerfExplorer)

– Performance database technology (TAUdb)

– 3D profile browser
3

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

TAU

• TAU supports both sampling and direct instrumentation

• Memory debugging as well as I/O performance

evaluation

• Profiling as well as tracing

• Interfaces with Score-P for more efficient measurements

• TAU’s instrumentation covers:

– Runtime library interposition (tau_exec)

– Compiler-based instrumentation

– PDT based Source level instrumentation: routine & loop

– Event based sampling (TAU_SAMPLING=1)

– Callstack unwinding with sampling (TAU_EBS_UNWIND=1)

– OpenMP Tools Interface (OMPT, tau_exec –T ompt)

– CUDA CUPTI, OpenCL (tau_exec -T cupti �-cupti)

 4

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Understanding Application Performance using TAU

5

• How much time is spent in each application routine and outer loops?

Within loops, what is the contribution of each statement?

• How many instructions are executed in these code regions?

Floating point, Level 1 and 2 data cache misses, hits, branches

taken?

• What is the memory usage of the code? When and where is

memory allocated/de-allocated? Are there any memory leaks?

• What are the I/O characteristics of the code? What is the peak read

and write bandwidth of individual calls, total volume?

• What is the contribution of each phase of the program? What is the

time wasted/spent waiting for collectives, and I/O operations in

Initialization, Computation, I/O phases?

• How does the application scale? What is the efficiency, runtime

breakdown of performance across different core counts?

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Using TAU

•TAU supports several measurement and thread options

Phase profiling, profiling with hardware counters, MPI library, CUDA…

Each measurement configuration of TAU corresponds to a unique stub
makefile (configuration file) and library that is generated when you
configure it

•To instrument source code automatically using PDT

Choose an appropriate TAU stub makefile in <arch>/lib:

% export TAU_MAKEFILE=$TAU/Makefile.tau-mpi-pdt

% export TAU_OPTIONS=‘-optVerbose …’ (see tau_compiler.sh)

% export PATH=$TAU_ROOT/x86_64/bin:$PATH

% export TAU=$TAU_ROOT/x86_64/lib

Use tau_f90.sh, tau_cxx.sh, tau_upc.sh, or tau_cc.sh as F90, C++,
UPC, or C compilers respectively:

% mpif90 foo.f90 changes to

% tau_f90.sh foo.f90

•Set runtime environment variables, execute application and
analyze performance data:

% pprof (for text based profile display) % paraprof (for GUI)

 6

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

% module load openmpi tau; ls $TAU/Makefile.*

Makefile.tau-icpc-papi-mpi-pdt

Makefile.tau-icpc-papi-mpi-pthread-pdt

Makefile.tau-icpc-papi-ompt-mpi-pdt-openmp

Makefile.tau-mpi-pdt

Makefile.tau-papi-mpi-pdt

Makefile.tau-papi-mpi-pdt-openmp-opari-scorep

Makefile.tau-papi-mpi-pdt-scorep

Makefile.tau-papi-mpi-pthread-pdt

Makefile.tau-papi-pthread-pdt

Makefile.tau-papi-shmem-mpi-pdt

•For an MPI+F90 application with Intel MPI, you may choose
Makefile.tau-mpi-pdt

– Supports MPI instrumentation & PDT for automatic source instrumentation

% export TAU_MAKEFILE=$TAU/Makefile.tau-mpi-pdt

% tau_f90.sh matmult.f90 -o matmult

% mpirun -np 4 ./matmult

% paraprof

Automatic Source Instrumentation using PDT

7

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Examples

8

% export TAU=$TAU_ROOT/x86_64/lib

% export TAU_MAKEFILE=$TAU/Makefile.tau-papi-mpi-pdt-openmp-opari-scorep

% export OMP_NUM_THREADS=10

% make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh

% mpirun -np 4 ./matmult

% cd score*; paraprof profile.cubex &

Using TAU with Score-P

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Installing and Configuring TAU

•Installing PDT:
– wget http://tau.uoregon.edu/pdt_lite.tgz

– ./configure –prefix=<dir>; make ; make install

•Installing TAU:
– wget http://tau.uoregon.edu/tau.tgz

– ./configure –arch=x86_64 -bfd=download -pdt=<dir> -papi=<dir> ...

– For MIC:

– ./configure –arch=mic_linux –pdt=<dir> -pdt_c++=g++ -papi=dir …

– make install

•Using TAU:
– export TAU_MAKEFILE=<taudir>/x86_64/

 lib/Makefile.tau-<TAGS>

– make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh

 9

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Optional parameters for the TAU_OPTIONS environment variable:

% tau_compiler.sh

-optVerbose Turn on verbose debugging messages

-optCompInst Use compiler based instrumentation

-optNoCompInst Do not revert to compiler instrumentation if source

 instrumentation fails.

-optTrackIO Wrap POSIX I/O call and calculates vol/bw of I/O operations

 (Requires TAU to be configured with –iowrapper)

-optTrackGOMP Enable tracking GNU OpenMP runtime layer (used without –opari)

-optMemDbg Enable runtime bounds checking (see TAU_MEMDBG_* env vars)

-optKeepFiles Does not remove intermediate .pdb and .inst.* files

-optPreProcess Preprocess sources (OpenMP, Fortran) before instrumentation

-optTauSelectFile=”<file>" Specify selective instrumentation file for tau_instrumentor

-optTauWrapFile=”<file>" Specify path to link_options.tau generated by tau_gen_wrapper

-optHeaderInst Enable Instrumentation of headers

-optTrackUPCR Track UPC runtime layer routines (used with tau_upc.sh)

-optLinking="" Options passed to the linker. Typically

 $(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)

-optCompile="" Options passed to the compiler. Typically

 $(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)

-optPdtF95Opts="" Add options for Fortran parser in PDT (f95parse/gfparse) …

Compile-Time Options

10

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

•Optional parameters for the TAU_OPTIONS environment variable:

% tau_compiler.sh

-optMICOffload Links code for Intel MIC offloading, requires both host and

 MIC TAU libraries

-optShared Use TAU’s shared library (libTAU.so) instead of static library

(default)

-optPdtCxxOpts=“” Options for C++ parser in PDT (cxxparse).

-optPdtF90Parser=“” Specify a different Fortran parser

-optPdtCleanscapeParser Specify the Cleanscape Fortran parser instead of GNU gfparser

-optTau=“” Specify options to the tau_instrumentor

-optTrackDMAPP Enable instrumentation of low-level DMAPP API calls on Cray

-optTrackPthread Enable instrumentation of pthread calls

See tau_compiler.sh for a full list of TAU_OPTIONS.

…

Compile-Time Options (contd.)

11

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• If your Fortran code uses free format in .f files (fixed is default for .f), you may use:

% export TAU_OPTIONS=‘-optPdtF95Opts=“-R free” -optVerbose ’

• To use the compiler based instrumentation instead of PDT (source-based):
% export TAU_OPTIONS=‘-optCompInst -optVerbose’

• If your Fortran code uses C preprocessor directives (#include, #ifdef, #endif):

% export TAU_OPTIONS=‘-optPreProcess -optVerbose -optDetectMemoryLeaks’

• To use an instrumentation specification file:

% export TAU_OPTIONS=‘-optTauSelectFile=select.tau -optVerbose -optPreProcess’

% cat select.tau
BEGIN_INSTRUMENT_SECTION

loops routine=“#”

this statement instruments all outer loops in all routines. # is wildcard as well as comment in first column.

END_INSTRUMENT_SECTION

Compiling Fortran Codes with TAU

12

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_LEAKS 0 Setting to 1 turns on leak detection (for use with –optMemDbg or tau_exec)

TAU_MEMDBG_PROTECT_ABOVE 0 Setting to 1 turns on bounds checking for dynamically allocated arrays. (Use
with –optMemDbg or tau_exec –memory_debug).

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine
information, setting to 1 generates flat profile and context events have just
parent information (e.g., Heap Entry: foo)

TAU_SAMPLING 1 Setting to 1 enables event-based sampling.

TAU_TRACK_SIGNALS 0 Setting to 1 generate debugging callstack info when a program crashes

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Enabled by default to remove instrumentation
in lightweight routines that are called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000
times and takes less than 10 usec of inclusive time per call

TAU_COMPENSATE 0 Setting to 1 enables runtime compensation of instrumentation overhead

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g.,
TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)

Runtime Environment Variables

13

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Environment Variable Default Description

TAU_TRACK_MEMORY_LEAKS 0 Tracks allocates that were not de-allocated (needs –optMemDbg or tau_exec
–memory)

TAU_EBS_SOURCE TIME Allows using PAPI hardware counters for periodic interrupts for EBS (e.g.,
TAU_EBS_SOURCE=PAPI_TOT_INS when TAU_SAMPLING=1)

TAU_EBS_PERIOD 100000 Specifies the overflow count for interrupts

TAU_MEMDBG_ALLOC_MIN/MAX 0 Byte size minimum and maximum subject to bounds checking (used with
TAU_MEMDBG_PROTECT_*)

TAU_MEMDBG_OVERHEAD 0 Specifies the number of bytes for TAU’s memory overhead for memory
debugging.

TAU_MEMDBG_PROTECT_BELOW/AB
OVE

0 Setting to 1 enables tracking runtime bounds checking below or above the
array bounds (requires –optMemDbg while building or tau_exec –memory)

TAU_MEMDBG_ZERO_MALLOC 0 Setting to 1 enables tracking zero byte allocations as invalid memory
allocations.

TAU_MEMDBG_PROTECT_FREE 0 Setting to 1 detects invalid accesses to deallocated memory that should not
be referenced until it is reallocated (requires –optMemDbg or tau_exec –
memory)

TAU_MEMDBG_ATTEMPT_CONTINUE 0 Setting to 1 allows TAU to record and continue execution when a memory
error occurs at runtime.

TAU_MEMDBG_FILL_GAP Undefined Initial value for gap bytes

TAU_MEMDBG_ALINGMENT Sizeof(int) Byte alignment for memory allocations

TAU_EVENT_THRESHOLD 0.5 Define a threshold value (e.g., .25 is 25%) to trigger marker events for
min/max

Runtime Environment Variables (contd.)

14

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Simplifying TAU’s usage (tau_exec)

•Uninstrumented execution

– % mpirun -np 4 ./a.out

•Track MPI performance

– % mpirun -np 4 tau_exec ./a.out

•Track POSIX I/O and MPI performance (MPI enabled by default)

– % mpirun -np 4 tau_exec –T mpi,pdt –io ./a.out

•Track memory operations

– % export TAU_TRACK_MEMORY_LEAKS=1

– % mpirun –np 8 tau_exec –memory_debug ./a.out (bounds check)

•Use event based sampling (compile with –g)

– % mpirun –np 8 tau_exec –ebs ./a.out

– Also –ebs_source=<PAPI_COUNTER> -ebs_period=<overflow_count>

•Load wrapper interposition library

– % mpirun –np 8 tau_exec –loadlib=<path/libwrapper.so> ./a.out

•Track GPGPU operations

– % mpirun –np 8 tau_exec –cupti ./a.out

– % mpirun –np 8 tau_exec –opencl ./a.out

15

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Support for both static and dynamic executables

• Specify a list of routines to instrument

• Specify the TAU measurement library to be injected

• MAQAO:
% tau_rewrite –T [tags] a.out –o a.inst

• Dyninst:
% tau_run –T [tags] a.out –o a.inst

• Pebil:
% tau_pebil_rewrite –T [tags] a.out \

 –o a.inst

• Execute the application to get measurement data:
% mpirun –np 256 ./a.inst

Binary Rewriting Instrumentation

16

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

TAU Analysis

17

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf Profile Analysis Framework

18

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Parallel Profile Visualization: ParaProf

19

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Parallel Profile Visualization: ParaProf

20

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf 3D Communication Matrix

% export TAU_COMM_MATRIX=1

21

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

% export TAU_MAKEFILE=$TAU/Makefile.tau-icpc-papi-mpi-pdt

% make CC=tau_cc.sh CXX=tau_cxx.sh

% export TAU_SAMPLING=1

% mpirun –np 256 ./a.out

% paraprof

Event Based Sampling in TAU

22

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Mixed MPI and OpenMP Instrumentation

23

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

% export TAU_MAKEFILE=$TAU/Makefile.tau-icpc-papi-mpi-pdt-opari-openmp

% make CC=tau_cc.sh CXX=tau_cxx.sh

% export TAU_SAMPLING=1; export OMP_NUM_THREADS=16

% mpirun –np 256 ./a.out

% paraprof

Opari OpenMP Instrumentation with Sampling

24

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

% export TAU_MAKEFILE=$TAU/Makefile.tau-icpc-papi-mpi-pdt-ompt-openmp

% make CC=tau_cc.sh CXX=tau_cxx.sh

% export TAU_SAMPLING=1; export OMP_NUM_THREADS=16

% mpirun –np 256 tau_exec –T ompt –loadlib=$TAU/libiomp5.so ./a.out

% paraprof

TAU’s Support for Intel OMPT

25

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

% export TAU_MAKEFILE=$TAUROOT/mic_linux/lib/Makefile.tau-icpc-papi-mpi-pdt

% export TAU_METRICS=TIME,PAPI_NATIVE_VPU_ELEMENTS_ACTIVE,

 PAPI_NATIVE_VPU_INSTRUCTIONS_EXECUTED

ParaProf Derived Metric Window: Intel MIC

26

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf Comparison Window

27

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf Histogram Window

28

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

% export TAU_EVENT_THRESHOLD 0.5

Marker Events in TAU Show Sudden Spikes

29

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Energy Profiling in TAU

30

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

#include <TAU.h>

TAU_TRACK_POWER(); // In Fortran: call TAU_TRACK_POWER()

% sudo chmod –R go+r /dev/cpu/*/msr

% sudo /sbin/setcap cap_sys_rawio=ep ./a.out

% unset LD_LIBRARY_PATH

% ldd ./a.out

should have no “not found” entries, Use –Wl,-rpath,/path while linking

% ./a.out

% paraprof

Profiling Power Using TAU with PAPI and RAPL

31

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• The Tutorial contains Score-P experiments of BT-MZ

– class “B“, 4 processes with 4 OpenMP threads each

– collected on a dedicated node of the SuperMUC HPC system

at Leibniz Rechenzentrum (LRZ), Munich, Germany

• Start TAU‘s paraprof GUI with default profile report

32

% cd

% ls

periscope-1.5 scorep_bt-mz_B_4x4_sum

README scorep_bt-mz_B_4x4_sum+mets

run.out scorep_bt-mz_B_4x4_trace

scorep-20120913_1740_557443655223384

% paraprof scorep-20120913_1740_557443655223384/profile.cubex

OR

% paraprof scorep_bt-mz_B_4x4_trace/scout.cubex

Hands-on: Profile Report Extraction

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Metrics in the profile

ParaProf Manager Widow: scout.cubex

33

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Main Window

34

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Unselect this to expand

each routine in its own

space

ParaProf: Options

35

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Each color represents an

event executing on one or

more threads

ParaProf: Unstack Bar Charts

36

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Right click on a given node

to choose other windows

ParaProf: Windows

37

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Click to sort by a given

metric, drag and move to

rearrange columns

ParaProf: Thread Statistics Table

38

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Example: Score-P with TAU (NPB LU)

39

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Click on options to choose

a different color or to resize

the box based on metrics

ParaProf: Thread Callgraph Window

40

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Callpath Thread Relations Window

41

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Windows -> 3D Visualization -> Bar Plot

42

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: 3D Scatter Plot

43

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Scatter Plot

44

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Topology 3D View

45

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Topology 3D View (IBM BG/P)

46

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Topology View Torus (IBM BG/Q)

47

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Node View

48

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Add Thread to Comparison Window

49

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Score-P Profile Files, Database

50

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: File Preferences Window

51

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Group Changer Window

52

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf: Derived Metric Panel in Manager Window

53

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Sorting Derived FLOPS metric by Exclusive Time

54

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering 55

http://tau.uoregon.edu

http://www.hpclinux.com [LiveDVD, OVA]

Free download, open source, BSD license

Download TAU from U. Oregon

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Automatic trace analysis

with Scalasca

Markus Geimer

Jülich Supercomputing Centre

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Automatic trace analysis

• Idea

– Automatic search for patterns of inefficient behavior

– Classification of behavior & quantification of significance

– Guaranteed to cover the entire event trace

– Quicker than manual/visual trace analysis

– Parallel replay analysis exploits available memory & processors

to deliver scalability

2

Call

path

P
ro

p
e

rt
y

Location

Low-level

event trace

High-level

result
Analysis

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

The Scalasca project

• Project started in 2006

– Follow-up to pioneering KOJAK project (started 1998)

• Joint development of

– Jülich Supercomputing Centre

– German Research School for Simulation Sciences

• Development of a scalable performance analysis toolset

for most popular parallel programming paradigms

• Specifically targeting large-scale parallel applications

– such as those running on IBM BlueGene or Cray XT systems

with one million or more processes/threads

• Latest release:

– Scalasca v2.1 (August 2014)

3

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Scalasca 2.1 features

• Open source, BSD 3-clause license

• Fairly portable

– IBM Blue Gene, IBM SP & blade clusters, Cray XT/XE/XK/XC,

SGI Altix, Solaris & Linux clusters, Fujitsu FX10 & K computer, ...

• Uses Score-P instrumenter & measurement libraries

– Scalasca 2.1 core package focuses on trace-based analyses

– Supports common data formats

• Reads event traces in OTF2 format

• Writes analysis reports in CUBE4 format

• Current limitations:

– No support for nested OpenMP parallelism and tasking

– Unable to handle OTF2 traces containing CUDA events

4

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Scalasca trace analysis

Scalasca workflow

5

Instr.

target

application

Measurement

library

HWC

Parallel wait-

state search
Wait-state

report

Local event

traces

Summary

report
Optimized measurement configuration

Instrumenter

compiler /

linker

Instrumented

executable

Source

modules

R
e

p
o

rt

m
a

n
ip

u
la

ti
o
n

Which problem?
Where in the

program?

Which

process?

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

time

lo
c
a

tio
n

MPI_Recv

MPI_Send

MPI_Irecv MPI_Wait

MPI_Send

time

lo
c
a

tio
n

MPI_Recv MPI_Irecv

MPI_Isend

MPI_Wait

MPI_Isend MPI_Wait MPI_Wait

Example: Late Sender

• Waiting time caused by a blocking receive operation posted

earlier than the corresponding send

• Applies to blocking as well as non-blocking communication

6

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Example: Late Broadcast

• Waiting times if the destination processes of a collective

1-to-N operation enter the operation earlier than the source

process (root)

• Applies to: MPI_Bcast, MPI_Scatter, MPI_Scatterv

time

lo
c
a

tio
n

MPI_Bcast (root)

MPI_Bcast

MPI_Bcast

MPI_Bcast

7

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Hands-on exercise:

NPB-MZ-MPI / BT

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Scalasca command

• One command for (almost) everything…

9

% scalasca

Scalasca 2.1

Toolset for scalable performance analysis of large-scale applications

usage: scalasca [OPTION]... ACTION <argument>...

 1. prepare application objects and executable for measurement:

 scalasca –instrument <compile-or-link-command> # skin (using scorep)

 2. run application under control of measurement system:

 scalasca –analyze <application-launch-command> # scan

 3. interactively explore measurement analysis report:

 scalasca –examine <experiment-archive|report> # square

 -c, --show-config show configuration and exit

 -h, --help show this help and exit

 -n, --dry-run show actions without taking them

 --quickref show quick reference guide and exit

 -v, --verbose enable verbose commentary

 -V, --version show version information and exit

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Scalasca compatibility command: skin

• Scalasca application instrumenter

– Deprecated command

• Provides compatibility with Scalasca 1.x

• Prints corresponding Score-P instrumenter command

• Helps in transitioning existing configurations

– Recommended: use Score-P instrumenter directly

10

% skin

Scalasca 2.1: application instrumenter using scorep

usage: skin [-v] [–comp] [-pdt] [-pomp] [-user] <compile-or-link-cmd>

 -comp={all|none|...}: routines to be instrumented by compiler

 (... custom instrumentation specification for compiler)

 -pdt: process source files with PDT instrumenter

 -pomp: process source files for POMP directives

 -user: enable EPIK user instrumentation API macros in source code

 -v: enable verbose commentary when instrumenting

 --*: options to pass to Score-P instrumenter

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Scalasca convenience command: scan

• Scalasca measurement collection & analysis nexus

11

% scan

Scalasca 2.1: measurement collection & analysis nexus

usage: scan {options} [launchcmd [launchargs]] target [targetargs]

 where {options} may include:

 -h Help: show this brief usage message and exit.

 -v Verbose: increase verbosity.

 -n Preview: show command(s) to be launched but don't execute.

 -q Quiescent: execution with neither summarization nor tracing.

 -s Summary: enable runtime summarization. [Default]

 -t Tracing: enable trace collection and analysis.

 -a Analyze: skip measurement to (re-)analyze an existing trace.

 -e exptdir : Experiment archive to generate and/or analyze.

 (overrides default experiment archive title)

 -f filtfile : File specifying measurement filter.

 -l lockfile : File that blocks start of measurement.

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Scalasca convenience command: square

• Scalasca analysis report explorer

12

% square

Scalasca 2.1: analysis report explorer

usage: square [-v] [-s] [-f filtfile] [-F] <experiment archive

 | cube file>

 -c <none|quick|full>: Level of sanity checks for newly created reports

 -F : Force remapping of already existing reports

 -f filtfile : Use specified filter file when doing scoring

 -s : Skip display and output textual score report

 -v : Enable verbose mode

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Automatic measurement configuration

• scan configures Score-P measurement by setting some

environment variables automatically

– e.g., experiment title, profiling/tracing mode, filter file, …

– Precedence order:

• Command-line arguments

• Environment variables already set

• Automatically determined values

• Also, scan includes consistency checks and prevents

corrupting existing experiment directories

• For tracing experiments, after trace collection completes

then automatic parallel trace analysis is initiated

– uses identical launch configuration to that used for measurement

(i.e., the same allocated compute resources)

13

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ summary measurement

• Run the application using the Scalasca measurement

collection & analysis nexus prefixed to launch command

• Creates experiment directory ./scorep_bt-mz_W_4x4_sum

14

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_sum

% OMP_NUM_THREADS=4 scan mpiexec –np 4 ./bt-mz_W.4

S=C=A=N: Scalasca 2.1 runtime summarization

S=C=A=N: ./scorep_bt-mz_W_4x4_sum experiment archive

S=C=A=N: Thu Jun 12 18:05:17 2014: Collect start

mpiexec –np 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 Number of zones: 8 x 8

 Iterations: 200 dt: 0.000300

 Number of active processes: 4

 [... More application output ...]

S=C=A=N: Thu Jun 12 18:05:39 2014: Collect done (status=0) 22s

S=C=A=N: ./scorep_bt-mz_W_4x4_sum complete.

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ summary analysis report examination

• Score summary analysis report

• Post-processing and interactive exploration with CUBE

• The post-processing derives additional metrics and

generates a structured metric hierarchy

15

% square scorep_bt-mz_W_4x4_sum

INFO: Displaying ./scorep_bt-mz_W_4x4_sum/summary.cubex...

 [GUI showing summary analysis report]

% square -s scorep_bt-mz_W_4x4_sum

INFO: Post-processing runtime summarization result...

INFO: Score report written to ./scorep_bt-mz_W_4x4_sum/scorep.score

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Post-processed summary analysis report

16

Split base metrics into

more specific metrics

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance Analysis Steps

1. Reference preparation for validation

2. Program instrumentation

3. Summary measurement collection

4. Summary analysis report examination

5. Summary experiment scoring

6. Summary measurement collection with filtering

7. Filtered summary analysis report examination

8. Event trace collection

9. Event trace examination & analysis

17

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ trace measurement collection...

• Re-run the application using Scalasca nexus with “-t” flag

18

% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_trace

% OMP_NUM_THREADS=4 scan -t mpiexec –np 4 ./bt-mz_W.4

S=C=A=N: Scalasca 2.1 trace collection and analysis

S=C=A=N: ./scorep_bt-mz_W_4x4_trace experiment archive

S=C=A=N: Thu Jun 12 18:05:39 2014: Collect start

mpiexec –np 4 ./bt-mz_B.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 Number of zones: 8 x 8

 Iterations: 200 dt: 0.000300

 Number of active processes: 4

 [... More application output ...]

S=C=A=N: Thu Jun 12 18:05:58 2014: Collect done (status=0) 19s

 [... continued ...]

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ trace measurement ... analysis

• Continues with automatic (parallel) analysis of trace files

19

S=C=A=N: Thu Jun 12 18:05:58 2014: Analyze start

mpiexec –np 4 scout.hyb ./scorep_bt-mz_W_4x4_trace/traces.otf2

SCOUT Copyright (c) 1998-2012 Forschungszentrum Juelich GmbH

 Copyright (c) 2009-2012 German Research School for Simulation

 Sciences GmbH

Analyzing experiment archive ./scorep_bt-mz_W_4x4_trace/traces.otf2

Opening experiment archive ... done (0.002s).

Reading definition data ... done (0.004s).

Reading event trace data ... done (0.130s).

Preprocessing ... done (0.259s).

Analyzing trace data ...

 Wait-state detection (fwd) (1/4) ... done (0.575s).

 Wait-state detection (bwd) (2/4) ... done (0.138s).

 Synchpoint exchange (3/4) ... done (0.358s).

 Critical-path analysis (4/4) ... done (0.288s).

done (1.360s).

Writing analysis report ... done (0.121s).

Total processing time : 1.924s

S=C=A=N: Thu Jun 12 18:06:00 2014: Analyze done (status=0) 2s

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

BT-MZ trace analysis report exploration

• Produces trace analysis report in experiment directory

containing trace-based wait-state metrics

20

% square scorep_bt-mz_W_4x4_trace

INFO: Post-processing runtime summarization result...

INFO: Post-processing trace analysis report...

INFO: Displaying ./scorep_bt-mz_W_4x4_trace/trace.cubex...

 [GUI showing trace analysis report]

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Post-processed trace analysis report

21

Additional trace-based

metrics in metric hierarchy

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Online metric description

22

Access online metric

description via context

menu

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Online metric description

23

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Critical-path analysis

24

Critical-path profile shows

wall-clock time impact

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Critical-path analysis

25

Critical-path imbalance

highlights inefficient parallelism

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Pattern instance statistics

26

Access pattern instance

statistics via context menu

Click to get

statistics details

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Connect to Vampir trace browser

27

To investigate most severe

pattern instances, connect

to a trace browser…
…and select trace file from

the experiment directory

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Show most severe pattern instances

28

Select “Max severity in trace

browser” from context menu

of call paths marked with a

red frame

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Investigate most severe instance in Vampir

29

Vampir will automatically

zoom to the worst

instance in multiple steps

(i.e., undo zoom provides

more context)

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Further information

30

Website: www.scalasca.org

User support: scalasca@fz-juelich.de

1

Performance Analysis with Vampir

Bert Wesarg, Andreas Knüpfer

ZIH, Technische Universität Dresden

2 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Mission

• Visualization of dynamics

of complex parallel processes

• Full details for arbitrary temporal

and spatial levels

• Supplement to automatic analysis

Typical questions that Vampir helps to answer:

– What happens in my application execution during a given time in

a given process or thread?

– How do the communication patterns of my application execute

on a real system?

– Are there any imbalances in computation, I/O or memory usage

and how do they affect the parallel execution of my application?

3 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir – Visualization Modes (1)

• Directly on front end or local machine

% vampir

Score-P
Trace

File

(OTF2)

Vampir 8
CPU CPU

CPU CPU CPU CPU

CPU CPU

Multi-Core

Program

Thread parallel analysis Small/Medium sized trace

4 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir – Visualization Modes (2)

• On local machine with remote VampirServer

Score-P

Vampir 8

Trace

File

(OTF2)

VampirServer

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

Many-Core

Program

Large Trace File
(stays on remote machine)

MPI parallel application

LAN/WAN

% vampirserver start –n 12

% vampir

5 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Product overview

• Vampir & VampirServer

– Interactive trace visualization and analysis

– Intuitive browsing and zooming

– Scalable to large trace data sizes (20 TByte)

– Scalable to high parallelism (200000 processes)

• Vampir is available for Linux, Windows and Mac OS X

6 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

The Main Displays of Vampir

• Timeline Charts:

– Master Timeline

– Process Timeline

– Counter Data Timeline

– Performance Radar

• Summary Charts:

– Function Summary

– Message Summary

– Process Summary

– Communication Matrix View

Show application activities

and communication along a

time axis

Provide quantitative results

for the currently selected

time interval

7

Vampir hands-on

Visualizing and analyzing NPB-MZ-MPI / BT

8 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance Analysis Steps

1. Reference preparation for validation

2. Program instrumentation

3. Summary measurement collection

4. Summary analysis report examination

5. Summary experiment scoring

6. Summary measurement collection with filtering

7. Filtered summary analysis report examination

8. Event trace collection

9. Event trace examination & analysis

9 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

% vampir scorep_bt-mz_B_4x4_trace

Master Timeline

Navigation Toolbar

Function Summary

Function Legend

10 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Master Timeline

Detailed information about

functions, communication

and synchronization events

for collection of processes.

11 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Detailed information about

different levels of function

calls in a stacked bar chart

for an individual process.

Process Timeline

12 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Typical program phases

Initialization Phase Computation Phase

13 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Detailed counter

information over time for

an individual process.

Counter Data Timeline

14 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Performance Radar

Detailed counter

information over time for

a collection of processes.

15 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Zoom in: Initialization Phase

Context View:

Detailed information about

function “initialize_”.

16 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Feature: Find Function

Execution of function

“initialize_” results in

higher page fault

rates.

17 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Computation Phase

Computation phase

results in higher

floating point

operations.

18 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

 MPI communication

 results in lower

 floating point

 operations.

Zoom in: Computation Phase

19 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Zoom in: Finalization Phase

“Early reduce”

bottleneck.

20 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Process Summary

Function Summary:

Overview of the

accumulated information

across all functions and for

a collection of processes.

Process Summary:

Overview of the

accumulated information

across all functions and for

every process independently.

21 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir: Visualization of the NPB-MZ-MPI / BT trace

Process Summary

Find groups of similar

processes and

threads by using

summarized function

information.

22 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Vampir is available at http://www.vampir.eu,

Get support via vampirsupport@zih.tu-dresden.de

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 1

Hardware performance/soft counter

measurements hands-on

VI-HPS Team

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 2

Advanced Measurement Configuration: Metrics

• If Score-P has been built with performance metric

support it is capable of recording performance counter

information

• Requested counters will be recorded with every

enter/exit event

• Supported metric sources

– PAPI

– Resource usage statistics

– Custom written metric plug-ins

Note: Additional memory is needed to store metric values.
Therefore, you may have to adjust SCOREP_TOTAL_MEMORY,

for example as reported using “scorep-score -c”

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 3

Advanced Measurement Configuration: Metrics

• Recording hardware counters via PAPI

• Also possible to record them only per rank

% export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_FP_INS

% OMP_NUM_THREADS=4 mpiexec –n 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 [... More application output ...]

% export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L3_DCM

% OMP_NUM_THREADS=4 mpiexec –n 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 [... More application output ...]

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 4

Advanced Measurement Configuration: Metrics

• Available PAPI metrics

– Preset events: common set of events deemed relevant and

useful for application performance tuning

• Abstraction from specific hardware performance counters,

mapping onto available events done by PAPI internally

– Native events: set of all events that are available on the CPU

(platform dependent)

% papi_avail

% papi_native_avail

Note:
Due to hardware restrictions
- number of concurrently measured events is limited
- there may be unsupported combinations of concurrent events
- Use papi_event_chooser tool to test event combinations

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 5

Advanced Measurement Configuration: Metrics

• Recording operating system resource usage

• Also possible to record them only per rank

% export SCOREP_METRIC_RUSAGE=ru_stime

% OMP_NUM_THREADS=4 mpiexec –n 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 [... More application output ...]

% export SCOREP_METRIC_RUSAGE_PER_PROCESS=ru_maxrss

% OMP_NUM_THREADS=4 mpiexec –n 4 ./bt-mz_W.4

 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

 [... More application output ...]

SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering 6

Advanced Measurement Configuration: Metrics

• Available resource usage metrics

% man getrusage

 [... Output ...]

struct rusage {

struct timeval ru_utime; /* user CPU time used */

struct timeval ru_stime; /* system CPU time used */

long ru_maxrss; /* maximum resident set size */

long ru_ixrss; /* integral shared memory size */

long ru_idrss; /* integral unshared data size */

long ru_isrss; /* integral unshared stack size */

long ru_minflt; /* page reclaims (soft page faults) */

long ru_majflt; /* page faults (hard page faults) */

long ru_nswap; /* swaps */

long ru_inblock; /* block input operations */

long ru_oublock; /* block output operations */

long ru_msgsnd; /* IPC messages sent */

long ru_msgrcv; /* IPC messages received */

long ru_nsignals; /* signals received */

long ru_nvcsw; /* voluntary context switches */

long ru_nivcsw; /* involuntary context switches */

};

 [... More output ...]

Note:
(1) Not all fields are maintained on each

platform.

(2) Check scope of metrics (per process
vs. per thread)

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 1

Score-P Hands-On

CUDA: Jacobi example

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 2

Jacobi Solver

• Jacobi Example

– Iterative solver for system of equations

– Code uses OpenMP, CUDA and MPI

for parallelization

• Domain decomposition

– Halo exchange at boundaries:

• Via MPI between processes

• Via CUDA between hosts and accelerators

Uold =U

ui, j = buold,i, j + ax(uold,i-1, j +uold,i+1, j)+ ay(uold,i, j-1 +uold,i, j+1)- rHs/ b

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 3

Jacobi Without Instrumentation

Compile host code

% mpicc -O3 -fopenmp -DUSE_MPI –I<path_to_cuda_header>

 -c jacobi_cuda.c -o jacobi_mpi+cuda.o

Compile CUDA kernel

% nvcc -O3 -c jacobi_cuda_kernel.cu

 -o jacobi_cuda_kernel.o

Link executable

% mpicc -fopenmp -lm –L<path_tocuda_libs> -lcudart

 jacobi_mpi+cuda.o jacobi_cuda_kernel.o -o ./jacobi_mpi+cuda

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 4

Instrumentation with Score-P

Compile host code

% scorep mpicc -O3 -fopenmp -DUSE_MPI –I<path_to_cuda_header>

 -c jacobi_cuda.c -o jacobi_mpi+cuda.o

Compile CUDA kernel

% scorep nvcc -O3 -c jacobi_cuda_kernel.cu

 -o jacobi_cuda_kernel.o

Link executable

% scorep mpicc -fopenmp -lm –L<path_tocuda_libs> -lcudart

 jacobi_mpi+cuda.o jacobi_cuda_kernel.o -o ./jacobi_mpi+cuda

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 5

CUDA Advanced Measurement Configuration

• Enable recording of CUDA events with the CUPTI

interface via environment variable
SCOREP_CUDA_ENABLE

• Provide a list of recording types, e.g.

• Start with using the default configuration

• Adjust CUPTI buffer size (in bytes) as needed

% export SCOREP_CUDA_ENABLE=runtime,driver,gpu,kernel,idle

% export SCOREP_CUDA_ENABLE=yes

% export SCOREP_CUDA_BUFFER=100000

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 6

SCOREP_CUDA_ENABLE: Recording Types

Recording type Remark

yes/DEFAULT/1 "runtime, kernel, memcpy"

no Disable CUDA measurement (same as unset SCOREP_CUDA_ENABLE)

runtime CUDA runtime API

driver CUDA driver API

kernel CUDA kernels

kernel_counter Fixed CUDA kernel metrics

idle GPU compute idle time

pure_idle GPU idle time (memory copies are not idle)

memcpy CUDA memory copies

sync Record implicit and explicit CUDA synchronization

gpumemusage Record CUDA memory (de)allocations as a counter

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 7

Measurement (Profiling)

% export OMP_NUM_THREADS=6

% export SCOREP_CUDA_ENABLE=yes

% export SCOREP_CUDA_BUFFER=500000

% export SCOREP_EXPERIMENT_DIRECTORY=jacobi_cuda_profile

% mpirun -n 2 ./jacobi_mpi+cuda 4096 4096 0.15

Jacobi relaxation Calculation: 4096 x 4096 mesh with

 2 processes and 6 threads + one Tesla T10 Processor for each process.

 307 of 2049 local rows are calculated on the CPU to balance the load

 between the CPU and the GPU.

 0, 0.113429

 … … … … … …

 900, 0.000101

 total: 12.835816 s

Problem size

(x dimension) Load balancing factor

(in this example 15% of the

computations are calculated

on the CPU)

Problem size

(y dimension)

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 8

CUBE4 Analysis

% cube jacobi_cuda_profile/profile.cubex

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 9

Scoring

• Do we need to filter? (Overhead and memory footprint)

 Very small example => no filtering

% scorep-score jacobi_cuda_profile/profile.cubex
Estimated aggregate size of event trace (total_tbc): 3.875.472 bytes

Estimated requirements for largest trace buffer (max_tbc): 1.937.936 bytes

(hint: When tracing set SCOREP_TOTAL_MEMORY > max_tbc to avoid

 intermediate flushes or reduce requirements using file listing

 names of USR regions to be filtered.)

flt type max_tbc time % region

 ALL 1937936 24.97 100.0 ALL

 OMP 1154110 18.78 75.2 OMP

 USR 667480 5.95 23.8 USR

 MPI 116192 0.14 0.5 MPI

 COM 154 0.10 0.4 COM

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 10

Measurement (Tracing)

% export OMP_NUM_THREADS=6

% export SCOREP_CUDA_ENABLE=yes

% export SCOREP_CUDA_BUFFER=500000

% export SCOREP_EXPERIMENT_DIRECTORY=jacobi_cuda_trace

% export SCOREP_ENABLE_PROFILING=false

% export SCOREP_ENABLE_TRACING=true

% mpirun -n 2 ./jacobi_mpi+cuda 4096 4096 0.15

Jacobi relaxation Calculation: 4096 x 4096 mesh with

 2 processes and 6 threads + one Tesla T10 Processor for each process.

 307 of 2049 local rows are calculated on the CPU to balance the load

 between the CPU and the GPU.

 0, 0.113429

 … … … … … …

 900, 0.000101

 total: 12.875220 s

SC’13: Hands-on Practical Hybrid Parallel Application Performance Engineering 11

Vampir Analysis

% vampir jacobi_cuda_trace/traces.otf2

Performance Data Management with TAU

PerfExplorer

Sameer Shende

Performance Research Lab, University of Oregon

http://TAU.uoregon.edu

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

TAU Analysis

2

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

TAUdb: Performance Data Management Framework

3

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Configure TAUdb (Done by each user)

% taudb_configure --create-default

• Choose derby, PostgreSQL, MySQL, Oracle or DB2

• Hostname

• Username

• Password

• Say yes to downloading required drivers (we are not allowed to distribute these)

• Stores parameters in your ~/.ParaProf/taudb.cfg file

• Configure PerfExplorer (Done by each user)

% perfexplorer_configure

• Execute PerfExplorer

% perfexplorer

Using TAUdb

4

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

% wget http://tau.uoregon.edu/data.tgz (Contains CUBE profiles from Score-P)

% taudb_configure --create-default

(Chooses derby, blank user/passwd, yes to save passwd, defaults)

% perfexplorer_configure

(Yes to load schema, defaults)

% paraprof

(load each trial: DB -> Add Trial -> Type (Paraprof Packed Profile) -> OK) OR use

taudb_loadtrial –a “app” –x “experiment” –n “name” file.ppk

Then,

% tar zxf $TAU/data.tgz; cd data/tau;

% taudb_loadtrial –a BT_MZ –x “Class_B” bt-mz_B.*.ppk

% perfexplorer

(Select experiment, Menu: Charts -> Speedup)

Using PerfExplorer

5

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Performance knowledge discovery framework
– Data mining analysis applied to parallel performance data

• comparative, clustering, correlation, dimension reduction, …

– Use the existing TAU infrastructure

• TAU performance profiles, taudb

– Client-server based system architecture

• Technology integration
– Java API and toolkit for portability

– taudb

– R-project/Omegahat, Octave/Matlab statistical analysis

– WEKA data mining package

– JFreeChart for visualization, vector output (EPS, SVG)

Performance Data Mining (PerfExplorer)

6

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Performance data represented as vectors - each

dimension is the cumulative time for an event

• k-means: k random centers are selected and instances

are grouped with the "closest" (Euclidean) center

• New centers are calculated and the process repeated

until stabilization or max iterations

• Dimension reduction necessary for meaningful results

• Virtual topology, summaries constructed

PerfExplorer: Using Cluster Analysis

7

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

PerfExplorer - Cluster Analysis (sPPM)

8

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

PerfExplorer - Correlation Analysis (Flash)

• Describes strength and direction of a linear relationship

between two variables (events) in the data

9

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

PerfExplorer - Correlation Analysis (Flash)

• -0.995 indicates strong,

negative relationship

• As CALC_CUT_

BLOCK_CONTRIBUTIO

NS() increases in

execution time,

MPI_Barrier() decreases

10

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

PerfExplorer - Comparative Analysis

• Relative speedup, efficiency

– total runtime, by event, one event, by phase

• Breakdown of total runtime

• Group fraction of total runtime

• Correlating events to total runtime

• Timesteps per second

11

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

PerfExplorer - Interface

Select experiments
and trials of interest

Data organized in application,
experiment, trial structure
(will allow arbitrary in future)

Experiment
metadata

12

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

PerfExplorer - Interface

Select analysis

13

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

PerfExplorer - Relative Efficiency Plots

14

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

PerfExplorer - Relative Efficiency by Routine

15

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

PerfExplorer - Relative Speedup

16

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

PerfExplorer - Timesteps Per Second

17

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Goal: How does my application scale? What bottlenecks occur at what core counts?

• Load profiles in taudb database and examine with PerfExplorer

Evaluate Scalability

18

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Evaluate Scalability

19

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

PerfExplorer

20

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering 21

PerfExplorer

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Performance Regression Testing

22

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

PRL, University of Oregon, Eugene

23

www.uoregon.edu

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• U.S. Department of Energy (DOE)

– Office of Science

– PNNL, LBL, ORNL

– ASC/NNSA, Tri-labs (LLNL,LANL, SNL)

• U.S. Department of Defense (DoD)

– HPC Modernization Office (HPCMO)

• NSF Software Development for Cyberinfrastructure

(SDCI)

• Juelich Supercomputing Center, NIC

• Argonne National Laboratory

• T.U. Dresden

• ParaTools, Inc.

Support Acknowledgments

24

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

http://tau.uoregon.edu

http://www.hpclinux.com [LiveDVD, OVA]

Free download, open source, BSD license

Download TAU from U. Oregon

25

1

Typical performance bottlenecks and

how they can be identified

Bert Wesarg

ZIH, Technische Universität Dresden

2 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Case I:

– Load imbalances in OpenMP codes

• Case II:

– Communication and computation overlapping in MPI codes

• Note: We won’t do the complete performance

engineering cycle here.

Outline

3 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

𝑦1
⋮
𝑦𝑚

=

𝑎11 ⋯ 𝑎𝑛1
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 𝑎𝑚𝑛

∙

𝑥1
⋮
𝑥𝑛

• A sparse matrix is a matrix populated primarily with

zeros

• Only non-zero elements of 𝑎𝑖𝑗 are saved efficiently in

memory

• Algorithm

Case I: Sparse Matrix Vector Multiplication

foreach row r in A

 y[r.x] = 0

 foreach non-zero element e in row

 y[r.x] += e.value * x[e.y]

4 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Naive OpenMP Algorithm

• Distributes the rows of A evenly across the threads in the

parallel region

• The distribution of the non-zero elements may influence

the load balance in the parallel application

Case I: Sparse Matrix Vector Multiplication

#pragma omp parallel for

foreach row r in A

 y[r.x] = 0

 foreach non-zero element e in row

 y[r.x] += e.value * x[e.y]

5 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Measuring the static OpenMP application

Case I: Load imbalances in OpenMP codes

% cd ~/Bottlenecks/smxv

% make PREP=scorep

scorep gcc -fopenmp -DLITTLE_ENDIAN \

 -DFUNCTION_INC='"y_Ax-omp.inc.c"' -DFUNCTION=y_Ax_omp \

 -o smxv-omp smxv.c -lm

scorep gcc -fopenmp -DLITTLE_ENDIAN \

 -DFUNCTION_INC='"y_Ax-omp-dynamic.inc.c"‘ \

 -DFUNCTION=y_Ax_omp_dynamic -o smxv-omp-dynamic smxv.c -lm

% OMP_NUM_THREADS=8 scan –t ./smxv-omp yax_large.bin

6 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Two metrics which indicate load imbalances:

– Time spent in OpenMP barriers

– Computational imbalance

• Open prepared measurement on the LiveDVD with Cube

Case I: Load imbalances in OpenMP codes: Profile

% cube ~/Bottlenecks/smxv/scorep_smxv-omp_large/trace.cubex

[CUBE GUI showing trace analysis report]

7 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case I: Time spent in OpenMP barriers

Great variation in the

distribution of the time

spent in the barrier

8 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case I: Computational imbalance

Master thread does 24%

of the work (2.00/8.30)

and has 66% of the

computational overload

9 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Improved OpenMP Algorithm

• Distributes the rows of A dynamically across the threads

in the parallel region

Case I: Sparse Matrix Vector Multiplication

#pragma omp parallel for schedule(dynamic,1000)

foreach row r in A

 y[r.x] = 0

 foreach non-zero element e in row

 y[r.x] += e.value * x[e.y]

10 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Two metrics which indicate load imbalances

– Time spent in OpenMP barriers

– Computational imbalance

• Open prepared measurement on the LiveDVD with Cube

Case I: Profile Analysis

% cube ~/Bottlenecks/smxv/scorep_smxv-omp-dynamic_large/trace.cubex

[CUBE GUI showing trace analysis report]

11 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case I: Time spent in OpenMP barriers

Distribution is now

much smaller

12 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case I: Computational imbalance

Computational imbalance

can still be improved

13 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Open prepared measurement on the LiveDVD with

Vampir

Case I: Trace Comparison

% vampir ~/Bottlenecks/smxv/scorep_smxv-omp_large/traces.otf2 \

 ~/Bottlenecks/smxv/scorep_smxv-omp-dynamic_large/traces.otf2

[Vampir GUI showing trace]

14 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case I: Time spent in OpenMP barriers

Improved runtime

Less time in

OpenMP barrier

15 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case I: Computational imbalance

Great imbalance for time

spent in computational

code

Great imbalance for time

spent in computational

code

16 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Case I:

– Load imbalances in OpenMP codes

• Case II:

– Communication and computation overlapping in MPI codes

Outline

17 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Calculating the heat conduction at each time step

• Discretized formula for space 𝑑𝑥, 𝑑𝑦 and time 𝑑𝑡

𝜃𝑖,𝑗
𝑡+1 = 𝜃𝑖,𝑗

𝑡 +
𝜃𝑖+1,𝑗
𝑡 − 2𝜃𝑖,𝑗

𝑡 + 2𝜃𝑖−1,𝑗
𝑡

𝑑𝑥2
+
𝜃𝑖,𝑗+1
𝑡 − 2𝜃𝑖,𝑗

𝑡 + 2𝜃𝑖,𝑗−1
𝑡

𝑑𝑦2
 ∙ 𝑘 ∙ 𝑑𝑡

Case II: Heat Conduction Simulation

18 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Application uses MPI for boundary exchange

• Simulation grid is distributed across MPI ranks

Case II: Heat Conduction Simulation

19 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Ranks need to exchange boundaries before next

iteration step

Case II: Heat Conduction Simulation

20 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• MPI algorithm

• Building and measuring the heat conduction application

• Open prepared measurement on the LiveDVD with Cube

Case II: Profile Analysis

foreach step in [1:nsteps]

 exchangeBoundaries

 computeHeatConduction

% cd ~/Bottlenecks/heat

% make PREP=‘scorep --user’

 [... make output ...]

% scan mpirun –np 16 ./heat-MPI 3072 32

% cube ~/Bottlenecks/heat/scorep_heat-MPI_small/profile.cubex

[CUBE GUI showing trace analysis report]

21 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case II: Time spent in Boundary Exchange

Each process spent 8

seconds in boundary

exchange

22 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case II: Time spent in Boundary Exchange

… that’s ~10% of the

computation

23 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Step 1: Compute heat in the area which is

communicated to your neighbors

Case II: Hide MPI communication with computation

24 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Step 2: Start communicating boundaries with your

neighbors

Case II: Hide MPI communication with computation

25 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Step 3: Compute heat in the interior area

Case II: Hide MPI communication with computation

26 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Improved MPI algorithm

• Note: As not all MPI implementations support overlapping, it is here

done with the help of OpenMP tasks.

• Measuring the improved heat conduction application

• Open prepared measurement on the LiveDVD with Cube

Case II: Profile Analysis

foreach step in [1:nsteps]

 computeHeatConductionInBoundaries

 startBoundaryExchange

 computeHeatConductionInInterior

 waitForCompletionOfBoundaryExchange

% scan mpirun –np 16 ./heat-MPI-overlap 3072 32

% cube ~/Bottlenecks/heat/scorep_heat-MPI-overlap_small/profile.cubex

[CUBE GUI showing trace analysis report]

27 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case II: Time spent in Boundary Exchange

Still ~8 seconds in

boundary exchange

28 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case II: Time spent in Boundary Exchange

… still ~10% of the

computation

29 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Calculate differences between profiles

• Open prepared profile diff on the LiveDVD with Cube

Case II: Profile Comparison

% cube_diff ~/Bottlenecks/heat/scorep_heat-MPI_small/profile.cubex \

 ~/Bottlenecks/heat/scorep_heat-MPI-overlap_small/profile.cubex

% cube ~/Bottlenecks/heat/diff.cubex

[CUBE GUI showing trace analysis report]

30 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case II: Profile Comparison

But all threads spend ~8

seconds less in the main

loop

31 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Open prepared measurement on the LiveDVD with

Vampir

Case II: Trace Comparison

% vampir ~/Bottlenecks/heat/scorep_heat-MPI_small/traces.otf2 \

 ~/Bottlenecks/heat/scorep_heat-MPI-overlap_small/traces.otf2

[Vampir GUI showing trace]

32 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case II: Trace Comparison

Improved runtime

33 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case II: Trace Comparison

Communication

completely hidden by

computation

34 SC’14: Hands-on Practical Hybrid Parallel Application Performance Engineering

• Thanks to Dirk Schmidl, RWTH Aachen, for providing the

sparse matrix vector multiplication code

Acknowledgments

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Review

Brian Wylie

Jülich Supercomputing Centre

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Summary

You’ve been introduced to a variety of tools

– with hints to apply and use the tools effectively

• Tools provide complementary capabilities

– computational kernel & processor analyses

– communication/synchronization analyses

– load-balance, scheduling, scaling, …

• Tools are designed with various trade-offs

– general-purpose versus specialized

– platform-specific versus agnostic

– simple/basic versus complex/powerful

2

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Tool selection

• Which tools you use and when you use them likely to

depend on situation

– which are available on (or for) your computer system

– which support your programming paradigms and languages

– which you are familiar (comfortable) with using

– which type of issue you suspect

– which question you want to have answered

• Being aware of (potentially) available tools and their

capabilities can help finding the most appropriate tools

3

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Workflow (getting started)

• First ensure that the parallel application runs correctly

– no-one will care how quickly you can get invalid answers or

produce a directory full of corefiles

– parallel debuggers help isolate known problems

– correctness checking tools can help identify other issues

– (that might not cause problems right now, but will eventually)

• e.g., race conditions, invalid/non-compliant usage

• Generally valuable to start with an overview of execution

performance

– fraction of time spent in computation vs comm/synch vs I/O

– which sections of the application/library code are most costly

• and how it changes with scale or different configurations

– processes vs threads, mappings, bindings

4

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Workflow (communication/synchronization)

• Communication/synchronization issues generally apply

to every computer system (to different extents) and

typically grow with the number of processes/threads

– Weak scaling: fixed computation per thread, and perhaps fixed

localities, but increasingly distributed

– Strong scaling: constant total computation, increasingly divided

amongst threads, while communication grows

– Collective communication (particularly of type “all-to-all”) result in

increasing data movement

– Synchronizations of larger groups are increasingly costly

– Load-balancing becomes increasingly challenging, and

imbalances increasingly expensive

• generally manifests as waiting time at following collective ops

5

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Workflow (wasted waiting time)

• Waiting times are difficult to determine in basic profiles

– Part of the time each process/thread spends in communication &

synchronization operations may be wasted waiting time

– Need to correlate event times between processes/threads

• Periscope uses augmented messages to transfer timestamps and

additional on-line analysis processes

• Post-mortem event trace analysis avoids interference and provides

a complete history

• Scalasca automates trace analysis and ensures waiting times are

completely quantified

• Vampir allows interactive exploration and detailed examination of

reasons for inefficiencies

6

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Workflow (core computation)

Effective computation within processors/cores is also vital

– Optimized libraries may already be available

– Optimizing compilers can also do a lot

• provided the code is clearly written and not too complex

• appropriate directives and other hints can also help

– Processor hardware counters can also provide insight

• although hardware-specific interpretation required

– Tools available from processor and system vendors help

navigate and interpret processor-specific performance issues

7

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Technologies and their integration

8

Optimization

Visual trace

analysis

Automatic

profile & trace

analysis

Debugging,

error & anomaly

detection

Hardware

monitoring

Execution

SCALASCA

VAMPIR / PARAVER

PAPI

MUST

PERISCOPE

KCACHEGRIND TAU

RUBIK /

MAQAO

SYSMON /

SPINDLE /

SIONLIB /

OPENMPI

STAT

SCORE-P

LWM2 / MAP /

MPIP / O|SS /

MAQAO

DDT

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Featured VI-HPS tools

• Score-P

– community-developed instrumenter & measurement libraries for

parallel profiling and event tracing

• CUBE & ParaProf/PerfExplorer

– interactive parallel profile analyses

• Scalasca

– automated event-trace analysis

• Vampir

– interactive event-trace visualizations and analyses

• TAU/PDT

– comprehensive performance system

9

SC‘14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Further information

• Website

– Introductory information about the VI-HPS portfolio of tools for

high-productivity parallel application development

• VI-HPS Tools Guide

• links to individual tools sites for details and download

– Training material

• tutorial slides

• latest ISO image of VI-HPS Linux DVD with productivity tools

• user guides and reference manuals for tools

– News of upcoming events

• tutorials and workshops

• mailing-list sign-up for announcements

http://www.vi-hps.org

10

