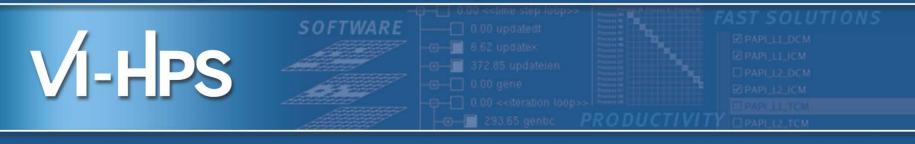


SC'14 Tutorial: Hands-on Practical Hybrid Parallel Application Performance Engineering

Markus Geimer Jülich Supercomputing Centre Sameer Shende University of Oregon

Bert Wesarg Technische Universität Dresden

Brian Wylie Jülich Supercomputing Centre


Agenda

Time	Topic	Presenter
08:30	Introduction to VI-HPS & parallel performance engineering	Wylie
09:15	VI-HPS Linux Live-ISO and MPI+OpenMP example code	Wylie / all
09:30	Instrumentation & measurement with Score-P	Wesarg
10:00	Break	
10:30	Profile examination with CUBE	Geimer
11:00	Configuration & customization of Score-P measurements	Geimer
11:30	Profile examination with TAU ParaProf	Shende
12:00	Lunch	
13:30	Automated trace analysis with Scalasca	Geimer
14:15	Interactive trace analysis with Vampir	Wesarg
15:00	Break	
15:30	Specialized Score-P measurements & analysis	Wesarg
16:00	Performance data management with TAU PerfExplorer	Shende
16:15	Finding typical parallel performance bottlenecks	Wesarg
16:45	Review & conclusion	Wylie
17:00	Adjourn	

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

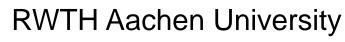
Introduction to VI-HPS

Brian Wylie Jülich Supercomputing Centre

- **Mission**: Improve the quality and accelerate the development process of complex simulation codes running on highly-parallel computer systems
- Start-up funding (2006–2011) by Helmholtz Association of German Research Centres

- Activities
 - Development and integration of HPC programming tools
 - diagnose programming errors and optimization opportunities
 - Training & support to apply these tools
 - Academic workshops

http://www.vi-hps.org


VI-HPS partners (founders)

Forschungszentrum Jülich

Jülich Supercomputing Centre

Centre for Computing & Communication

- Technische Universität Dresden
 - Centre for Information Services & HPC
- University of Tennessee (Knoxville)
 - Innovative Computing Laboratory

VI-HPS partners (cont.)

Centro Nacional de Supercomputación

German Research School

- Laboratory of Parallel Programming
- Lawrence Livermore National Lab.
 - Centre for Applied Scientific Computing
- **Technical University of Munich**
 - Chair for Computer Architecture
- University of Oregon
 - Performance Research Laboratory
- University of Stuttgart
 - HPC Centre

LRC ITACA

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

UNIVERSITY OF OREGON

MUST

MPI usage correctness checking

PAPI

Interfacing to hardware performance counters

Periscope

Automatic analysis via an on-line distributed search

Scalasca

Large-scale parallel performance analysis

TAU

Integrated parallel performance system

Vampir

Interactive graphical trace visualization & analysis

Score-P

Community instrumentation & measurement infrastructure

Productivity tools (cont.)

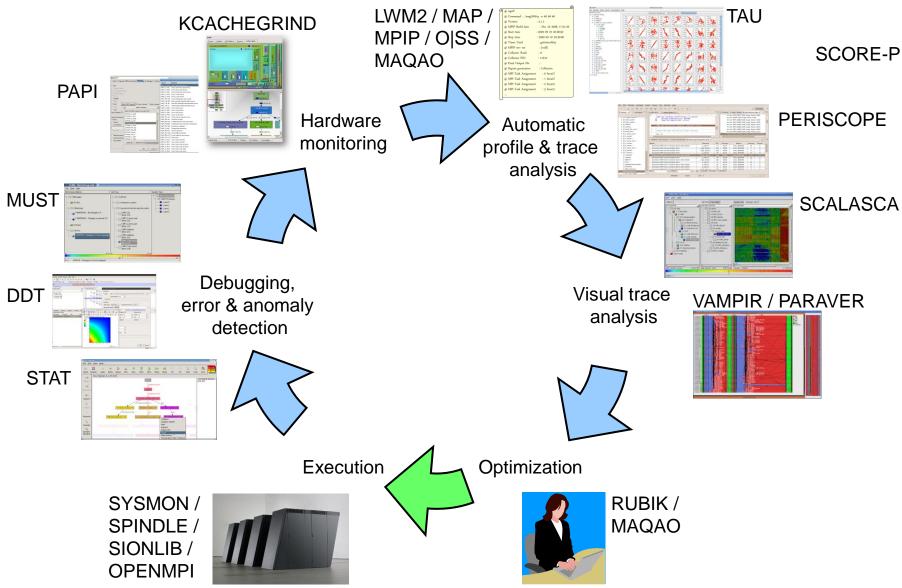
DDT/MAP/PR

- Parallel debugging & profiling KCachegrind
- Callgraph-based cache analysis [x86 only]
 MAQAO
- Assembly instrumentation & optimization [x86-64 only] mpiP/mpiPview
 - MPI profiling tool and analysis viewer
- Open MPI
 - Integrated memory checking
- Open|Speedshop
 - Integrated parallel performance analysis environment

Paraver/Dimemas/Extrae

Event tracing and graphical trace visualization & analysis
 Rubik

Process mapping generation & optimization [BG only]
 SIONlib/Spindle


- Optimized native parallel file I/O & library loading
 STAT
 - Stack trace analysis tools

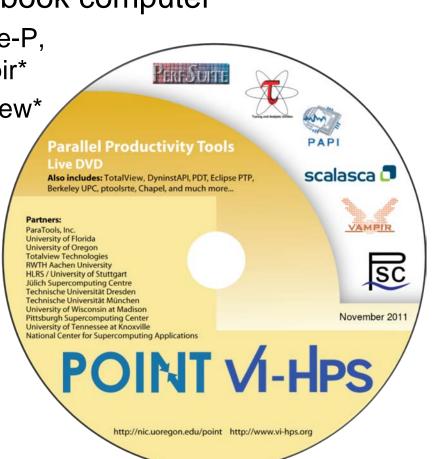
For a brief overview of tools consult the VI-HPS Tools Guide:

Technologies and their integration

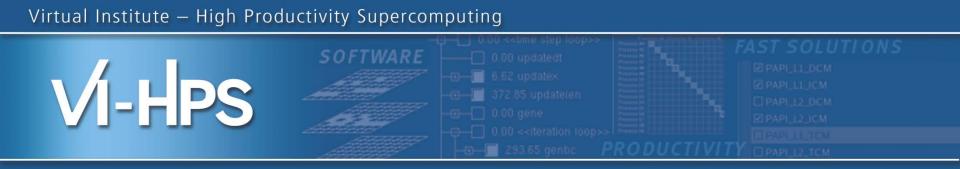
VI-HPS

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Tools will *not* automatically make you, your applications or computer systems more *productive*.


However, they can help you understand **how** your parallel code executes and **when / where** it's necessary to work on *correctness* and *performance* issues.

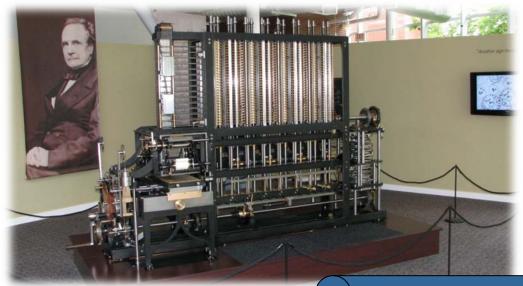
- Goals
 - Give an overview of the programming tools suite
 - Explain the functionality of individual tools
 - Teach how to use the tools effectively
 - Offer hands-on experience and expert assistance using tools
 - Receive feedback from users to guide future development
- For best results, bring & analyze/tune your own code(s)!
- VI-HPS Hands-on Tutorial series
 - SC'08, ICCS'09, SC'09, Cluster'10, SC'10, SC'11, EuroMPI'12, XSEDE'13, SC'13, SC'14 (New Orleans)
- VI-HPS Tuning Workshop series
 - 2008 (Aachen & Dresden), 2009 (Jülich & Bremen),
 2010 (Garching & Amsterdam/NL), 2011 (Stuttgart & Aachen),
 2012 (St-Quentin/F & Garching), 2013 (Saclay/F & Jülich)
 2014 (Barcelona/Spain, Kobe/Japan, Saclay/France, Edinburgh/UK)


- 17th VI-HPS Tuning Workshop (23-27 February 2015)
 - Hosted by HLRS, Stuttgart, Germany
 - Using PRACE Tier-0 Hornet Cray XC40 system
 - VI-HPS and Cray tools to be presented
- Further events to be determined
 - (one-day) tutorials
 - With guided exercises usually using a Live-ISO
 - (multi-day) training workshops
 - With your own applications on actual HPC systems
- Check <u>www.vi-hps.org/training</u> for announced events
- Contact us if you might be interested in hosting an event

- Bootable Linux installation on DVD (or USB memory stick)
- Includes everything needed to try out our parallel tools on an 64-bit x86-architecture notebook computer
 - VI-HPS tools: MUST, PAPI, Score-P, Periscope, Scalasca, TAU, Vampir*
 - Also: Eclipse/PTP, DDT*, TotalView*
 - time/capability-limited
 evaluation licences provided
 for commercial products
 - GCC (w/ OpenMP), OpenMPI
 - Manuals/User Guides
 - Tutorial exercises & examples
- Produced by U. Oregon PRL
 - Sameer Shende

- ISO image approximately 10GB
 - download latest version from website
 - <u>http://www.vi-hps.org/training/live-iso/</u>
 - optionally create bootable DVD or USB drive
- Boot directly from disk
 - enables hardware counter access and offers best performance, but no save/resume
- Boot within virtual machine (e.g., VirtualBox)
 - faster boot time and can save/resume state, but may not allow hardware counter access
- Boots into Linux environment for HPC
 - supports building and running provided MPI and/or OpenMP parallel application codes
 - and experimentation with VI-HPS (and third-party) tools

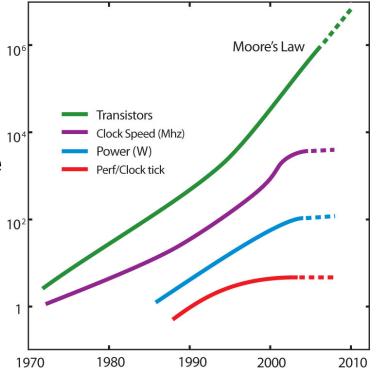
Introduction to Parallel Performance Engineering


Brian Wylie Jülich Supercomputing Centre

(with content used with permission from tutorials by Bernd Mohr/JSC and Luiz DeRose/Cray)

Performance: an old problem

Difference Engine


"The most constant difficulty in contriving the engine has arisen from the desire to reduce the time in which the calculations were executed to the shortest which is possible."

> Charles Babbage 1791 – 1871

Today: the "free lunch" is over

- Moore's law is still in charge, but
 - Clock rates no longer increase
 - Performance gains only through increased parallelism
- Optimizations of applications more difficult
 - Increasing application complexity
 - Multi-physics
 - Multi-scale
 - Increasing machine complexity
 - Hierarchical networks / memory
 - More CPUs / multi-core

Every doubling of scale reveals a new bottleneck!

VI-H

"Sequential" performance factors

Computation

Choose right algorithm, use optimizing compiler

Cache and memory

Tough! Only limited tool support, hope compiler gets it right

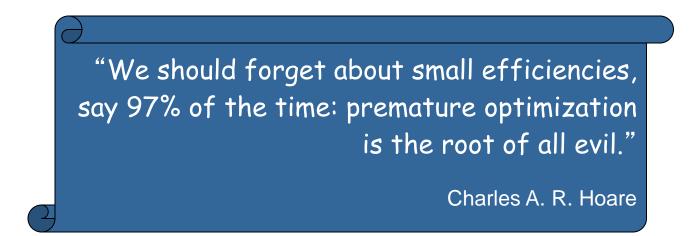
Input / output

Often not given enough attention

"Parallel" performance factors

- Partitioning / decomposition
- Communication (i.e., message passing)
- Multithreading
- Synchronization / locking

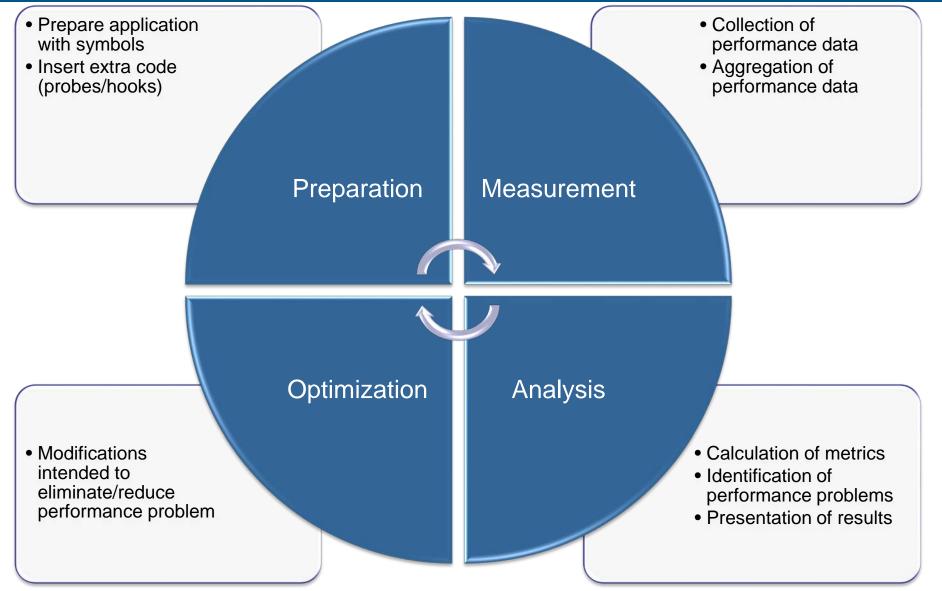
The second support of the second support of the second support of the second support of the second s



Successful engineering is a combination of

- The right algorithms and libraries
- Compiler flags and directives
- Thinking !!!
- Measurement is better than guessing
 - To determine performance bottlenecks
 - To compare alternatives
 - To validate tuning decisions and optimizations

 ¬After each step!



 It's easier to optimize a slow correct program than to debug a fast incorrect one

Solution Nobody cares how fast you can compute a wrong answer...

Performance engineering workflow

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

VI-HPS

- Programs typically spend 80% of their time in 20% of the code
- Programmers typically spend 20% of their effort to get 80% of the total speedup possible for the application

The Know when to stop!

Don't optimize what does not matter

Make the common case fast!

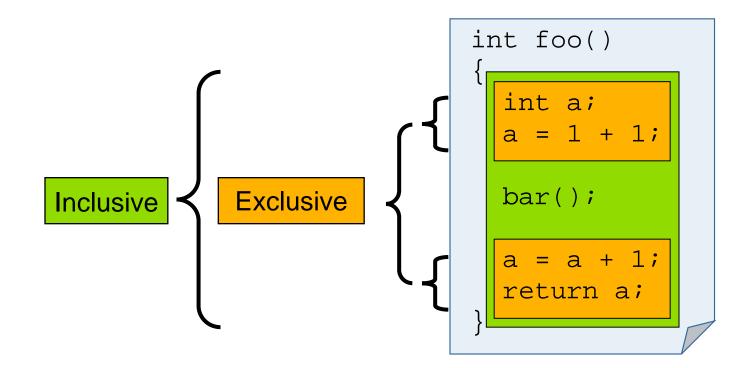
"If you optimize everything, you will always be unhappy." Donald E. Knuth

SC14: Hands-on Practical Hybrid Parallel Application Performance Engineering

- What can be measured?
 - A count of how often an event occurs
 - E.g., the number of MPI point-to-point messages sent
 - The duration of some interval
 - E.g., the time spent these send calls
 - The size of some parameter
 - E.g., the number of bytes transmitted by these calls
- Derived metrics
 - E.g., rates / throughput
 - Needed for normalization

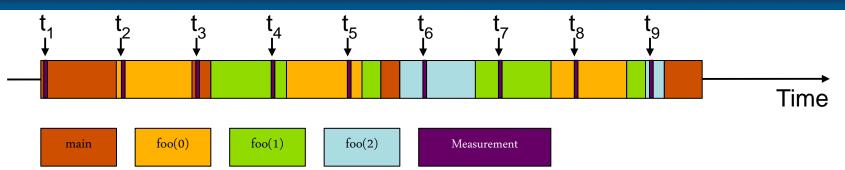
- Execution time
- Number of function calls
- CPI
 - CPU cycles per instruction
- FLOPS
 - Floating-point operations executed per second

"math" Operations? HW Operations? HW Instructions? 32-/64-bit? ...



Wall-clock time

- Includes waiting time: I/O, memory, other system activities
- In time-sharing environments also the time consumed by other applications
- CPU time
 - Time spent by the CPU to execute the application
 - Does not include time the program was context-switched out
 - Problem: Does not include inherent waiting time (e.g., I/O)
 - Problem: Portability? What is user, what is system time?
- Problem: Execution time is non-deterministic
 - Use mean or minimum of several runs

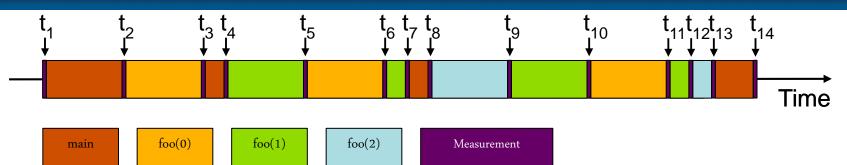

- Inclusive
 - Information of all sub-elements aggregated into single value
- Exclusive
 - Information cannot be subdivided further

- How are performance measurements triggered?
 - Sampling
 - Code instrumentation
- How is performance data recorded?
 - Profiling / Runtime summarization
 - Tracing
- How is performance data analyzed?
 - Online
 - Post mortem

Sampling


```
int main()
{
  int i;
  for (i=0; i < 3; i++)
    foo(i);
  return 0;
}
void foo(int i)
{
  if (i > 0)
    foo(i - 1);
}
```

 Running program is periodically interrupted to take measurement


- Timer interrupt, OS signal, or HWC overflow
- Service routine examines return-address stack
- Addresses are mapped to routines using symbol table information

Statistical inference of program behavior

- Not very detailed information on highly volatile metrics
- Requires long-running applications
- Works with unmodified executables

Instrumentation


```
int main()
{
  int i;
  Enter("main");
  for (i=0; i < 3; i++)
    foo(i);
  Leave("main");
  return 0;
}
void foo(int i)
{
  Enter("foo");
  if (i > 0)
    foo(i - 1);
  Leave("foo");
```

- Measurement code is inserted such that every event of interest is captured directly
 - Can be done in various ways
- Advantage:
 - Much more detailed information
- Disadvantage:
 - Processing of source-code / executable necessary
 - Large relative overheads for small functions

Static instrumentation

- Program is instrumented prior to execution
- Dynamic instrumentation
 - Program is instrumented at runtime
- Code is inserted
 - Manually
 - Automatically
 - By a preprocessor / source-to-source translation tool
 - By a compiler
 - By linking against a pre-instrumented library / runtime system
 - By binary-rewrite / dynamic instrumentation tool

Accuracy

- Intrusion overhead
 - Measurement itself needs time and thus lowers performance
- Perturbation
 - Measurement alters program behaviour
 - E.g., memory access pattern
- Accuracy of timers & counters
- Granularity
 - How many measurements?
 - How much information / processing during each measurement?

Tradeoff: Accuracy vs. Expressiveness of data

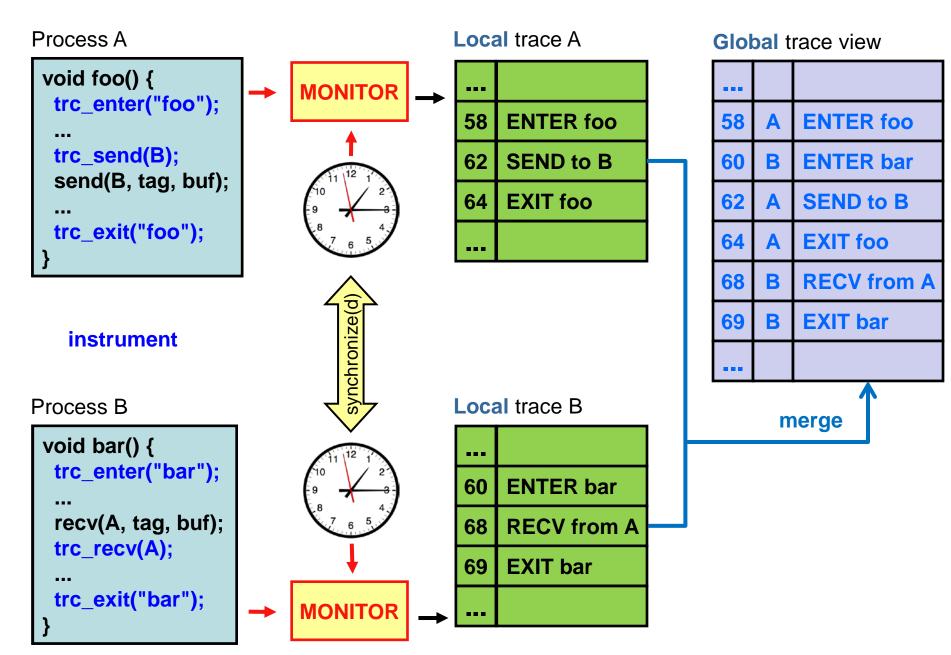
- How are performance measurements triggered?
 - Sampling
 - Code instrumentation
- How is performance data recorded?
 - Profiling / Runtime summarization
 - Tracing
- How is performance data analyzed?
 - Online
 - Post mortem

Recording of aggregated information

- Total, maximum, minimum, ...
- For measurements
 - Time
 - Counts
 - Function calls
 - Bytes transferred
 - Hardware counters
- Over program and system entities
 - Functions, call sites, basic blocks, loops, ...
 - Processes, threads

Profile = summarization of events over execution interval

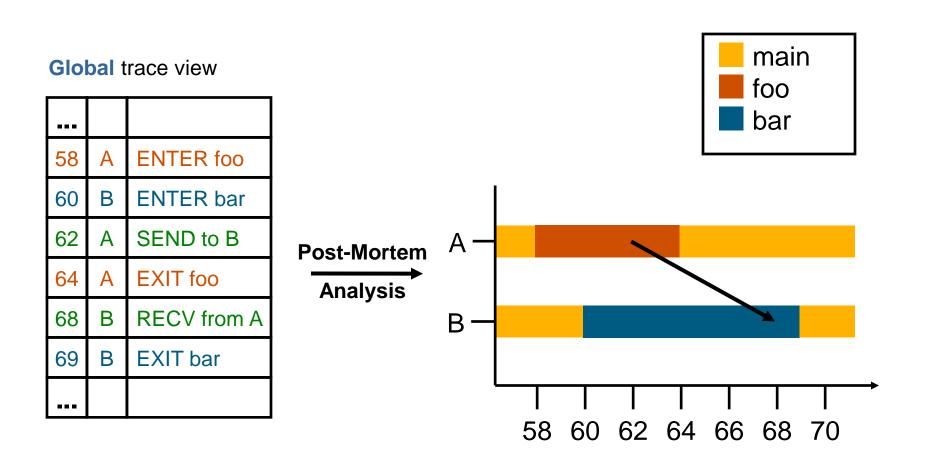
- Flat profile
 - Shows distribution of metrics per routine / instrumented region
 - Calling context is not taken into account
- Call-path profile
 - Shows distribution of metrics per executed call path
 - Sometimes only distinguished by partial calling context (e.g., two levels)
- Special-purpose profiles
 - Focus on specific aspects, e.g., MPI calls or OpenMP constructs
 - Comparing processes/threads


Tracing

- Recording detailed information about significant points (events) during execution of the program
 - Enter / leave of a region (function, loop, ...)
 - Send / receive a message, ...
- Save information in event record
 - Timestamp, location, event type
 - Plus event-specific information (e.g., communicator, sender / receiver, ...)
- Abstract execution model on level of defined events

Event trace = Chronologically ordered sequence of event records

Event tracing


Tracing advantages

- Event traces preserve the temporal and spatial relationships among individual events (@ context)
- Allows reconstruction of dynamic application behaviour on any required level of abstraction
- Most general measurement technique
 - Profile data can be reconstructed from event traces
- Disadvantages
 - Traces can very quickly become extremely large
 - Writing events to file at runtime may causes perturbation

- How are performance measurements triggered?
 - Sampling
 - Code instrumentation
- How is performance data recorded?
 - Profiling / Runtime summarization
 - Tracing
- How is performance data analyzed?
 - Online
 - Post mortem

- Performance data is processed during measurement run
 - Process-local profile aggregation
 - More sophisticated inter-process analysis using
 - "Piggyback" messages
 - Hierarchical network of analysis agents
- Inter-process analysis often involves application steering to interrupt and re-configure the measurement

- Performance data is stored at end of measurement run
- Data analysis is performed afterwards
 - Automatic search for bottlenecks
 - Visual trace analysis
 - Calculation of statistics

A combination of different methods, tools and techniques is typically needed!

- Analysis
 - Statistics, visualization, automatic analysis, data mining, ...
- Measurement
 - Sampling / instrumentation, profiling / tracing, ...
- Instrumentation
 - Source code / binary, manual / automatic, ...

- Do I have a performance problem at all?
 - Time / speedup / scalability measurements
- What is the key bottleneck (computation / communication)?
 - MPI / OpenMP / flat profiling
- Where is the key bottleneck?
 - Call-path profiling, detailed basic block profiling
- Why is it there?
 - Hardware counter analysis, trace selected parts to keep trace size manageable
- Does the code have scalability problems?
 - Load imbalance analysis, compare profiles at various sizes function-by-function

Hands-on example code: NPB-MZ-MPI / BT (on Live-ISO/DVD)

VI-HPS Team

- 1. Reference preparation for validation
- 2. Program instrumentation
- 3. Summary measurement collection
- 4. Summary analysis report examination
- 5. Summary experiment scoring
- 6. Summary measurement collection with filtering
- 7. Filtered summary analysis report examination
- 8. Event trace collection
- 9. Event trace examination & analysis

- The NAS Parallel Benchmark suite (MPI+OpenMP version)
 - Available from

http://www.nas.nasa.gov/Software/NPB

- 3 benchmarks in Fortran77
- Configurable for various sizes & classes
- Move into the NPB3.3-MZ-MPI root directory

% cd Tu	% cd Tutorial; ls						
bin/	common/	jobscript/	Makefile	README.install	SP-MZ/		
BT-MZ/	config/	LU-MZ/	README	README.tutorial	sys/		

Subdirectories contain source code for each benchmark

- plus additional configuration and common code

 The provided distribution has already been configured for the tutorial, such that it's ready to "make" one or more of the benchmarks and install them into a (tool-specific) "bin" subdirectory

• Type "make" for instructions

```
% make
      NAS PARALLEL BENCHMARKS 3.3
 =
                                   _
       MPI+OpenMP Multi-Zone Versions
       F77
      _______
 To make a NAS multi-zone benchmark type
       make <benchmark-name> CLASS=<class> NPROCS=<nprocs>
 where <benchmark-name> is "bt-mz", "lu-mz", or "sp-mz"
                   is "S", "W", "A" through "F"
      <class>
      <nprocs>
                   is number of processes
                                   Hint: the recommended build
 [...]
                                   configuration is available via
* Custom build configuration is specified in config/make.def
                                                  *
* Suggested tutorial exercise configuration for LiveISO/DVD:
                                                  *
       make bt-mz CLASS=W NPROCS=4
*
                                                  *
```

- Specify the benchmark configuration
 - benchmark name: **bt-mz**, lu-mz, sp-mz
 - the number of MPI processes: NPROCS=4
 - the benchmark class (S, W, A, B, C, D, E): CLASS=W

```
% make bt-mz CLASS=W NPROCS=4
cd BT-MZ; make CLASS=W NPROCS=4 VERSION=
make: Entering directory 'BT-MZ'
cd ../sys; cc -o setparams setparams.c
../sys/setparams bt-mz 4 W
mpif77 -c -O3 -fopenmp bt.f
[...]
cd ../common; mpif77 -c -O3 -fopenmp timers.f
mpif77 -O3 -fopenmp -o ../bin/bt-mz_W.4 \
bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \
adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \
solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \
../common/print_results.o ../common/timers.o
Built executable ../bin/bt-mz_W.4
make: Leaving directory 'BT-MZ'
```

- What does it do?
 - Solves a discretized version of unsteady, compressible Navier-Stokes equations in three spatial dimensions
 - Performs 200 time-steps on a regular 3-dimensional grid
- Implemented in 20 or so Fortran77 source modules
- Uses MPI & OpenMP in combination
 - 4 processes with 4 threads each should be reasonable
 - don't expect to see speed-up when run on a laptop!
 - bt-mz_W.4 should run in around 5 to 12 seconds on a laptop
 - bt-mz_B.4 is more suitable for dedicated HPC compute nodes
 - Each class step takes around 10-15x longer

Launch as a hybrid MPI+OpenMP application

```
Alternatively execute script:
                                         % sh ../jobscript/ISO/run.sh
% cd bin
% OMP NUM THREADS=4 mpiexec -np 4 ./bt-mz W.4
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 4 x
                         4
Iterations: 200 dt: 0.000800
Number of active processes:
                                4
Total number of threads: 16 ( 4.0 threads/process)
Time step
          1
Time step 20
Time step 40
 [...]
Time step 160
Time step 180
Time step 200
Verification Successful
                                           Hint: save the benchmark
                                           output (or note the run time)
BT-MZ Benchmark Completed.
                                           to be able to refer to it later
Time in seconds = 5.57
```

VI-H

Score-P – A Joint Performance Measurement Run-Time Infrastructure for Periscope, Scalasca, TAU, and Vampir

Markus Geimer²⁾, Bert Wesarg¹⁾, Brian Wylie²⁾

With contributions from Andreas Knüpfer¹⁾ and Christian Rössel²⁾ ¹⁾ZIH TU Dresden, ²⁾FZ Jülich

awrence Livermore

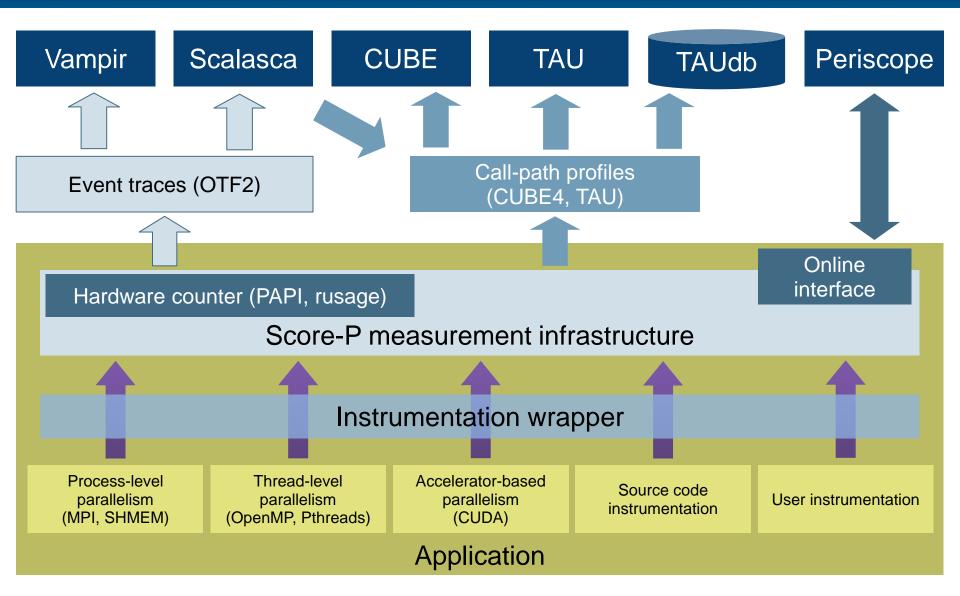
- Separate measurement systems and output formats
- Complementary features and overlapping functionality
- Redundant effort for development and maintenance
- Limited or expensive interoperability
- Complications for user experience, support, training

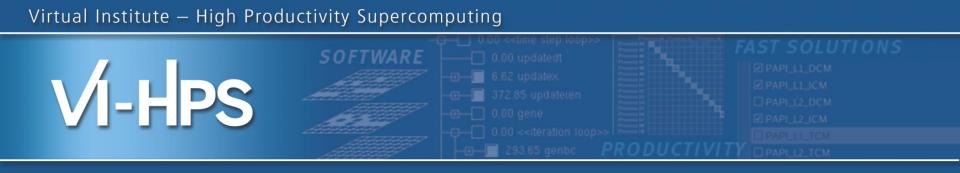
Vampir	Scalasca	TAU	Periscope
VampirTrace	EPILOG /	TAU native	Online
OTF	CUBE	formats	measurement

- Start a community effort for a common infrastructure
 - Score-P instrumentation and measurement system
 - Common data formats OTF2 and CUBE4
- Developer perspective:
 - Save manpower by sharing development resources
 - Invest in new analysis functionality and scalability
 - Save efforts for maintenance, testing, porting, support, training
- User perspective:
 - Single learning curve
 - Single installation, fewer version updates
 - Interoperability and data exchange
- SILC project funded by BMBF
- Close collaboration PRIMA project funded by DOE

Bundesministerium für Bildung und Forschung

- Forschungszentrum Jülich, Germany
- German Research School for Simulation Sciences, Aachen, Germany
- Gesellschaft für numerische Simulation mbH Braunschweig, Germany
- RWTH Aachen, Germany
- Technische Universität Dresden, Germany
- Technische Universität München, Germany
- University of Oregon, Eugene, USA

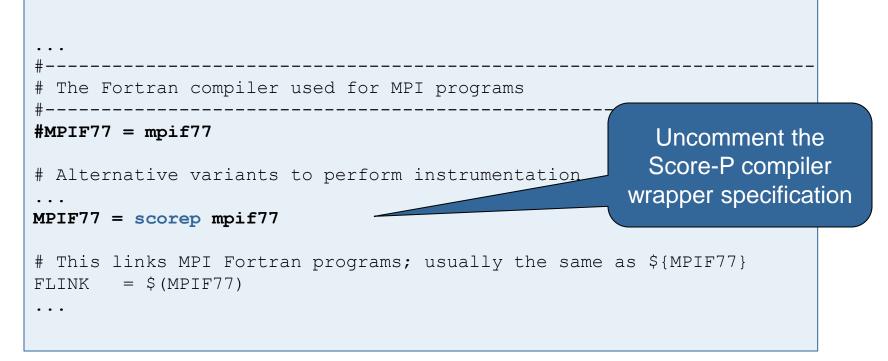



- Provide typical functionality for HPC performance tools
- Support all fundamental concepts of partner's tools
- Instrumentation (various methods)
- Flexible measurement without re-compilation:
 - Basic and advanced profile generation
 - Event trace recording
 - Online access to profiling data
- MPI/SHMEM, OpenMP/Pthreads, and hybrid parallelism (and serial)
- Enhanced functionality (OpenMP 3.0, CUDA, highly scalable I/O)

- Functional requirements
 - Generation of call-path profiles and event traces
 - Using direct instrumentation, later also sampling
 - Recording time, visits, communication data, hardware counters
 - Access and reconfiguration also at runtime
 - Support for MPI, OpenMP, basic CUDA, and all combinations
 - Later also OpenCL/OpenACC/...
- Non-functional requirements
 - Portability: all major HPC platforms
 - Scalability: petascale
 - Low measurement overhead
 - Easy and uniform installation through UNITE framework
 - Robustness
 - Open Source: New BSD License

- Scalability to maximum available CPU core count
- Support for OpenCL, OpenACC, Intel MIC
- Support for sampling, binary instrumentation
- Support for new programming models, e.g., PGAS
- Support for new architectures
- Ensure a single official release version at all times which will always work with the tools
- Allow experimental versions for new features or research
- Commitment to joint long-term cooperation

Score-P hands-on: NPB-MZ-MPI / BT



1. Reference preparation for validation

- 2. Program instrumentation
- 3. Summary measurement collection
- 4. Summary analysis report examination
- 5. Summary experiment scoring
- 6. Summary measurement collection with filtering
- 7. Filtered summary analysis report examination
- 8. Event trace collection
- 9. Event trace examination & analysis

- Change back to directory containing NPB BT-MZ
 % cd ..
- Edit config/make.def to adjust build configuration
 - Modify specification of compiler/linker: MPIF77

Return to root directory and clean-up

⅔ make clean

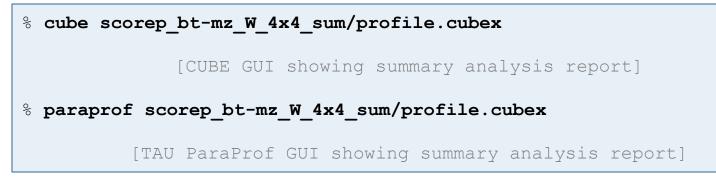
• Re-build executable using Score-P instrumenter

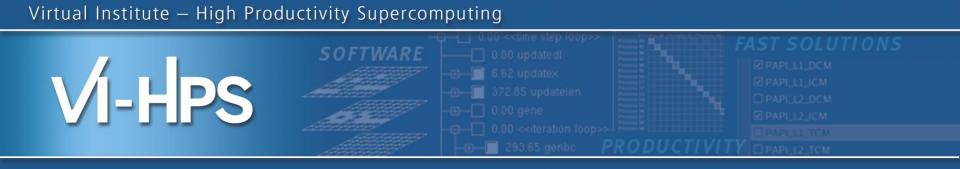
```
% make bt-mz CLASS=W NPROCS=4
cd BT-MZ; make CLASS=W NPROCS=4 VERSION=
make: Entering directory 'BT-MZ'
cd ../sys; cc -o setparams setparams.c -lm
../sys/setparams bt-mz 4 W
scorep mpif77 -c -O3 -fopenmp bt.f
[...]
cd ../common; scorep mpif77 -c -O3 -fopenmp timers.f
scorep mpif77 -O3 -fopenmp -o ../bin.scorep/bt-mz_W.4 \
bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \
adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \
solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \
../common/print_results.o ../common/timers.o
Built executable ../bin.scorep/bt-mz_W.4
make: Leaving directory 'BT-MZ'
```


- 1. Reference preparation for validation
- 2. Program instrumentation
- 3. Summary measurement collection
- 4. Summary analysis report examination
- 5. Summary experiment scoring
- 6. Summary measurement collection with filtering
- 7. Filtered summary analysis report examination
- 8. Event trace collection
- 9. Event trace examination & analysis

Score-P measurements are configured via environment variables:

```
% scorep-info config-vars --full
SCOREP ENABLE PROFILING
 Description: Enable profiling
[...]
SCOREP ENABLE TRACING
 Description: Enable tracing
[...]
SCOREP TOTAL MEMORY
  Description: Total memory in bytes for the measurement system
[...]
SCOREP EXPERIMENT DIRECTORY
 Description: Name of the experiment directory
[...]
SCOREP FILTERING FILE
  Description: A file name which contain the filter rules
[...]
SCOREP METRIC PAPI
  Description: PAPI metric names to measure
[...]
SCOREP METRIC RUSAGE
  Description: Resource usage metric names to measure
 [... More configuration variables ...]
```


- VI-HPS
- Change to the directory containing the new executable adjust configuration and run application


```
% cd bin.scorep
% export SCOREP EXPERIMENT DIRECTORY=scorep bt-mz W 4x4 sum
% OMP NUM THREADS=4 mpiexec -np 4 ./bt-mz W.4
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 4 \times 4
Iterations: 200 dt: 0.000800
Number of active processes:
Use the default load factors with threads
Total number of threads: 16 ( 4.0 threads/process)
Use the default load factors with threads
Time step 1
Time step 20
  [...]
Time step 180
Time step 200
Verification Successful
BT-MZ Benchmark Completed.
Time in seconds = 54.39
```

- Creates experiment directory ./scorep_bt-mz_W_4x4_sum containing
 - a record of the measurement configuration (scorep.cfg)
 - the analysis report that was collated after measurement (profile.cubex)

```
% ls
... scorep_bt-mz_W_4x4_sum
% ls scorep_bt-mz_W_4x4_sum
profile.cubex scorep.cfg
```

Interactive exploration with CUBE / ParaProf

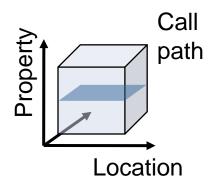
Analysis report examination with CUBE

Markus Geimer Jülich Supercomputing Centre

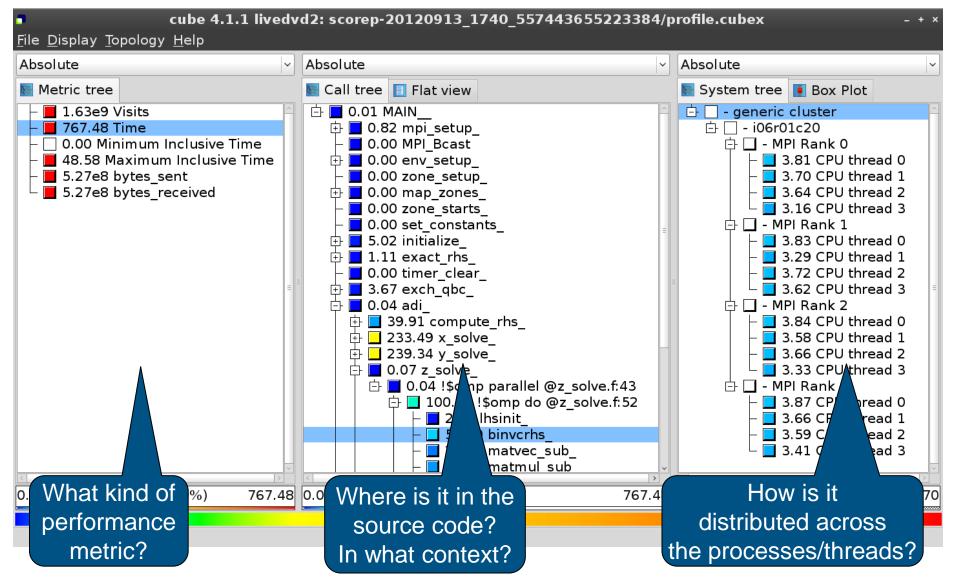
Lawrence Livermore National Laboratory

UNIVERSITY OF OREGON

TENNESSEE



- Parallel program analysis report exploration tools
 - Libraries for XML report reading & writing
 - Algebra utilities for report processing
 - GUI for interactive analysis exploration
 - requires Qt4
- Originally developed as part of Scalasca toolset
- Now available as a separate component
 - Can be installed independently of Score-P, e.g., on laptop or desktop
 - Latest release: CUBE 4.2.3 (June 2014)

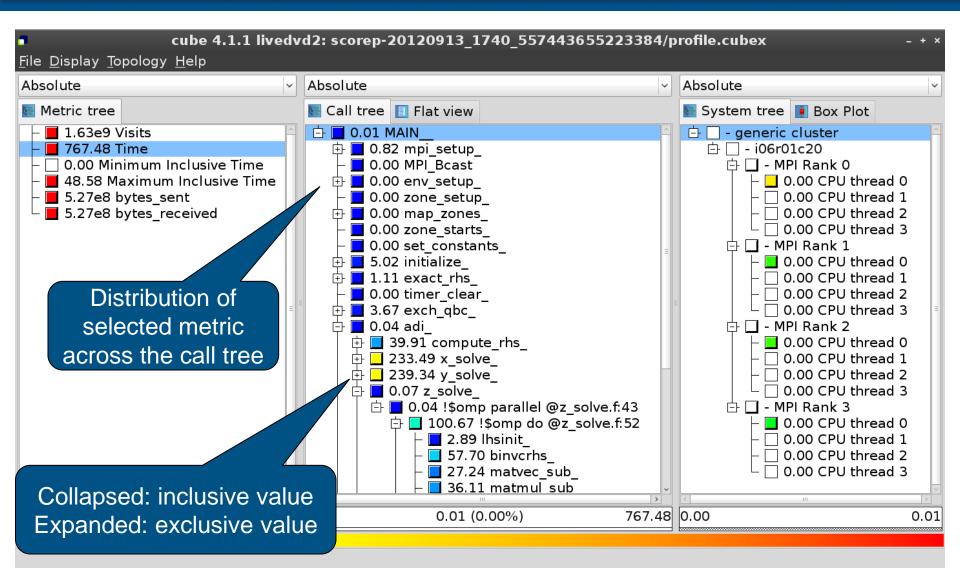

- Representation of values (severity matrix) on three hierarchical axes
 - Performance property (metric)
 - Call path (program location)
 - System location (process/thread)

- CUBE displays severities
 - As value: for precise comparison
 - As colour: for easy identification of hotspots
 - Inclusive value when closed & exclusive value when expanded
 - Customizable via display modes

- 1. Reference preparation for validation
- 2. Program instrumentation
- 3. Summary measurement collection
- 4. Summary analysis report examination
- 5. Summary experiment scoring
- 6. Summary measurement collection with filtering
- 7. Filtered summary analysis report examination
- 8. Event trace collection
- 9. Event trace examination & analysis

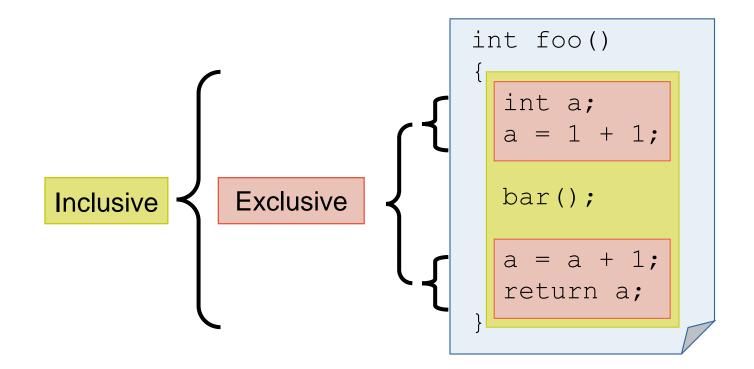
Absolute Absolute Metric tree I.63e9 Visits 767.48 Time O.00 Minimum Inclusive Time 48.58 Maximum Inclusive Time 5.27e8 bytes_sent 5.27e8 bytes_received I.63e9 MAIN I.63e9 Inter II.63e9 Inter III.63e9 Inter </th <th colspan="10">cube 4.1.1 livedvd2: scorep-20120913_1740_557443655223384/profile.cubex - + > <u>File D</u>isplay Topology Help</th>	cube 4.1.1 livedvd2: scorep-20120913_1740_557443655223384/profile.cubex - + > <u>File D</u> isplay Topology Help									
I.63e9 Visits 767.48 Time 0.00 Minimum Inclusive Time 48.58 Maximum Inclusive Time 5.27e8 bytes_sent 5.27e8 bytes_received		Absolute	Absolute							
767.48 Time 0.00 Minimum Inclusive Time 48.58 Maximum Inclusive Time 5.27e8 bytes_sent 5.27e8 bytes_received	Metric tree	🔄 Call tree 🔲 Flat view	🔄 System tree 🚺 Box Plot							
	 767.48 Time 0.00 Minimum Inclusive Time 48.58 Maximum Inclusive Time 5.27e8 bytes_sent 	■ 1.63e9 MAIN	I.63e9 generic cluster							
0 1.63e9 (100.00%) 1.63e9 0 1.63e9 (100.00%) 1.63e9 0 1.63e9 (100.00%) 1.63e9										
	0 1.63e9 (100.00%) 1.63e9	0 1.63e9 (100.00%) 1.63e9	0 1.63e9 (100.00%) 1.63e9							

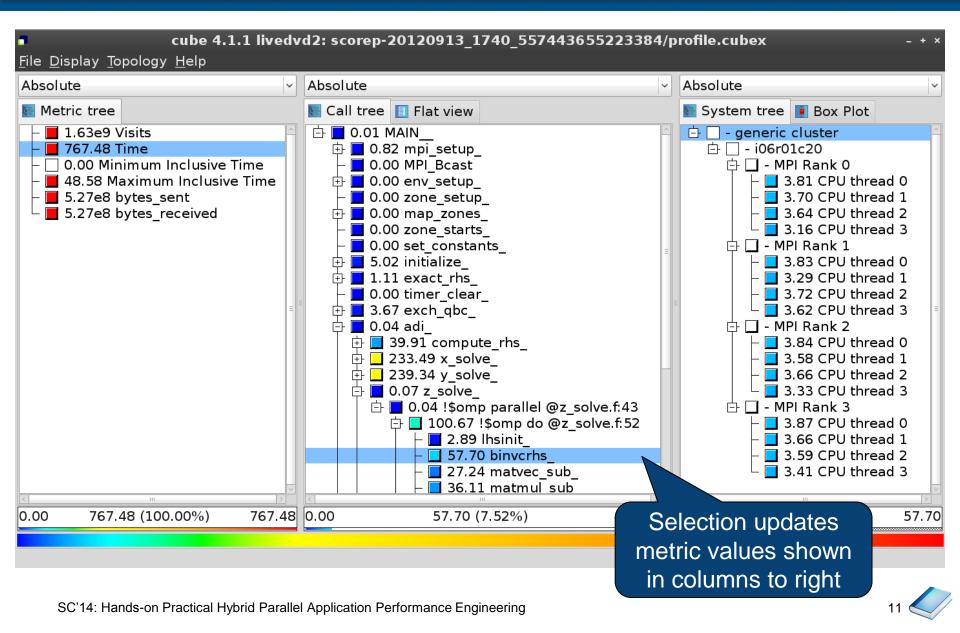
	d2: scorep-20120913_1740_557443655223	8384/p	rofile.cubex -	+ ×
<u>File D</u> isplay <u>T</u> opology <u>H</u> elp	Absolute	~	Absolute	~
Metric tree	Net tree 🔲 Flat view		System tree 🚺 Box Plot	
 1.63e9 Visits 767.48 Time 0.00 Minimum Inclusive Time 48.58 Maximum Inclusive Time 5.27e8 bytes_sent 5.27e8 bytes_received 	Terminal Terminal Selecting the "Time" metric shows total execution time		• ■ 767.48 generic cluster	
0.00 767.48 (100.00%) 767.48	0.00 767.48 (100.00%) 7	767.48	0.00 767.48 (100.00%) 767	.48

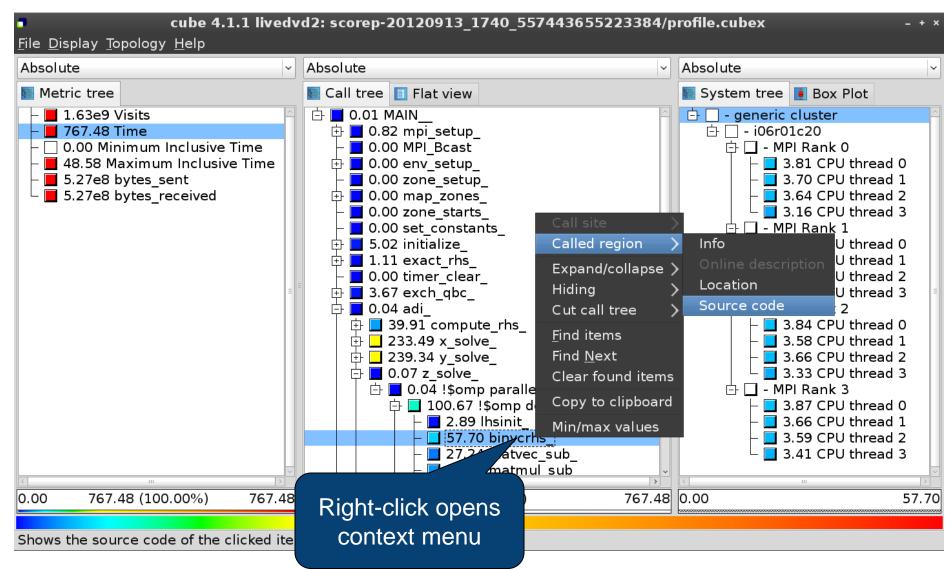


cube 4.1.1 livedy File Display Topology Help	d2: scorep-20120913_174	l0_557443655223384/p 	rofile.cubex - + ×
Absolute	Absolute	v	Absolute
Netric tree	💽 Call tree 📋 Flat view		ছ System tree 順 Box Plot
 1.63e9 Visits 767.48 Time 0.00 Minimum Inclusive Time 48.58 Maximum Inclusive Time 5.27e8 bytes_sent 5.27e8 bytes_received 	► 767.48 MAIN	Distribution of	 generic cluster - i06r01c20 - MPI Rank 0 48.58 CPU thread 0 47.56 CPU thread 1 47.56 CPU thread 2 47.56 CPU thread 3 - MPI Rank 1 48.58 CPU thread 0 47.73 CPU thread 1 47.73 CPU thread 1 47.73 CPU thread 3 - MPI Rank 2 47.75 CPU thread 1 47.75 CPU thread 1 47.75 CPU thread 1 47.75 CPU thread 3 - MPI Rank 3 48.58 CPU thread 0 47.75 CPU thread 1 47.75 CPU thread 1 47.75 CPU thread 1 48.00 CPU thread 3 - MPI Rank 3 48.00 CPU thread 1 48.00 CPU thread 3
0.00 767.48 (100.00%) 767.48	0.00 767.48 (1	selected metric	767.48
		for call path by process/thread	

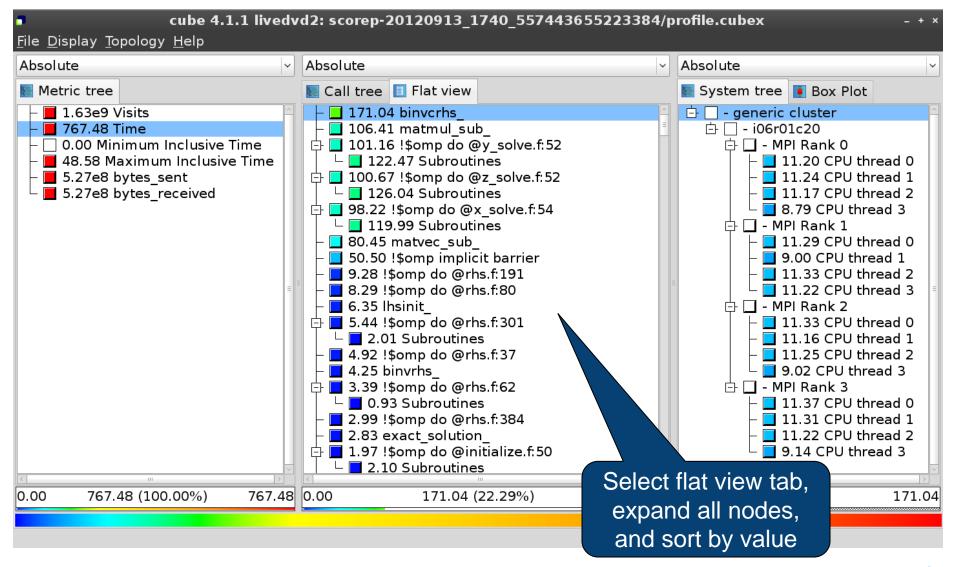
SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering



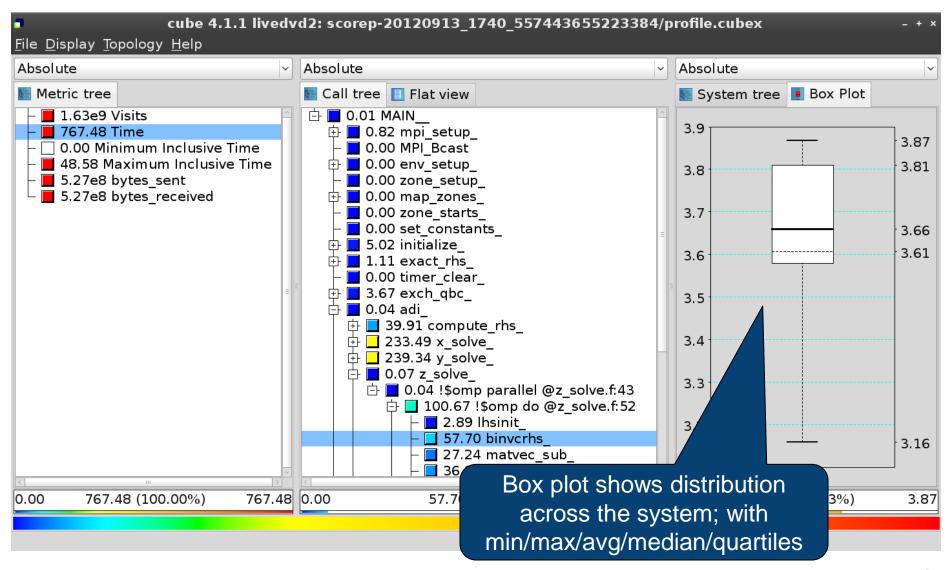


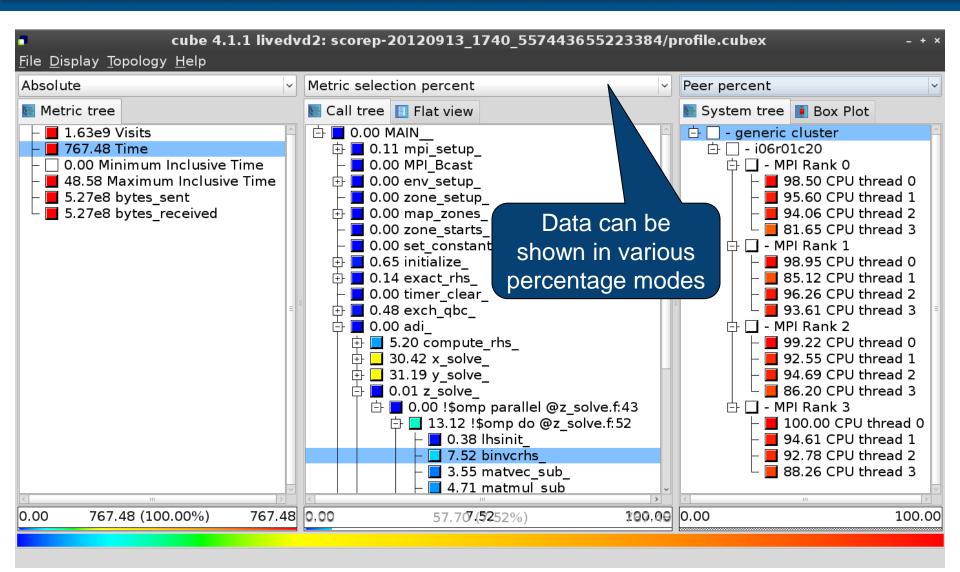

- Inclusive
 - Information of all sub-elements aggregated into single value
- Exclusive
 - Information cannot be subdivided further

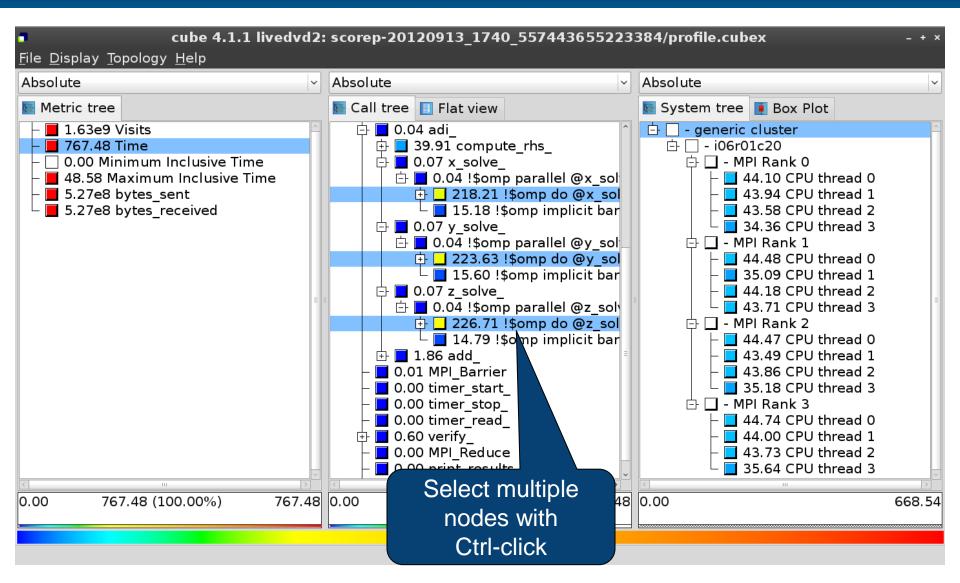
Source-code view



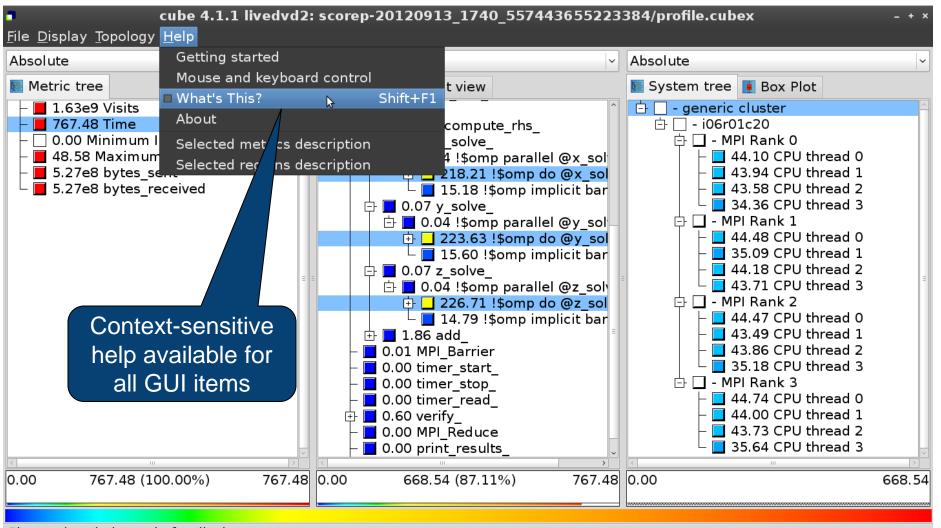
	/home/geimer/Proje	cts/Tests/NPB3.3-MZ-MP	l/BT-MZ/solve_subs.f	×
subroutine binvcrhs(1 c	hs,c,r)			
<pre>implicit none double precision pivot dimension lhs(5,5) double precision c(5,5) c</pre>), r(5)) ot ot ot			
• Read only	Save	Save as	Font	Close


Flat profile view


14 🗸



- Absolute
 - Absolute value shown in seconds/bytes/counts
- Selection percent
 - Value shown as percentage w.r.t. the selected node "on the left" (metric/call path)
- Peer percent (system tree only)
 - Value shown as percentage relative to the maximum peer value



Context-sensitive help

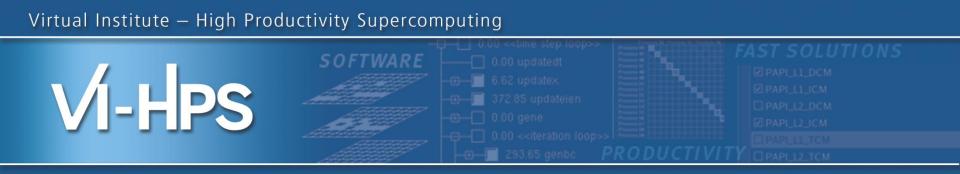
Change into help mode for display components

• Extracting solver sub-tree from analysis report

% cube_cut -r '<<ITERATION>>' scorep_bt-mz_W_4x4_sum/profile.cubex Writing cut.cubex... done.

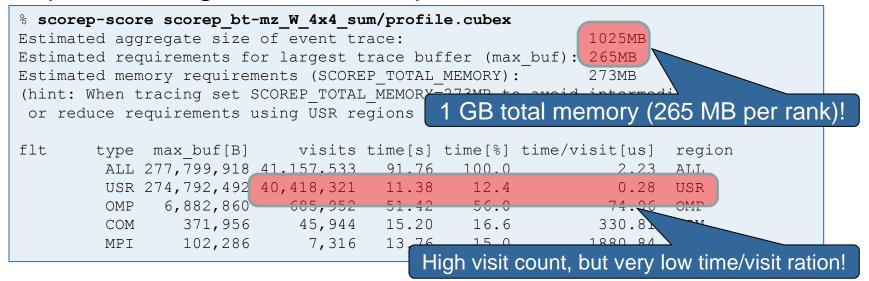
• Calculating difference of two reports

% cube_diff scorep_bt-mz_W_4x4_sum/profile.cubex cut.cubex
Writing diff.cubex... done.

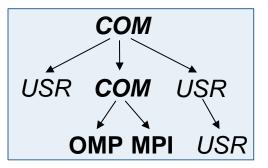

- Additional utilities for merging, calculating mean, etc.
 - Default output of cube_utility is a new report utility.cubex
- Further utilities for report scoring & statistics
- Run utility with "-h" (or no arguments) for brief usage info

- CUBE
 - Parallel program analysis report exploration tools
 - Libraries for XML report reading & writing
 - Algebra utilities for report processing
 - GUI for interactive analysis exploration
 - Available under New BSD open-source license
 - Documentation & sources:
 - http://www.scalasca.org
 - User guide also part of installation:
 - `cube-config --cube-dir`/share/doc/CubeGuide.pdf
 - Contact:
 - mailto: scalasca@fz-juelich.de

Score-P hands-on: NPB-MZ-MPI / BT (filtered)



- 1. Reference preparation for validation
- 2. Program instrumentation
- 3. Summary measurement collection
- 4. Summary analysis report examination
- 5. Summary experiment scoring
- 6. Summary measurement collection with filtering
- 7. Filtered summary analysis report examination
- 8. Event trace collection
- 9. Event trace examination & analysis


- If you made it this far, you successfully used Score-P to
 - instrument the application
 - analyze its execution with a summary measurement, and
 - examine it with one the interactive analysis report explorer GUIs
- ... revealing the call-path profile annotated with
 - the "Time" metric
 - Visit counts
 - MPI message statistics (bytes sent/received)
- ... but how good was the measurement?
 - The measured execution produced the desired valid result
 - however, the execution took rather longer than expected!
 - even when ignoring measurement start-up/completion, therefore
 - it was probably dilated by instrumentation/measurement overhead

Report scoring as textual output

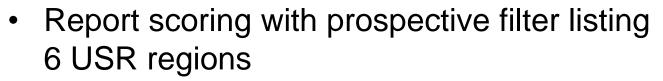
- Region/callpath classification
 - MPI (pure MPI library functions)
 - OMP (pure OpenMP functions/regions)
 - USR (user-level source local computation)
 - COM ("combined" USR + OpenMP/MPI)
 - ANY/ALL (aggregate of all region types)

SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Score report breakdown by region

<pre>% scorep-score -r scorep_bt-mz_W_4x4_sum/profile.cubex</pre>							
[] flt tvr	e max bu	f[D] vici	ta timo[a]	+imo[%]	time/visit[us]	region	
		,338 12,516,6			0.28	matmul sub	
US		,338 12,516,6		3.1	0.23	matvec sub	
US		,338 12,516,6		4.5	0.33	binvcrhs	
US				0.4	0.29	lhsinit	
US					0.27	binvrhs	
US				0.1	0.26	exact solution	
ON	•	,040 25,7		0.0	0.50	!\$omp parallel	
ON		,040 25,7		0.0	0.49	!\$omp parallel	
ON			28 0.01	0.0	0.48	!\$omp parallel	
ON		,040		0.0	0.47	!\$omp parallel	
ON			re than	0.0	0.98	!\$omp do @exch	
ON		0.4.0		0.0	0.97	!\$omp do @exch	
ON		, ₀₄₀ 270 N	1B just for	0.3	9.69	!\$omp implicit	
ON	IP 209	, ⁰⁴⁰ these	6 regions	0.3	9.66	!\$omp implicit	
ON	IP 209	,040	e regione	0.0			
ON	IP 209	,040 25,7	0.24	0.3		ÇOM	
ON	IP 209	,040 25,7	0.02	0.0			
[]							
					USF	R COM UŞR	

USR


OMP MPI

- Summary measurement analysis score reveals
 - Total size of event trace would be ~1 GB
 - Maximum trace buffer size would be ~265 MB per rank
 - smaller buffer would require flushes to disk during measurement resulting in substantial perturbation
 - 99.8% of the trace requirements are for USR regions
 - purely computational routines never found on COM call-paths common to communication routines or OpenMP parallel regions
 - These USR regions contribute around 12.4% of total time
 - however, much of that is very likely to be measurement overhead for frequently-executed small routines (high visit count but very low time/visit ratio)
- Advisable to tune measurement configuration
 - Specify an adequate trace buffer size
 - Specify a filter file listing (USR) regions not to be measured

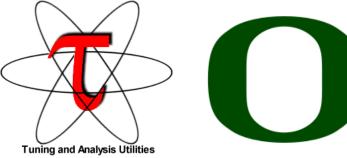
- 1. Reference preparation for validation
- 2. Program instrumentation
- 3. Summary measurement collection
- 4. Summary analysis report examination
- 5. Summary experiment scoring
- 6. Summary measurement collection with filtering
- 7. Filtered summary analysis report examination
- 8. Event trace collection
- 9. Event trace examination & analysis


```
% cat ../config/scorep.filt
SCOREP REGION NAMES BEGIN EXCLUDE
binvcrhs*
matmul sub*
matvec sub*
exact solution*
binvrhs*
lhs*init*
timer *
% scorep-score -f ../config/scorep.filt scorep bt-mz W 4x4 sum/profile.cubex
Estimated aggregate size of event trace:
                                                        23MB
Estimated requirements for largest trace buffer (max buf): 8MB
Estimated memory requirements (SCOREP TOTAL MEMORY):
                                                        16MB
(hint: When tracing set SCOREP TOTAL MEMORY=16MB to avoid int ediate flushes
or reduce requirements using USR regions filters.)
                                                  23 MB of memory in total,
                                                        8 MB per rank!
```


<pre>% scorep-score -r -f/config/scorep.filt \</pre>								
<pre>> scorep score 1 1/coning/scorep.nic (> scorep bt-mz W 4x4 sum/profile.cubex</pre>								
flt			—		timo[2]	time/visit[us]	region	
		277,799,918				2.23	ALL	
		274,792,492					USR	
_	OMP		685,952				OMP	
-								
-	COM		45,944		16.6	330.81	COM	
-	MPI	102,286	7,316	13.76	15.0	1880.84	MPI	
*	ALL	• •	739,321		87.6	108.72	ALL-FLT	
+	FLT	274,791,764	40,418,212			0.28	FLT	
-	OMP	6,882,860	685 , 952	51.42	56.0	74.96	OMP-FLT	
*	COM	371,956	45,944	15.20	16.6	330.81	COM-FLT	
-	MPI	102,286	7,316	13.76	15.0	1880.84	MPI-FLT	
*	USR	728	109	0.00	0.0	2.38	USR-FLT	
[]								
	\rightarrow							
Filtered routines								
marked with '+'								

• Set new experiment directory and re-run measurement with new filter configuration

```
% export SCOREP EXPERIMENT DIRECTORY=scorep bt-mz W 4x4 sum filtered
% export SCOREP FILTERING FILE=../config/scorep.filt
% OMP NUM THREADS=4 mpiexec -np 4 ./bt-mz W.4
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 4 x
                         4
Iterations: 200 dt: 0.000800
Number of active processes:
                                4
Use the default load factors with threads
Total number of threads: 16 ( 4.0 threads/process)
Use the default load factors with threads
Time step 1
Time step 20
 [...]
Time step 180
Time step 200
Verification Successful
BT-MZ Benchmark Completed.
Time in seconds = 8.11
```



<pre>% scorep-score scorep_bt-mz_W_4x4_sum_filtered/profile.cubex</pre>								
Estimated aggregate size of event trace: 23MB								
Estimated	requirements	for large	est trace	e buffer	(max buf): 8MB			
Estimated	memory requir	ements (S	SCOREP TO	OTAL MEMO	ORY): 16MB			
(hint: Wh	en tracing set	SCOREP 1	TOTAL MEI	MORY=16MB	B to avoid inter	mediate flu	ishes	
or reduc	e requirements	using US	SR region	ns filte	rs.)			
flt t	<pre>ype max_buf[B]</pre>	visits	time[s]	time[%]	time/visit[us]	region		
	ALL 7,357,804	739 , 321	25.32	100.0	34.25	ALL		
	OMP 6,882,860	685,952	16.64	65.7	24.26	OMP		
	сом 371,956	45,944	3.90	15.4	84.87	COM		
	MPI 102,286	7,316	4.78	18.9	653.21	MPI		
	USR 728	109	0.00	0.0	2.41	USR		

- Significant reduction in runtime (measurement overhead)
 - Not only reduced time for USR regions, but MPI/OMP reduced too!
- Further measurement tuning (filtering) may be appropriate
 - e.g., use "timer_*" to filter timer_start_, timer_read_, etc.

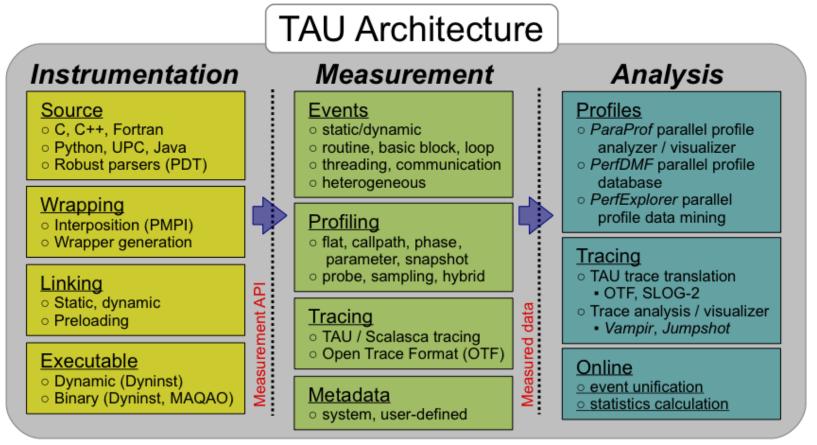
Virtual Institute – High Productivity Supercomputing

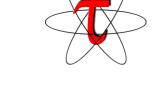
Profile Examination with TAU ParaProf

Sameer Shende Performance Research Lab, University of Oregon http://TAU.uoregon.edu

UNIVERSITÄT

Lawrence Livermore National Laboratory





- Parallel performance framework and toolkit
 - Supports all HPC platforms, compilers, runtime system
 - Provides portable instrumentation, measurement, analysis

TAU Performance System[®]

- Instrumentation
 - Fortran, C++, C, UPC, Java, Python, Chapel
 - Automatic instrumentation
- Measurement and analysis support
 - MPI, OpenSHMEM, ARMCI, PGAS, DMAPP
 - pthreads, OpenMP, hybrid, other thread models
 - GPU, CUDA, OpenCL, OpenACC
 - Parallel profiling and tracing
 - Use of Score-P for native OTF2 and CUBEX generation
 - Efficient callpath profiles and trace generation using Score-P
- Analysis
 - Parallel profile analysis (ParaProf), data mining (PerfExplorer)
 - Performance database technology (TAUdb)
 - 3D profile browser

- TAU supports both sampling and direct instrumentation
- Memory debugging as well as I/O performance evaluation
- Profiling as well as tracing
- Interfaces with Score-P for more efficient measurements
- TAU's instrumentation covers:
 - Runtime library interposition (tau_exec)
 - Compiler-based instrumentation
 - PDT based Source level instrumentation: routine & loop
 - Event based sampling (TAU_SAMPLING=1)
 - Callstack unwinding with sampling (TAU_EBS_UNWIND=1)
 - OpenMP Tools Interface (OMPT, tau_exec –T ompt)
 - CUDA CUPTI, OpenCL (tau_exec -T cupti -cupti)

Understanding Application Performance using TAU VI-HPS

- How much time is spent in each application routine and outer *loops*? Within loops, what is the contribution of each *statement*?
- How many instructions are executed in these code regions? Floating point, Level 1 and 2 data cache misses, hits, branches taken?
- What is the memory usage of the code? When and where is memory allocated/de-allocated? Are there any memory leaks?
- What are the I/O characteristics of the code? What is the peak read and write *bandwidth* of individual calls, total volume?
- What is the contribution of each *phase* of the program? What is the time wasted/spent waiting for collectives, and I/O operations in Initialization, Computation, I/O phases?
- How does the application *scale*? What is the efficiency, runtime breakdown of performance across different core counts?

•TAU supports several measurement and thread options

Phase profiling, profiling with hardware counters, MPI library, CUDA...

Each measurement configuration of TAU corresponds to a unique stub makefile (configuration file) and library that is generated when you configure it

•To instrument source code automatically using PDT

Choose an appropriate TAU stub makefile in <arch>/lib:

% export TAU_MAKEFILE=\$TAU/Makefile.tau-mpi-pdt

```
% export TAU_OPTIONS= '-optVerbose ...' (see tau_compiler.sh )
```

% export PATH=\$TAU_ROOT/x86_64/bin:\$PATH

% export TAU=\$TAU_ROOT/x86_64/lib

Use tau_f90.sh, tau_cxx.sh, tau_upc.sh, or tau_cc.sh as F90, C++, UPC, or C compilers respectively:

% mpif90 foo.f90 changes to

```
% tau_f90.sh foo.f90
```

•Set runtime environment variables, execute application and analyze performance data:

% pprof (for text based profile display) % paraprof (for GUI)

% module load openmpi tau; Is \$TAU/Makefile.* Makefile.tau-icpc-papi-mpi-pdt Makefile.tau-icpc-papi-mpi-pthread-pdt Makefile.tau-icpc-papi-ompt-mpi-pdt-openmp Makefile.tau-mpi-pdt Makefile.tau-papi-mpi-pdt Makefile.tau-papi-mpi-pdt-openmp-opari-scorep Makefile.tau-papi-mpi-pdt-scorep Makefile.tau-papi-mpi-pthread-pdt Makefile.tau-papi-pthread-pdt

Makefile.tau-papi-shmem-mpi-pdt

•For an MPI+F90 application with Intel MPI, you may choose Makefile.tau-mpi-pdt

Supports MPI instrumentation & PDT for automatic source instrumentation

% export TAU_MAKEFILE=\$TAU/Makefile.tau-mpi-pdt

% tau_f90.sh matmult.f90 -o matmult

% mpirun -np 4 ./matmult

% paraprof

SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

VI-LDS

% export TAU=\$TAU_ROOT/x86_64/lib % export TAU_MAKEFILE=\$TAU/Makefile.tau-papi-mpi-pdt-openmp-opari-scorep % export OMP_NUM_THREADS=10 % make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh

% mpirun -np 4 ./matmult

% cd score*; paraprof profile.cubex &

•Installing PDT:

- wget http://tau.uoregon.edu/pdt_lite.tgz
- ./configure –prefix=<dir>; make ; make install

Installing TAU:

- wget http://tau.uoregon.edu/tau.tgz
- ./configure –arch=x86_64 -bfd=download -pdt=<dir> -papi=<dir> ...
- For MIC:
- ./configure –arch=mic_linux –pdt=<dir> -pdt_c++=g++ -papi=dir …
- make install
- •Using TAU:
 - export TAU_MAKEFILE=<taudir>/x86_64/

lib/Makefile.tau-<TAGS>

– make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh

-optVerbose

dptTrackIO

-optCompInst

-optNoCompInst

Optional parameters for the TAU_OPTIONS environment variable: % tau_compiler.sh

Turn on verbose debugging messages Use compiler based instrumentation Do not revert to compiler instrumentation if source instrumentation fails. Wrap POSIX I/O call and calculates vol/bw of I/O operations (Requires TAU to be configured with *-iowrapper*) Enable tracking GNU OpenMP runtime layer (used without –opari) Enable runtime bounds checking (see TAU_MEMDBG_* env vars) Does not remove intermediate .pdb and .inst.* files Preprocess sources (OpenMP, Fortran) before instrumentation Specify selective instrumentation file for *tau_instrumentor* Specify path to *link_options.tau* generated by *tau_gen_wrapper* Enable Instrumentation of headers Track UPC runtime layer routines (used with tau_upc.sh) Options passed to the linker. Typically \$(TAU_MPI_FLIBS) \$(TAU_LIBS) \$(TAU_CXXLIBS) Options passed to the compiler. Typically \$(TAU_MPI_INCLUDE) \$(TAU_INCLUDE) \$(TAU_DEFS) Add options for Fortran parser in PDT (f95parse/gfparse) ...

(F EdptTrackGOMP EdptMemDbg -optKeepFiles -optPreProcess -optTauSelectFile="<file>" -optTauWrapFile="<file>" -optHeaderInst -optHeaderInst -optTrackUPCR -optLinking="" S -optCompile="" A

•Optional parameters for the TAU_OPTIONS environment variable:

% tau_compiler.sh

. . .

-optMICOffload	Links code for Intel MIC offloading, requires both host and
	MIC TAU libraries
-optShared (default)	Use TAU's shared library (libTAU.so) instead of static library
<pre>EdptPdtCxxOpts=""</pre>	Options for C++ parser in PDT (cxxparse).
dptPdtF90Parser=""	Specify a different Fortran parser
<pre> dptPdtCleanscapeParser </pre>	Specify the Cleanscape Fortran parser instead of GNU gfparser
-optTau=""	Specify options to the tau_instrumentor
-optTrackDMAPP	Enable instrumentation of low-level DMAPP API calls on Cray
-optTrackPthread	Enable instrumentation of pthread calls

See tau_compiler.sh for a full list of TAU_OPTIONS.

VI-HPS

- If your Fortran code uses free format in .f files (fixed is default for .f), you may use:
 % export TAU_OPTIONS= '-optPdtF95Opts="-R free" -optVerbose '
- To use the compiler based instrumentation instead of PDT (source-based): % export TAU_OPTIONS= '-optCompInst -optVerbose'
- If your Fortran code uses C preprocessor directives (#include, #ifdef, #endif):
 % export TAU_OPTIONS= '-optPreProcess -optVerbose -optDetectMemoryLeaks'
- To use an instrumentation specification file:

% export TAU_OPTIONS= '-optTauSelectFile=select.tau -optVerbose -optPreProcess' % cat select.tau BEGIN_INSTRUMENT_SECTION loops routine="#" # this statement instruments all outer loops in all routines. # is wildcard as well as comment in first column. END_INSTRUMENT_SECTION

Runtime Environment Variables

Environment Variable	Default	Description
TAU_TRACE	0	Setting to 1 turns on tracing
TAU_CALLPATH	0	Setting to 1 turns on callpath profiling
TAU_TRACK_MEMORY_LEAKS	0	Setting to 1 turns on leak detection (for use with –optMemDbg or tau_exec)
TAU_MEMDBG_PROTECT_ABOVE	0	Setting to 1 turns on bounds checking for dynamically allocated arrays. (Use with –optMemDbg or tau_exec –memory_debug).
TAU_CALLPATH_DEPTH	2	Specifies depth of callpath. Setting to 0 generates no callpath or routine information, setting to 1 generates flat profile and context events have just parent information (e.g., Heap Entry: foo)
TAU_SAMPLING	1	Setting to 1 enables event-based sampling.
TAU_TRACK_SIGNALS	0	Setting to 1 generate debugging callstack info when a program crashes
TAU_COMM_MATRIX	0	Setting to 1 generates communication matrix display using context events
TAU_THROTTLE	1	Setting to 0 turns off throttling. Enabled by default to remove instrumentation in lightweight routines that are called frequently
TAU_THROTTLE_NUMCALLS	100000	Specifies the number of calls before testing for throttling
TAU_THROTTLE_PERCALL	10	Specifies value in microseconds. Throttle a routine if it is called over 100000 times and takes less than 10 usec of inclusive time per call
TAU_COMPENSATE	0	Setting to 1 enables runtime compensation of instrumentation overhead
TAU_PROFILE_FORMAT	Profile	Setting to "merged" generates a single file. "snapshot" generates xml format
TAU_METRICS	TIME	Setting to a comma separated list generates other metrics. (e.g., TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_ <event>:<subevent>)</subevent></event>

Runtime Environment Variables (contd.)

,	
	PS

Environment Variable	Default	Description
TAU_TRACK_MEMORY_LEAKS	0	Tracks allocates that were not de-allocated (needs –optMemDbg or tau_exec –memory)
TAU_EBS_SOURCE	TIME	Allows using PAPI hardware counters for periodic interrupts for EBS (e.g., TAU_EBS_SOURCE=PAPI_TOT_INS when TAU_SAMPLING=1)
TAU_EBS_PERIOD	100000	Specifies the overflow count for interrupts
TAU_MEMDBG_ALLOC_MIN/MAX	0	Byte size minimum and maximum subject to bounds checking (used with TAU_MEMDBG_PROTECT_*)
TAU_MEMDBG_OVERHEAD	0	Specifies the number of bytes for TAU's memory overhead for memory debugging.
TAU_MEMDBG_PROTECT_BELOW/AB OVE	0	Setting to 1 enables tracking runtime bounds checking below or above the array bounds (requires –optMemDbg while building or tau_exec –memory)
TAU_MEMDBG_ZERO_MALLOC	0	Setting to 1 enables tracking zero byte allocations as invalid memory allocations.
TAU_MEMDBG_PROTECT_FREE	0	Setting to 1 detects invalid accesses to deallocated memory that should not be referenced until it is reallocated (requires –optMemDbg or tau_exec – memory)
TAU_MEMDBG_ATTEMPT_CONTINUE	0	Setting to 1 allows TAU to record and continue execution when a memory error occurs at runtime.
TAU_MEMDBG_FILL_GAP	Undefined	Initial value for gap bytes
TAU_MEMDBG_ALINGMENT	Sizeof(int)	Byte alignment for memory allocations
TAU_EVENT_THRESHOLD	0.5	Define a threshold value (e.g., .25 is 25%) to trigger marker events for min/max

SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

VI-HPS

Uninstrumented execution

- % mpirun -np 4 ./a.out
- Track MPI performance
 - % mpirun -np 4 tau_exec ./a.out
- •Track POSIX I/O and MPI performance (MPI enabled by default)
 - % mpirun -np 4 tau_exec -T mpi,pdt -io ./a.out
- Track memory operations
 - % export TAU_TRACK_MEMORY_LEAKS=1
 - % mpirun –np 8 tau_exec –memory_debug ./a.out (bounds check)
- •Use event based sampling (compile with -g)
 - % mpirun –np 8 tau_exec –ebs ./a.out
 - Also –ebs_source=<PAPI_COUNTER> -ebs_period=<overflow_count>
- Load wrapper interposition library
 - % mpirun –np 8 tau_exec –loadlib=<path/libwrapper.so> ./a.out
- Track GPGPU operations
 - % mpirun -np 8 tau_exec -cupti ./a.out
 - % mpirun –np 8 tau_exec –opencl ./a.out

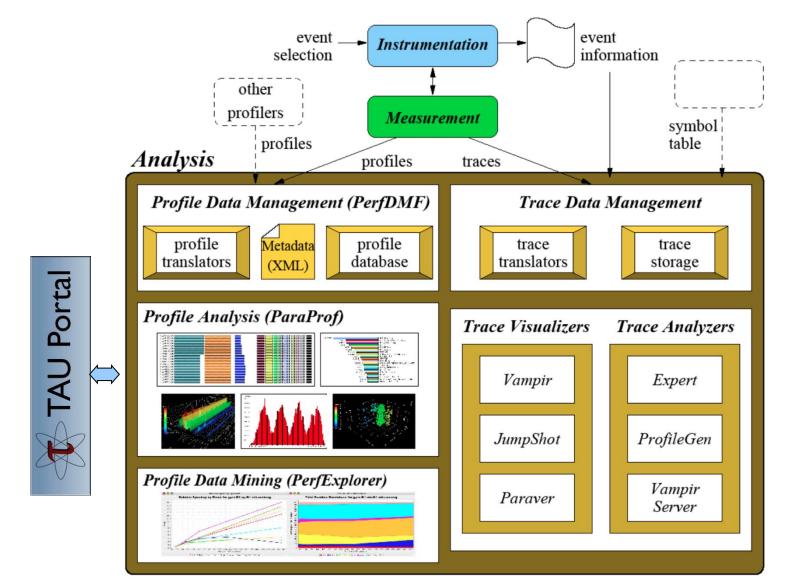
- Support for both static and dynamic executables
- Specify a list of routines to instrument
- Specify the TAU measurement library to be injected
- MAQAO:

% tau_rewrite -T [tags] a.out -o a.inst

• Dyninst:

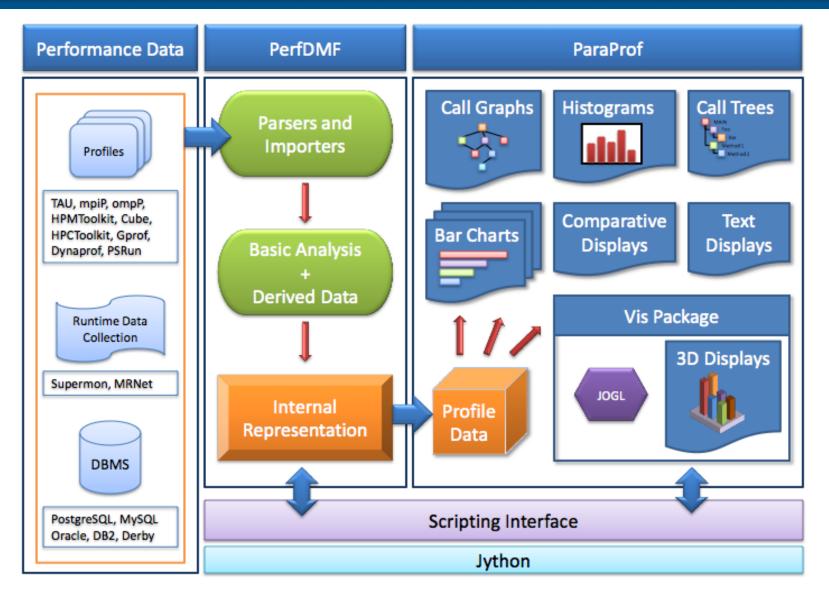
% tau_run -T [tags] a.out -o a.inst

• Pebil:


% tau_pebil_rewrite -T [tags] a.out \
 -o a.inst

• Execute the application to get measurement data:

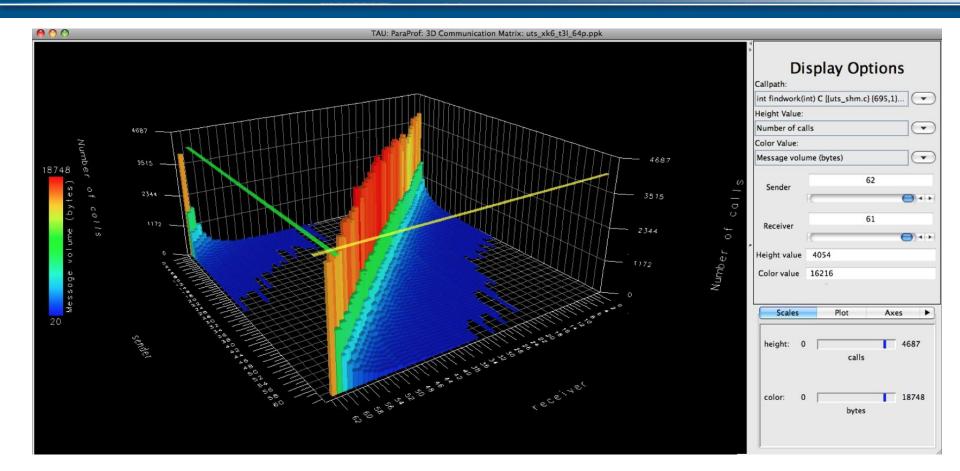
% mpirun -np 256 ./a.inst


TAU Analysis

SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf Profile Analysis Framework

Parallel Profile Visualization: ParaProf


VI-HPS

000 ParaProf Visualizer: cmod.128x128.128DC.ppk/128x128/aorsa2d/taudata/rs/sameer/Users/ File Options Windows Help Triangle Mesh O Bar Plot O Scatter Plot Height Metric Exclusive GET_TIME_OF_DAY Color Metric Exclusive GET_TIME_OF_DAY SIGMAD_CQL3D Function 200:0:0 Thread) + + Height value 321.68 seconds 0 . 38 C 321.68 seconds Color value 82.92 ()Mesh Plot Axes ColorScale D Plot Width n hread Plot Depth Plot Height MYRA-MOD or Transparency

Parallel Profile Visualization: ParaProf

COC TAU: ParaProf: 3D Visualizer: M2048_np1.ppk	,
	 Triangle Mesh Bar Plot Scatter Plot Topology Plot
71-564 233.929 195.991 27.956	Height Metric Exclusive TIME Color Metric Exclusive TIME Function MPI_Send() Function
	Thread 1846 Height value 283.977 seconds
	Color value 283.977 seconds Scales Plot Axes Color Render height: 0 311.904 311.904

ParaProf 3D Communication Matrix

% export TAU_COMM_MATRIX=1

● ○ ○	s/mm			
File Options Windows Help				
Name 🛆	Exclusive TIME		Calls	Child Calls
P ■ int main(int, char **) C [{matmult.c} {159,1}-{229,1}]	0.033	2,837.969	1	3
► MPI_Finalize()	16.403	16.444	1	5
► MPI_Init()	1,140.687	1,141.011	1	45
double do_work(void) C [{matmult.c} {120,1}-{151,1}]	0.041	1,680.481	1	8
double **allocateMatrix(int, int) C [{matmult.c} {36,1}-{43,1}]	2.959	2.959	3	0
P □ void compute(double **, double **, double **, int, int, int) C [{matmult.c} {78,1}-{97,1}]	956.539	956.539	1	0
🕈 🗖 [CONTEXT] void compute(double **, double **, double **, int, int, int) C [{matmult.c} {78,1}-{97,1}]	0	949.969	95	0
[SAMPLE] compute [{/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult.c} {87}]	59.993	59.993	6	0
[SAMPLE] compute [{/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult.c} {91}]	889.976	889.976	89	0
P ■ void compute_interchange(double **, double **, double **, int, int, int) C [{matmult.c} {99,1}-{118,1}]	718.179	718.179	1	0
🕈 🗖 [CONTEXT] void compute_interchange(double **, double **, double **, int, int, int) C [{matmult.c} {99,1}-{118,1	l}] O	720	72	0
SAMPLE] compute_interchange [{/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult.c} {108]] 60	60	6	0
[SAMPLE] compute_interchange [{/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult.c} {112}] 660	660	66	0
void initialize(double **, int, int) C [{matmult_initialize.c} {3,1}-{16,1}]	2.763	2.763	3	o
Show Function Bar Chart				
Show Function Histogram				
Assign Function Color				
Reset to Default Color				

% export TAU_MAKEFILE=\$TAU/Makefile.tau-icpc-papi-mpi-pdt % make CC=tau_cc.sh CXX=tau_cxx.sh % export TAU_SAMPLING=1 % mpirun –np 256 ./a.out % paraprof

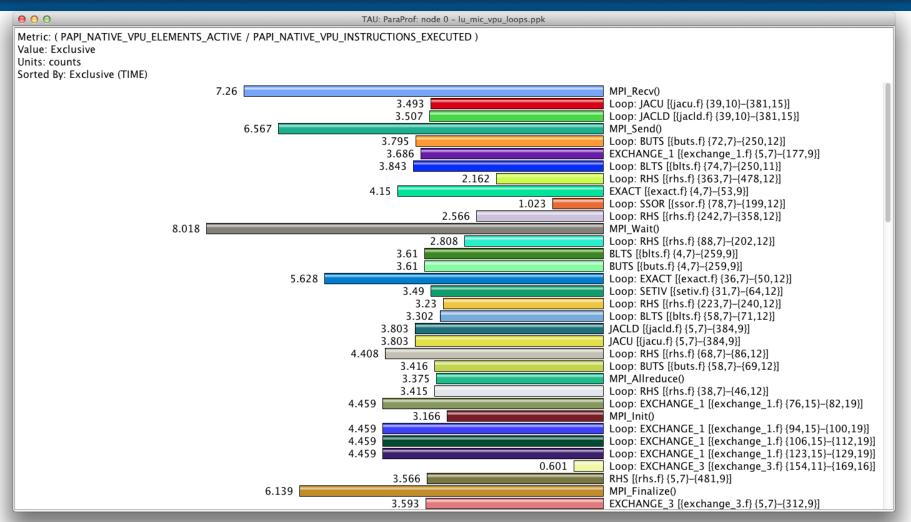
Mixed MPI and OpenMP Instrumentation

● ○ ○	X TAU: ParaProf: /usr/global/tools/tau/training/tau-2.23/examples/mm
File Options Windows Help	
Metric: TIME Value: Exclusive	
Std. Dev. 📃 📰 📰	
Mean 📃 🗧 📄	
Max 📃 🔤 🔤	
Min 🔜 🚃 💼	
node 0, thread 0 📃 🔤 💼	
node 0, thread 1	
node 0, thread 2	
node 0, thread 3	
node 1, thread 0 📃 🔤 🔤	
node 1, thread 1	
node 1, thread 2	
node 1, thread 3	
node 2, thread 0	
node 2, thread 1	
node 2, thread 2	
node 2, thread 3	for (loop body) [OpenMP location: file:/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult.c <84, 95>]
node 3, thread 0	Exclusive TIME: 0.954 seconds
node 3, thread 1	Calls: 1.0
node 3, thread 2	SubCalls: 0.0
node 3, thread 3	

😑 🔿 🔿				
File Options Windows Help				
	xclu		<u>C</u> .	
<pre></pre>		3.134	1	3
"	0.191 1.148		1	5
	0.001		1	45 8
		0.003	3	0
\sim anotatematrix(m, m) C [(matrix), bomp.c) {38,1}-{45,1}]		0.003	1	1
Parallel fork/join [OpenMP]	0		1	1
parallel (parallel fork/join) [OpenMP location: file:/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult.c <80, 96>]	ŏ		1	1
Parallel begin/end [OpenMP]	Ő		1	1
parallel (parallel begin/end) [OpenMP location: file:/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult.c <80, 96>]	0		1	2
A prime of the second	0	0.003	1	1
	0.003	0.003	1	0
e Tor enter/exit [OpenMP]	0	0.967	1	1
🗧 🖬 for (loop body) [OpenMP location: file:/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult.c <84, 95>]	0.967	0.967	1	0
[CONTEXT] for (loop body) [OpenMP location: file:/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult.c <84, 95>]	0	0.93	58	0
[SAMPLE] L_compute_118par_region0_2_204 [{/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult.pomp.c} {127}]	0.039	0.039	з	0
[SAMPLE] L_compute_118par_region0_2_204 [{/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult.pomp.c} {131}]	0.891	0.891	55	0
void compute_interchange(double **, double **, double **, int, int, int) C [{matmult.pomp.c} {148,1}-{183,1}]	0	0.812	1	1
🕈 🗖 parallel fork/join [OpenMP]	0	0.812	1	1
🕈 🗖 parallel (parallel fork/join) [OpenMP location: file:/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult.c <101, 117>]	0	0.811	1	1
🕈 🗖 parallel begin/end [OpenMP]	0	0.811	1	1
🖕 🗖 parallel (parallel begin/end) [OpenMP location: file:/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult.c <101, 117>]		0.811	1	2
∽ _void initialize(double **, int, int) C [{matmult_initialize.pomp.c} {5,1}-{33,1}]	0	0.007	3	2

% export TAU_MAKEFILE=\$TAU/Makefile.tau-icpc-papi-mpi-pdt-opari-openmp % make CC=tau_cc.sh CXX=tau_cxx.sh % export TAU_SAMPLING=1; export OMP_NUM_THREADS=16 % mpirun –np 256 ./a.out % paraprof

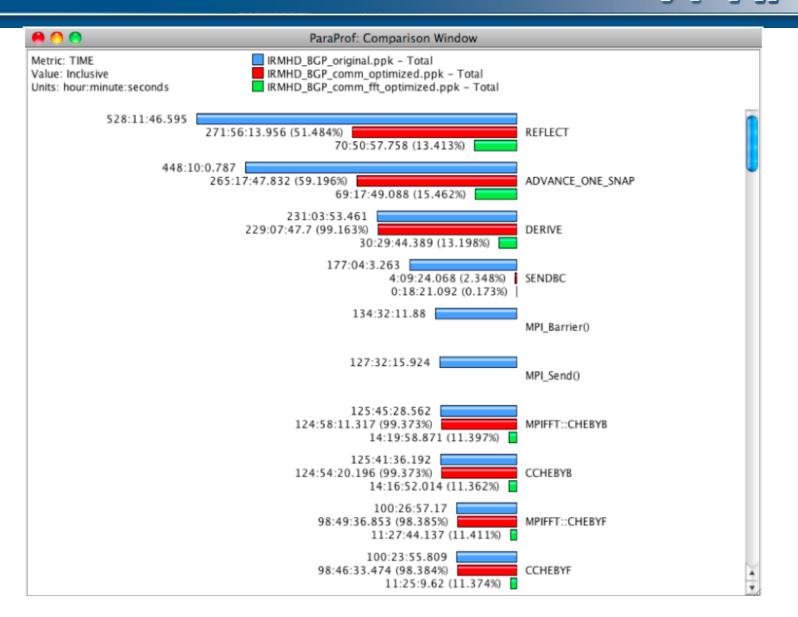
SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

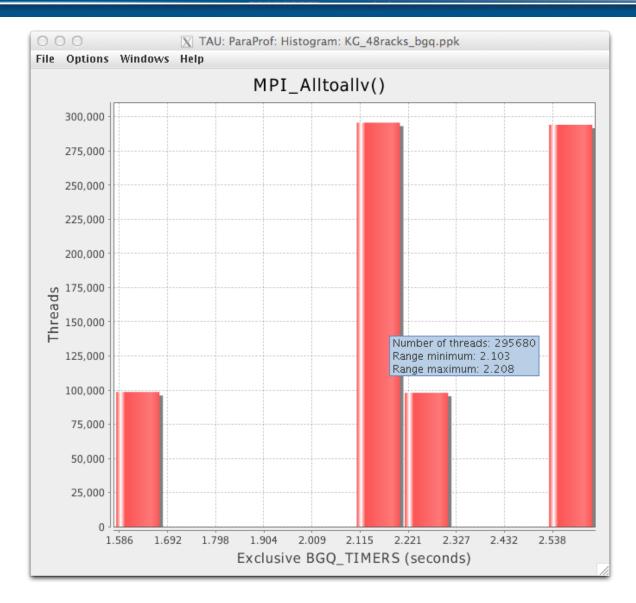

TAU's Support for Intel OMPT

😑 🔿 🔿 💿 🕅 🔀 TAU: ParaProf: Statistics for: node 0, thread 0 - /usr/global/tools/tau/training/tau-2.23/example	es/mm			
File Options Windows Help				
		nclusi	Calls	Child Calls
P	-	2.943	1	1
Int main(int, char **) C [{matmult.c} {159,1}-{229,1}]	0		1	3
MPI_Finalize()	0.034	0.034	1	5
• MPI_Init_thread()	1.148	1.151	1	45
double do_work(void) C [{matmult.c} {120,1}-{151,1}]	0	1.757	1	8
double **allocateMatrix(int, int) C [{matmult.c} {36,1}-{43,1}]	0.003	0.003	3	0
• void compute(double **, double **, double **, int, int, int) C [{matmult.c} {78,1}-{97,1}]	0	0.951	1	1
OpenMP_PARALLEL_REGION: [OPENMP] compute [{/usr/global/tools/tau/training/tau-2.23/examples/mm/matmu	lt.c} {80}] 0	0.951	1	2
OpenMP_BARRIER: [OPENMP] compute [{/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult.c} {80]	0.004	0.004	1	0
[CONTEXT] OpenMP_BARRIER: [OPENMP] compute [{/usr/global/tools/tau/training/tau-2.23/examples/mm/r	matmult.c} {80}] 0	0.007	1	0
OpenMP_LOOP: [OPENMP] compute [{/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult.c} {80}]	0.946	0.946	1	0
[CONTEXT] OpenMP_LOOP: [OPENMP] compute [{/usr/global/tools/tau/training/tau-2.23/examples/mm/mat	tmult.c} {80}] 0	0.944	62	0
SAMPLE] L_compute_80par_region0_2_150 [{/usr/global/tools/tau/training/tau-2.23/examples/mm/m	natmult.c} {87}] 0.047	0.047	2	0
SAMPLE] L_compute_80par_region0_2_150 [{/usr/global/tools/tau/training/tau-2.23/examples/mm/m	natmult.c} {91}] 0.897	0.897	60	0
► void compute_interchange(double **, double **, double **, int, int, int) C [{matmult.c} {99,1}-{118,1}]	0	0.787	1	1
r void initialize(double **, int, int) C [{matmult_initialize.c} {3,1}-{16,1}]	0.005	0.016	3	3
🕈 🗖 OpenMP_PARALLEL_REGION: [OPENMP] initialize [{/usr/global/tools/tau/training/tau-2.23/examples/mm/matmu	lt_initialize.c} {5} 0	0.011	3	6
OpenMP_BARRIER: [OPENMP] initialize [{/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult_initial	lize.c} {5}] 0.01	0.01	3	0
CONTEXT] OpenMP_BARRIER: [OPENMP] initialize [{/usr/global/tools/tau/training/tau-2.23/examples/mm/r	matmult_initializ 0	0.03	2	0
OpenMP_LOOP: [OPENMP] initialize [{/usr/global/tools/tau/training/tau-2.23/examples/mm/matmult_initialize	e.c} {5}] 0.001	0.001	З	0

% export TAU_MAKEFILE=\$TAU/Makefile.tau-icpc-papi-mpi-pdt-ompt-openmp % make CC=tau_cc.sh CXX=tau_cxx.sh % export TAU_SAMPLING=1; export OMP_NUM_THREADS=16 % mpirun –np 256 tau_exec –T ompt –loadlib=\$TAU/libiomp5.so ./a.out % paraprof

ParaProf Derived Metric Window: Intel MIC

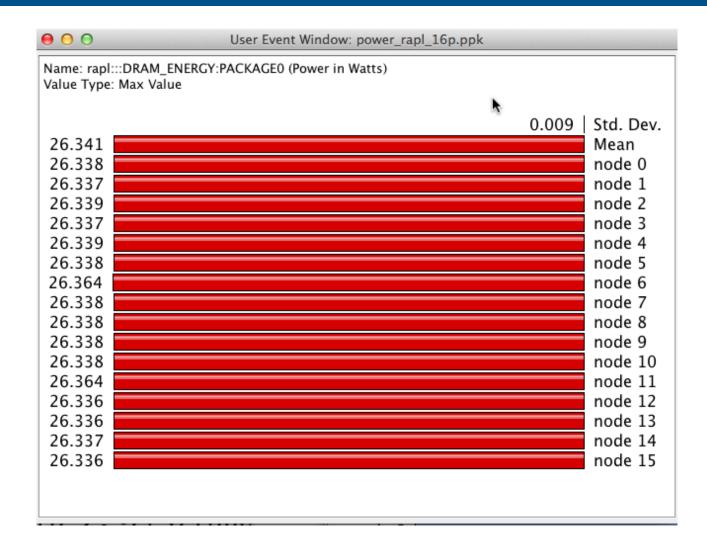



% export TAU_MAKEFILE=\$TAUROOT/mic_linux/lib/Makefile.tau-icpc-papi-mpi-pdt % export TAU_METRICS=TIME,PAPI_NATIVE_VPU_ELEMENTS_ACTIVE, PAPI_NATIVE_VPU_INSTRUCTIONS_EXECUTED

SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

ParaProf Comparison Window

ParaProf Histogram Window



Marker Events in TAU Show Sudden Spikes

● O O TAU:	ParaProf: Context Events for: node 2 - rapl_marker_16	p.ppk			
Name 🛆	MaxValue	MinValue	NumSamples	MeanValue	Std. Dev
<pre>v int main(int, char **) C [{matmult.c} {165,1}-{237,1}]</pre>					
double do_work(void) C [{matmult.c} {126,1}-{157,1}]					
void compute(double **, double **, double **, int, int, int) C [{matmult.c} {84,1}-					
[GROUP=MAX_MARKER] rapl:::DRAM_ENERGY:PACKAGE0 (Power in Watts)	17.585	17.469	5	17.521	0.037
[GROUP=MAX_MARKER] rapl:::DRAM_ENERGY:PACKAGE1 (Power in Watts)	15.261	15.218	4	15.237	0.016
[GROUP=MAX_MARKER] rapl:::PACKAGE_ENERGY:PACKAGE0 (Power in Watts)	118.903	114.923	22	116.98	
[GROUP=MAX_MARKER] rapl:::PACKAGE_ENERGY:PACKAGE1 (Power in Watts)	113.466	110.207	22	111.778	0.996
[GROUP=MAX_MARKER] rapl:::PP0_ENERGY:PACKAGE0 (Power in Watts)	100.138	96.266	24	98.206	1.13
[GROUP=MAX_MARKER] rapl:::PP0_ENERGY:PACKAGE1 (Power in Watts)	95.846	92.758	24	94.319	0.937
[GROUP=MIN_MARKER] rapl:::DRAM_ENERGY:PACKAGE0 (Power in Watts)	17.397	17.303	4	17.358	0.035
[GROUP=MIN_MARKER] rapl:::DRAM_ENERGY:PACKAGE1 (Power in Watts)	15.048	15.042	2	15.045	0.003
int mysleep(int) C [{matmult.c} {46,1}-{49,1}]					
[GROUP=MIN_MARKER] rapl:::DRAM_ENERGY:PACKAGE0 (Power in Watts)	15.84	15.84	1	15.84	0
[GROUP=MIN_MARKER] rapl:::DRAM_ENERGY:PACKAGE1 (Power in Watts)	14.275	14.275	1	14.275	0
[GROUP=MIN_MARKER] rapl:::PACKAGE_ENERGY:PACKAGE1 (Power in Watts)	96.853	96.853	1	96.853	0
[GROUP=MIN_MARKER] rapl:::PACKAGE_ENERGY:PACKAGE0 (Power in Watts)	93.125	93.125	1	93.125	0
[GROUP=MIN_MARKER] rapl:::PP0_ENERGY:PACKAGE0 (Power in Watts)	75.096	75.096	1	75.096	0
[GROUP=MIN_MARKER] rapl:::PP0_ENERGY:PACKAGE1 (Power in Watts)	79.646	79.646	1	79.646	0
void compute_interchange(double **, double **, double **, int, int, int) C [{matm	ult.c} {105,1}-{124,1}]				
[GROUP=MAX_MARKER] rapl:::DRAM_ENERGY:PACKAGE0 (Power in Watts)	26.064	25.711	2	25.887	0.176
[GROUP=MAX_MARKER] rapl:::DRAM_ENERGY:PACKAGE1 (Power in Watts)	24.373	23.965	4	24.232	0.159
[GROUP=MAX_MARKER] rapl:::PACKAGE_ENERGY:PACKAGE0 (Power in Watts)	126.872	125.182	6	125.732	0.557
[GROUP=MAX_MARKER] rapl:::PACKAGE_ENERGY:PACKAGE1 (Power in Watts)	124.377	116.689	5	122.428	2.885
[GROUP=MAX_MARKER] rapl:::PP0_ENERGY:PACKAGE0 (Power in Watts)	103.981	102.21	6	102.769	0.584
[GROUP=MAX_MARKER] rapl:::PP0_ENERGY:PACKAGE1 (Power in Watts)	102.615	101.693	4	102.115	0.33
rapl:::DRAM_ENERGY:PACKAGE0 (Power in Watts)	26.064	15.84	36	19.053	3.39
rapl:::DRAM_ENERGY:PACKAGE1 (Power in Watts)	24.373	14.275	36	16.435	3.155
rapl:::PACKAGE_ENERGY:PACKAGE0 (Power in Watts)	126.872	93.125	36	117.729	5.403
rapl:::PACKAGE_ENERGY:PACKAGE1 (Power in Watts)	124.377	96.853	36	112.961	4.776
rapl:::PP0_ENERGY:PACKAGE0 (Power in Watts)	103.981	75.096	36	98.208	4.466
rapl:::PP0_ENERGY:PACKAGE1 (Power in Watts)	102.615	79.646	36	94.872	3.662

% export TAU_EVENT_THRESHOLD 0.5

Energy Profiling in TAU

Profiling Power Using TAU with PAPI and RAPL

\varTheta 🔿 🔿 TAU: ParaProf: Conte	ext Eve	nts for: node 0 – p	power_rapl_16p.p	pk		
Name 🛆		NumSamples	MaxValue	MinValue	MeanValue	Std. Dev.
rapl:::DRAM_ENERGY:PACKAGE0 (Power in Watts)		39	26.338	17.673	20.514	3.031
rapl:::DRAM_ENERGY:PACKAGE1 (Power in Watts)		39	21.29	11.462	14.182	2.275
rapl:::PACKAGE_ENERGY:PACKAGE0 (Power in Watts)		39	120.72	80.665	114.013	7.222
rapl:::PACKAGE_ENERGY:PACKAGE1 (Power in Watts)		39	117.461	77.758	106.762	6.365
rapl:::PP0_ENERGY:PACKAGE0 (Power in Watts)		39	97.753	61.266	93.768	7.06
rapl:::PP0_ENERGY:PACKAGE1 (Power in Watts)		39	97.987	61.895	89.887	6.12

#include <TAU.h>

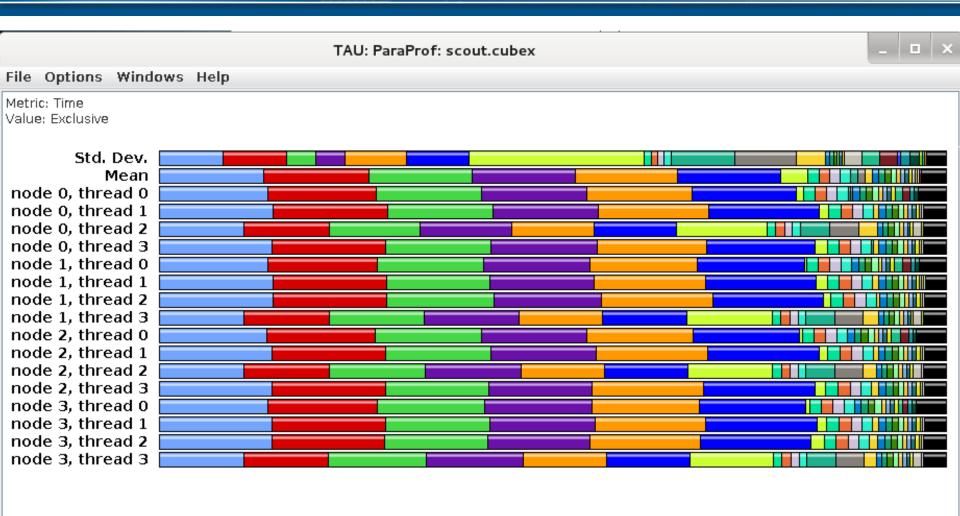
```
TAU_TRACK_POWER(); // In Fortran: call TAU_TRACK_POWER()
```

```
% sudo chmod –R go+r /dev/cpu/*/msr
% sudo /sbin/setcap cap_sys_rawio=ep ./a.out
% unset LD_LIBRARY_PATH
% ldd ./a.out
should have no "not found" entries, Use –WI,-rpath,/path while linking
% ./a.out
% paraprof
```

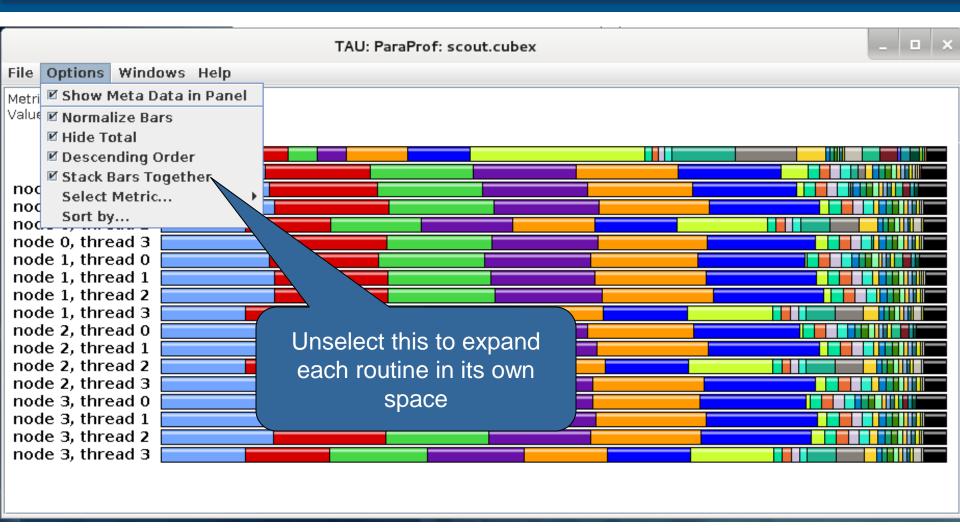

- The Tutorial contains Score-P experiments of BT-MZ
 - class "B", 4 processes with 4 OpenMP threads each
 - collected on a dedicated node of the SuperMUC HPC system at Leibniz Rechenzentrum (LRZ), Munich, Germany

```
% cd
% ls
periscope-1.5
README
run.out
scorep-20120913_1740_557443655223384
scorep definition
scorep-20120913_1740_557443655223384
```

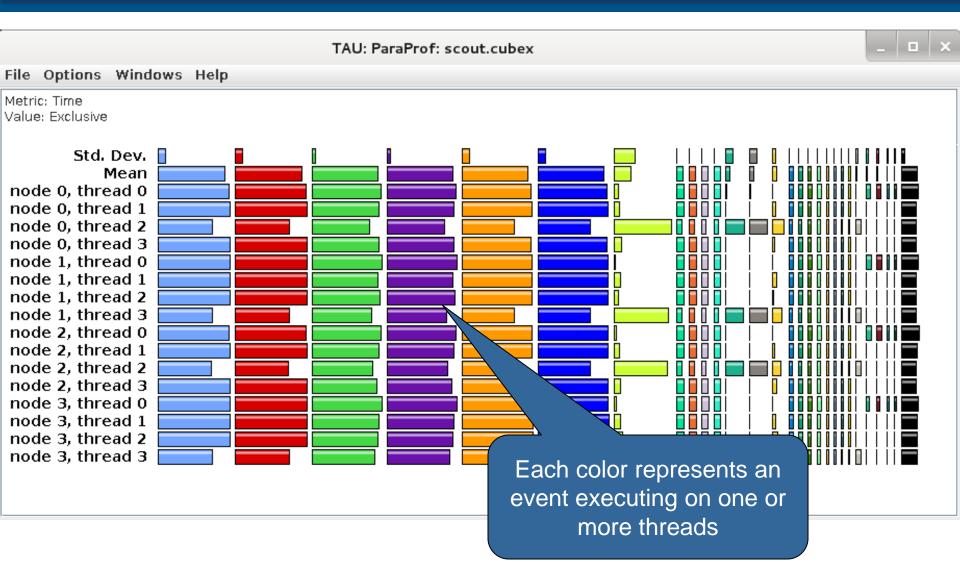
Start TAU's paraprof GUI with default profile report

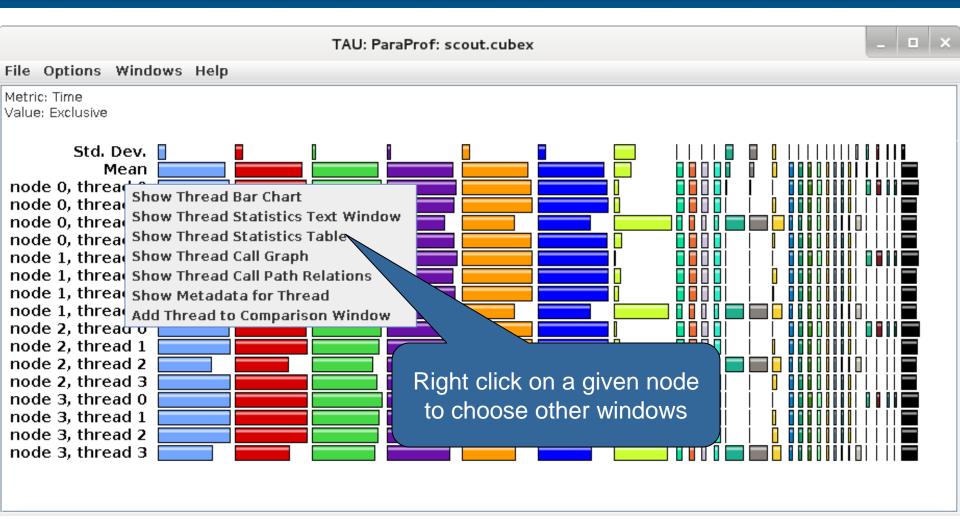

```
% paraprof scorep-20120913_1740_557443655223384/profile.cubex
OR
% paraprof scorep bt-mz B 4x4 trace/scout.cubex
```

ParaProf Manager Widow: scout.cubex


TAU: ParaProf Manager			_ 0
ile Options Help			
Applications	▲	TrialField	Value
- 🗂 Standard Applications		Name	scout.cubex
🔶 🔚 Default App		Application ID	0
- Default Exp		Experiment ID	0
↓ □ scout.cubex		Trial ID	0
- Scoul. cubex		File Type Index	9
- Swait at Barrier		File Type Name	Cube
Barrier Completion		rile type traine	00.00
Same completion Sector			
– Sender => Messages in Wrong Order			
Late Sender => Messages in Wrong Order => Messages from different sources			
— State Sender => Messages in Wrong Order => Messages from same source			
- Searly Reduce			
– 🥥 Early Scan			
- S Late Broadcast			
- ● Wait at N × N			
N x N Completion			
- • Management			
— Management => Fork			
P2P send synchronizations			
P2P send synchronizations => Late Receivers			
- S P2P recv synchronizations			
P2P recv synchronizations => Late Senders			
P2P recv synchronizations => Late Senders => Messages in Wrong Order			
 Collective synchronizations 			
P2P send communications	Metrics ir	n tha nrofi	
P2P send communications => Late Receivers			
P2P recv communications			
P2P recv communications => Late Senders			
P2P recv communications => Late Senders => Messages in Wrong Order			
 Collective exchange communications 			
 Ollective communications as source 			
 Collective communications as destination 			
P2P bytes sent			
 P2P bytes received 			
 Collective bytes outgoing Collective bytes is a series 			
 Collective bytes incoming Divide the provided of the			
— Second Seco			
– 🗢 RMA bytes put			

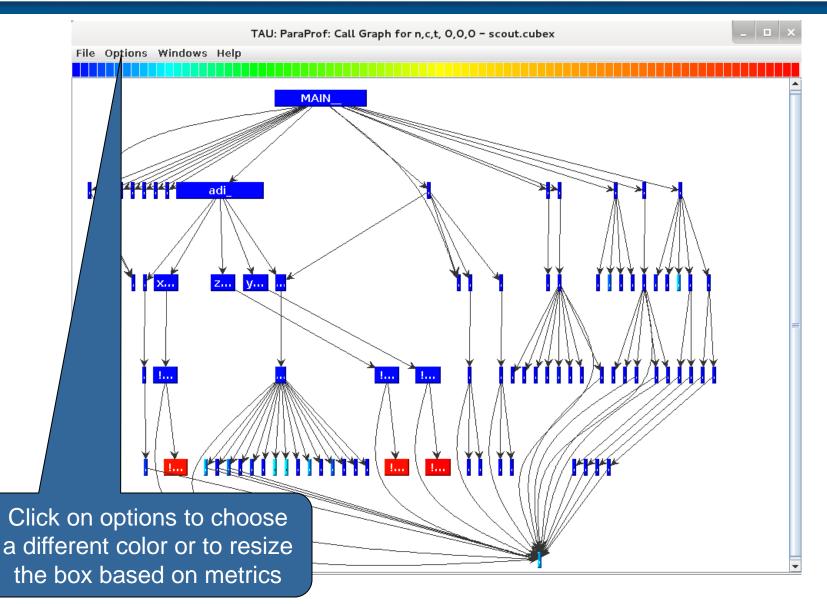
SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering


ParaProf: Main Window


ParaProf: Options

ParaProf: Unstack Bar Charts

ParaProf: Windows

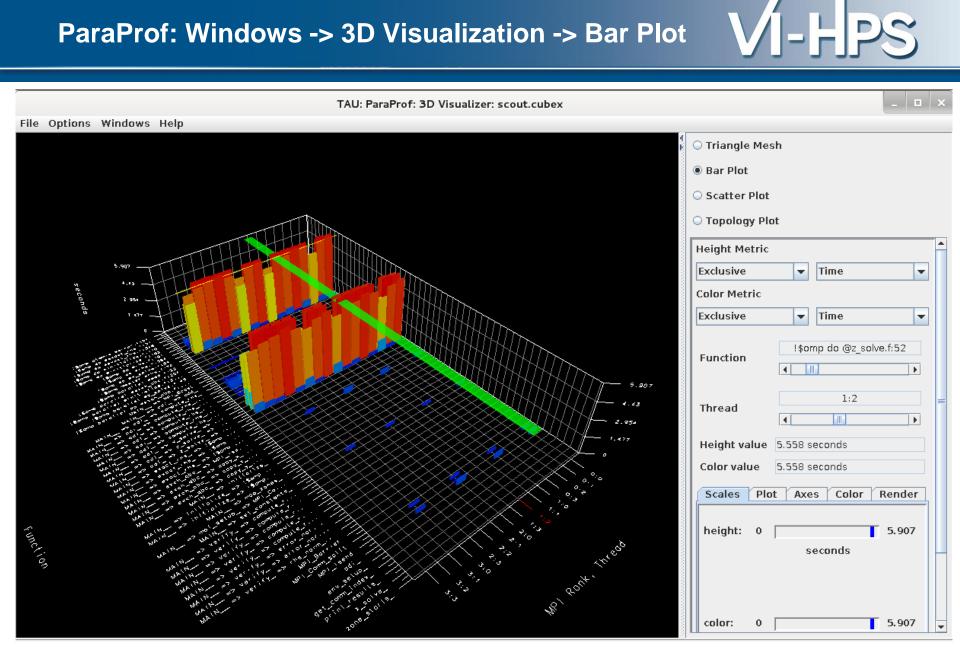


TAU: ParaProf: Statistics for	: node O, thread O – sco	ut.cubex		_ 🗆 🗙
File Options Windows Help				
Time		-		
Name	Exclusive Time 🗸 🔪	Inclusive Time	Calls	Child Calls
<mark>-</mark> ∎!\$omp do @y_solve.f:52	5.81	5.817	3,216	0
-solve.f:52	5.657	5.657	3,216	0
- somp do @x_solve.f:54	5.609	5,609	3,216	0
- <mark>- !</mark> \$omp do @rhs.f:191	0.609	0.609	3,232	0
– <mark>–</mark> !\$omp do @rhs.f:80	0.583	583	3,232	0
– MPI_Waitall	0.402			<u> </u>
– 🔄 !\$omp implicit barrier	0.402	Click to	sort by a g	aiven
🕂 🗖 !\$omp do @rhs.f:301	0.36			
-somp implicit barrier	0.026	metric, ai	rag and mo	ove to
	0	rearra	nge colum	ns
- 🔄 !\$omp do @rhs.f:37	0.343			
P	0.225	0.228	3,232	3,232
-somp implicit barrier	0.004	0.004	3,216	0
	0	0	16	0
– MPI_Init_thread	0.218	0.218	1	0
– <mark>–</mark> !\$omp do @rhs.f:384	0.199	0.199	3,232	0
🗢 🗖 !\$omp parallel do @add.f:22	0.099	0.111	3,216	3,216
- <mark>- </mark> !\$omp do @rhs.f:428	0.069	0.069	3,232	0
– MPI_Isend	0.043	0.043	603	0
– <mark>–</mark> !\$omp do @initialize.f:50	0.04	0.04	32	0
∽ 🗖 !\$omp parallel @rhs.f:28	0.03	2.536	3,232	51,712
\$000 states and a state of the state of t	0.021	0.029	6,432	6,432
🗢 🗖 !\$omp parallel do @exch_qbc.f:255	0.02	0.033	6,432	6,432
\$omp parallel @exch_qbc.f:255	0.02	0.053	6,432	6,432
• • !\$omp parallel @exch qbc.f:244)		FinderScre	enSnapz003.png

SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

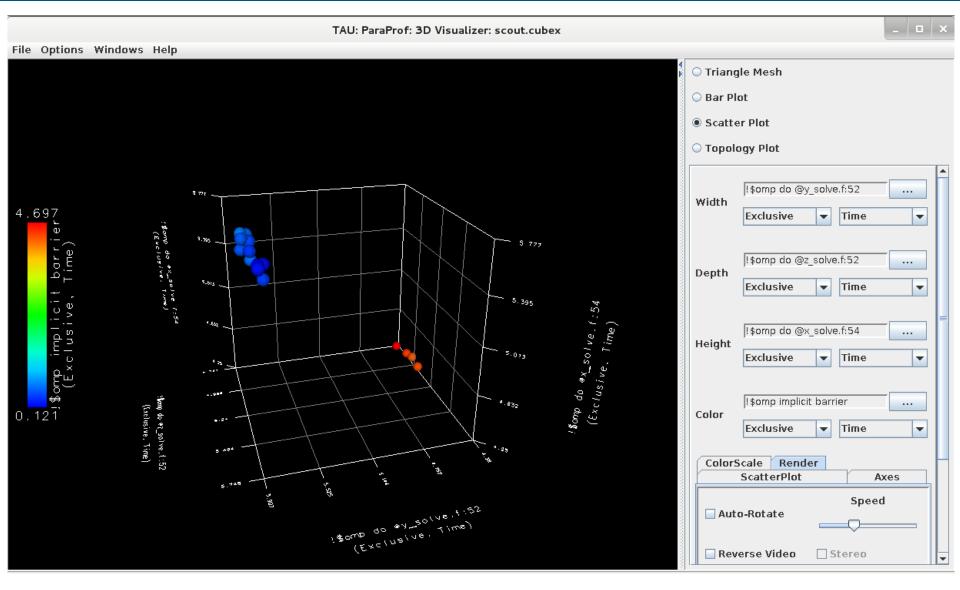
	or: node 0, thread 0 - profile.cubex			
le Options Windows Help				
Name	Exclusive Time 🗸	Inclusive Time		hild Calls
APPLU [{lu.f} {46,7}-{162,9}]	0	8.035	1	19
• SSOR [{ssor.f} {4,7}-{241,9}]	0.064	6.225	2	37,643
• RHS [{rhs.f} {5,7}-{504,9}]	0.743	2.524	303	60
• BLTS [{blts.f} {4,7}-{259,9}]	0.613	0.658	9,331	18,66
P BUTS [{buts.f} {4,7}-{259,9}]	0.612	1.871	9,331	18,66
₽ EXCHANGE_1 [{exchange_1.f} {5,7}-{177,9}]	0.024	1.259	18,662	18,66
- MPI_Recv	1.235	1.235	18,662	
MPI_Send	0	0	0	
— 🗖 JACU [{jacu.f} {5,7}-{384,9}]	0.532	0.532	9,331	
- JACLD [{jacld.f} {5,7}-{384,9}]	0.522	0.522	9,331	
- MPI_Allreduce	0.018	0.018	2	
← 🗖 L2NORM [{l2norm.f} {4,7}-{68,9}]	0	0.035	4	
– MPI_Barrier	0	0	2	
TIMER_START [{timers.f} {23,7}-{37,9}]	0	0	2	
TIMER_STOP [{timers.f} {43,7}-{59,9}]	0	0	2	
TIMER_CLEAR [{timers.f} {4,7}-{17,9}]	0	0	2	
TIMER_READ [{timers.f} {65,7}-{77,9}]	0	0	2	
SETIV [{setiv.f} {4,7}-{67,9}]	0.043	0.111	2	95,23
PROC_GRID [{proc_grid.f} {5,7}-{34,9}]	0.011	0.011	1	
ERHS [{erhs.f} {4,7}-{536,9}]	0.004	0.108	1	
ERROR [{error.f} {4,7}-{81,9}]	0.004	0.009	1	7,93
SETBV [{setbv.f} {5,7}-{79,9}]	0.002	0.004	2	3,40
READ_INPUT [{read_input.f} {5,7}-{125,9}]	0	0.001	1	
VERIFY [{verify.f} {5,9}-{403,11}]	0	0	1	
PRINT_RESULTS [{print_results.f} {2,7}-{115,12}]	0	0	1	
PINTGR [{pintgr.f} {5,7}-{288,9}]	0	0	1	
• INIT_COMM [{init_comm.f} {5,7}-{57,9}]	0	1.565	1	
- MPI Finalize	0	0	1	
SETHYPER [{sethyper.f} {5,7}-{94,9}]	0	0	1	
NEIGHBORS [{neighbors.f} {5,7}-{48,9}]	0	0	1	
SETCOEFF [{setcoeff.f} {5,7}-{157,9}]	Ő	Ő	1	

ParaProf: Thread Callgraph Window

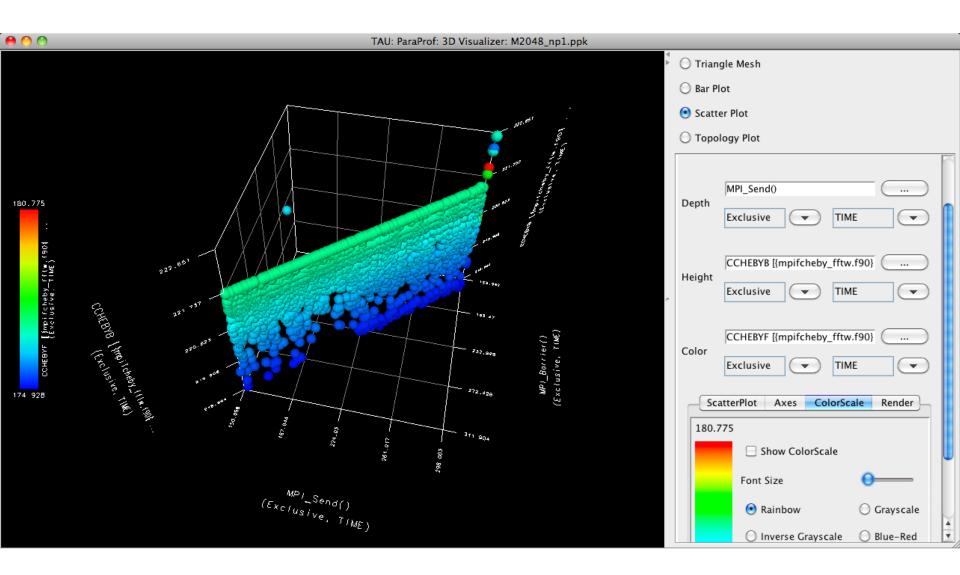


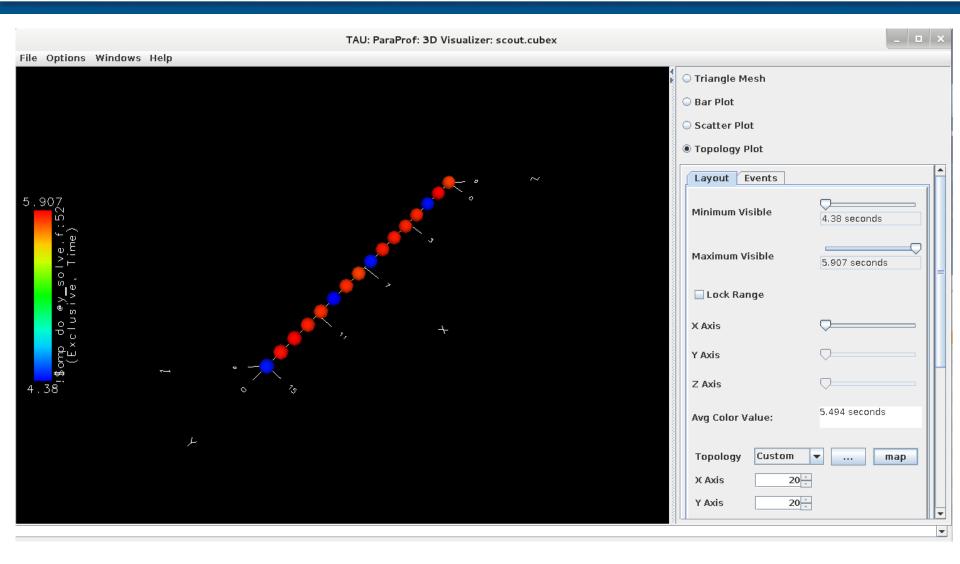
SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

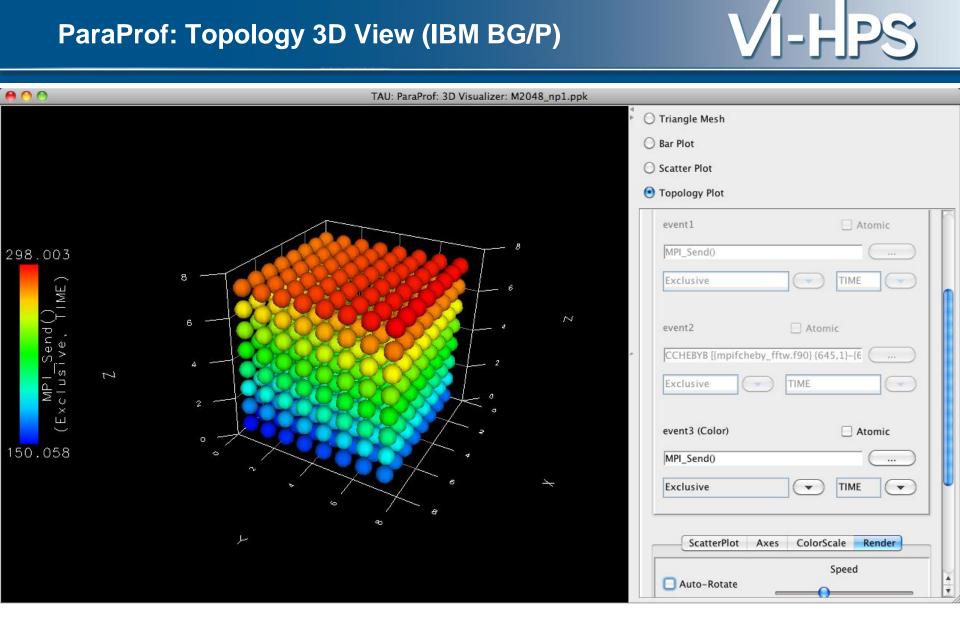
ParaProf: Callpath Thread Relations Window


TAU: ParaProf: Call Path Data n,c,t, 0,0,0 - scout.cubex					_ 🗆 ×
File Op	tions Windows	Help			
Sorted	Name: Time By: Exclusive seconds				
>	0.04 0.04	0.04 0.04	32/32 32	!\$omp parallel @initialize.f:28 !\$omp do @initialize.f:50	-
>	0.03 0.03 9.8E-4 0.225 0.002 0.199 0.002 0.343 0.016 0.014 0.609 0.36 0.583 0.019 0.006	2.536 2.536 9.8E-4 0.228 0.002 0.002 0.199 0.002 0.343 0.016 0.027 0.609 0.386 0.583 0.019 0.006	3232/3232 3232 3232/3232 3232/3232 3232/3232 3232/3232 3232/3232 3232/3232 3232/3232 3232/3232 3232/3232 3232/3232 3232/3232 3232/3232 3232/3232 3232/3232 3232/3232 3232/3232	<pre>compute_rhs_ !\$omp parallel @rhs.f:28 !\$omp master @rhs.f:424 !\$omp do @rhs.f:62 !\$omp master @rhs.f:74 !\$omp master @rhs.f:293 !\$omp do @rhs.f:384 !\$omp master @rhs.f:183 !\$omp do @rhs.f:37 !\$omp do @rhs.f:372 !\$omp do @rhs.f:413 !\$omp do @rhs.f:91 !\$omp do @rhs.f:80 !\$omp do @rhs.f:400 !\$omp implicit barrier</pre>	
>	0.069 0.015 0.021 0.021 0.007 0.02 0.02 0.02 0.013	0.069 0.015 0.029 0.029 0.007 0.033 0.033 0.013	3232/3232 3232/3232 6432/6432 6432 6432/51680 6432/6432 6432 6432 6432 6432	<pre>!\$omp do @rhs.f:428 !\$omp do @rhs.f:359 !\$omp parallel @exch_qbc.f:215 !\$omp parallel do @exch_qbc.f:215 !\$omp implicit barrier !\$omp parallel @exch_qbc.f:255 !\$omp parallel do @exch_qbc.f:255 !\$omp implicit barrier</pre>	

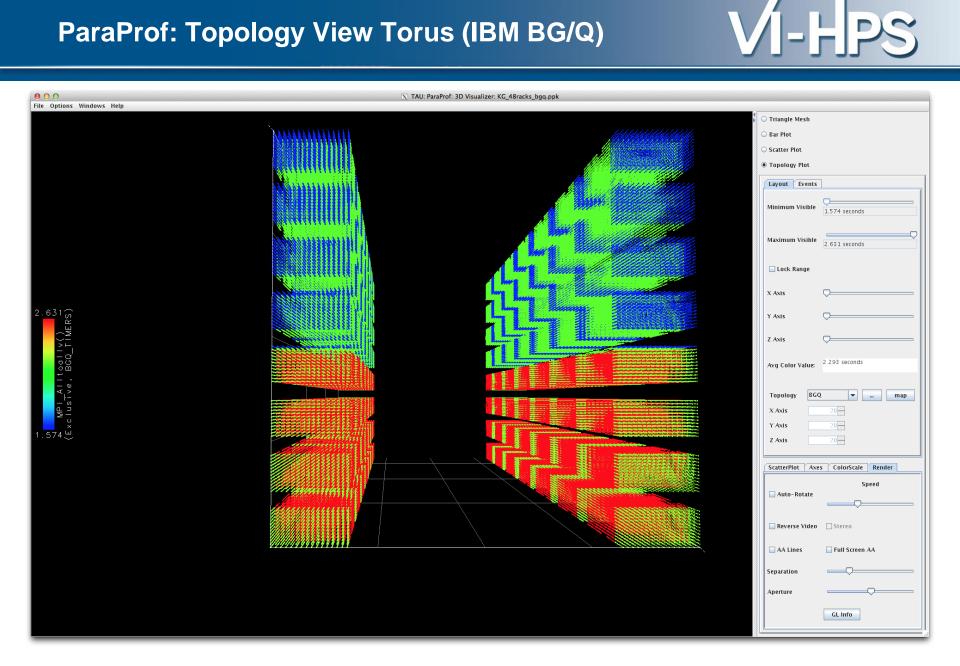
ParaProf: Windows -> 3D Visualization -> Bar Plot


ParaProf: 3D Scatter Plot


ParaProf: Scatter Plot

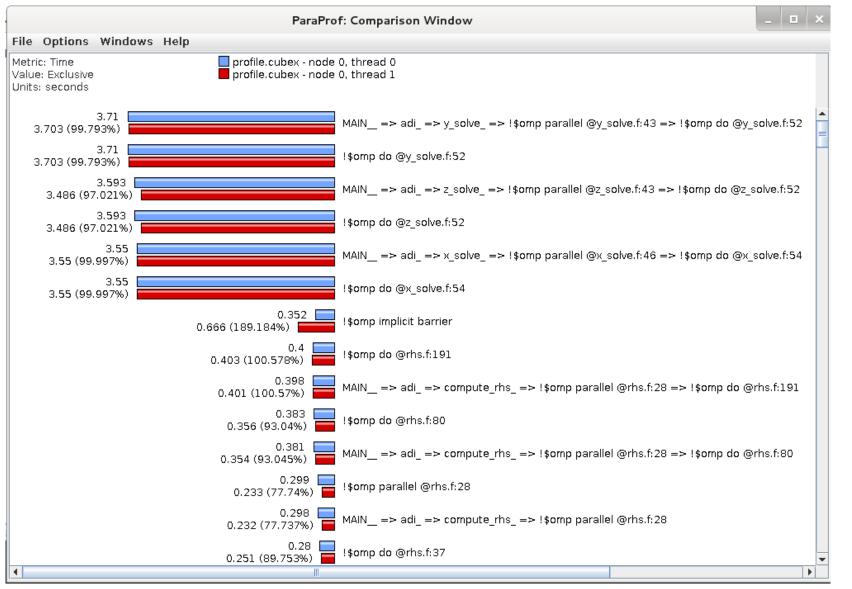


ParaProf: Topology 3D View



ParaProf: Topology 3D View (IBM BG/P)

ParaProf: Topology View Torus (IBM BG/Q)

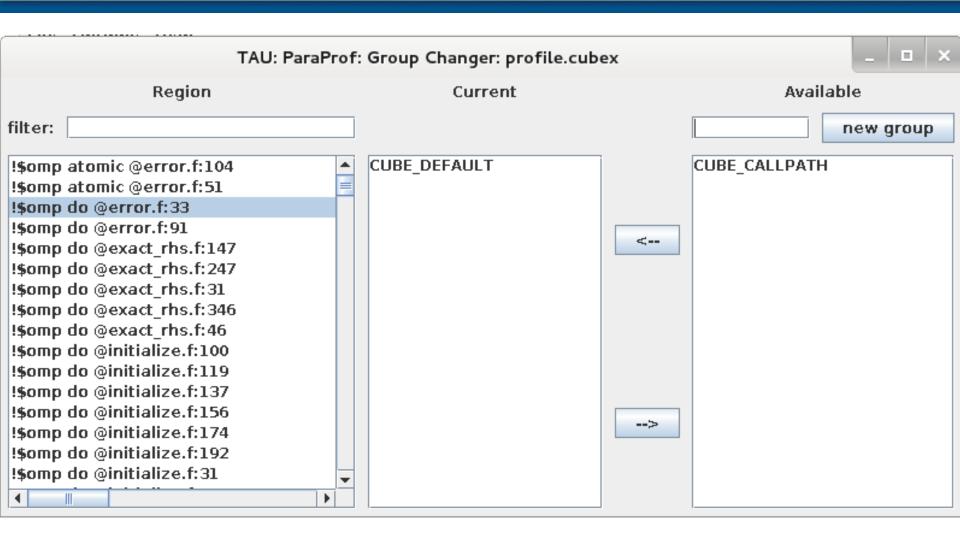

ParaProf: Node View

TAU: ParaProf: node O, thread O - profile.cubex 💷 🗙						×
File	Options	Windows	Help			
Valu Units	ic: Time e: Exclusive s: seconds 71	1			MAIN_ => adi_ => y_solve_ => !\$omp parallel @y_solve.f:43 => !\$omp do @y_solve.f:52	
3. 3.	71 593 				\$omp do @y_solve.f:52 MAIN => adi_ => z_solve_ => \$\$omp parallel @z_solve.f:43 => \$\$omp do @z_solve.f:52	
	593 3.55 3.55				!\$omp do @z_solve.f:52 MAIN => adi_ => x_solve_ => !\$omp parallel @x_solve.f:46 => !\$omp do @x_solve.f:54 !\$omp do @x_solve.f:54	=
				0.4] !\$omp do @rhs.f:191] MAIN => adi_ => compute_rhs_ => !\$omp parallel @rhs.f:28 => !\$omp do @rhs.f:191] !\$omp do @rhs.f:80	
				0.381	MAIN=> adi_=> compute_rhs_=> !\$omp parallel @rhs.f:28 => !\$omp do @rhs.f:80 !\$omp implicit barrier !\$omp parallel @rhs.f:28	
				0.298 📃 0.28 📃	MAIN=> adi_=> compute_rhs_=> !\$omp parallel @rhs.f:28 !\$omp do @rhs.f:37	
				0.279		
				0.259	!\$omp do @rhs.f:62	
				0.214	MAIN_ => mpi_setup_ => MPI_Init_thread	
				0.161 📘	MAIN=> exch_qbc_ => copy_x_face_ copy_x_face_	
				0.16 🗖	MAIN_ => exch_qbc_ => copy_y_face_ copy_y_face_	
				0.15 📕		
				0.14] !\$omp do @rhs.f:384] MAIN => adi_ => compute_rhs_ => !\$omp parallel @rhs.f:28 => !\$omp do @rhs.f:384] MAIN => exch_qbc_ => MPI_Waitall	
				0.127 🗧	MPI_Waitall MAIN => adi	
				0.103 0.094	adi MAIN => adi_ => add_ => !\$omp parallel @add.f:22 => !\$omp parallel do @add.f:22	
				0.094	!\$omp parallel do @add.f:22	▼

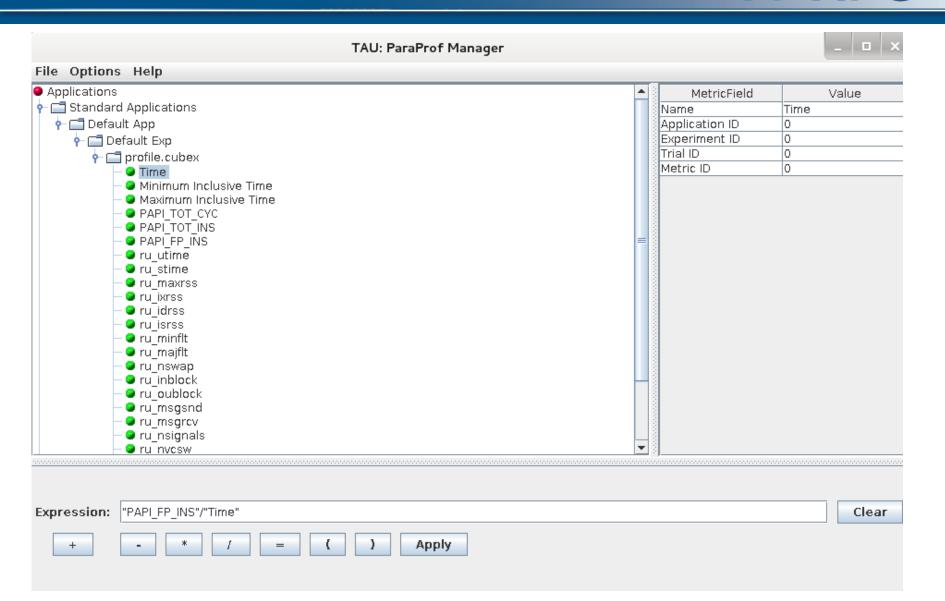
SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

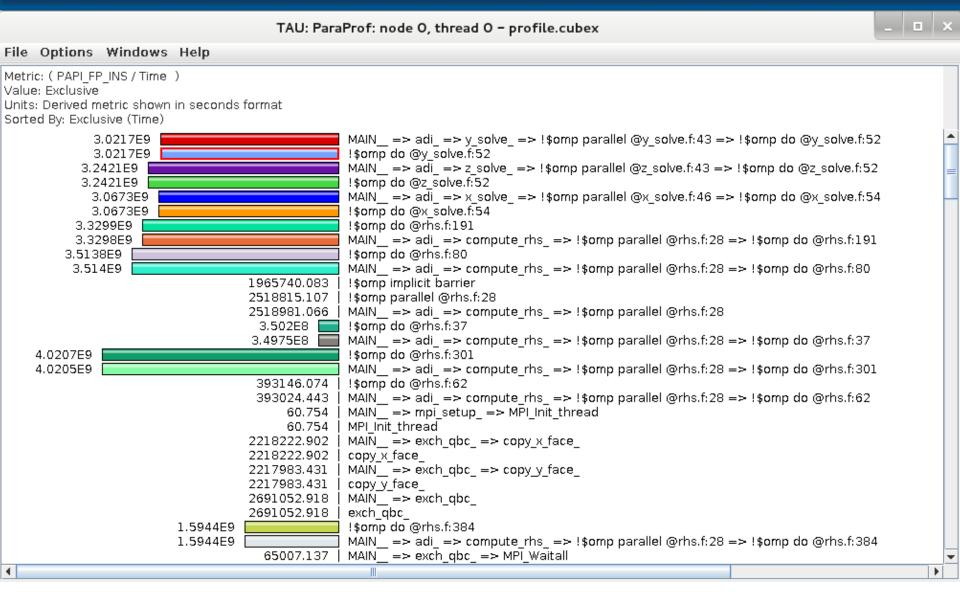
ParaProf: Add Thread to Comparison Window

SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering


ParaProf: Score-P Profile Files, Database

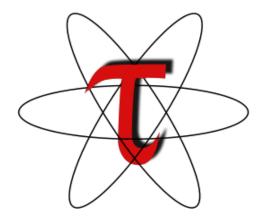
r TAU: ParaProf Manager		_ 🗆 ×
File Options Help		
Applications	TrialField	Value
🗣 🚍 Standard Applications	Name	profile.cubex
🕈 🗂 Default App	Application ID	0
🗣 🔚 Default Exp	Experiment ID	0
- T profile.cubex	Trial ID	0
- 🕒 Time	File Type Index	9
- S Minimum Inclusive Time	File Type Name	Cube
– 오 Maximum Inclusive Time		
- PAPI_TOT_CYC		
- PAPI_TOT_INS		
- PAPI_FP_INS		
- O ru_utime		
- Oru_stime		
— ❷ ru_maxrss — ❷ ru ixrss		
- 9 ru idrss		
– 9 ru isrss		
– 🥯 ru_minflt		
— 🥯 ru_majflt		
— 🥥 ru_nswap		
– • ru_inblock		
– 🔍 ru_oublock		
– 🔍 ru_msgsnd		
– 🥥 ru_msgrcv		
— ❷ ru_nsignals		
- • ru_nivcsw		
bytes_sent		
bytes_received Default (idea b2: /barra/livetau/ BarraProf//aarfdmf: 0UTO_SED) (ED_TEUE)		
Carter Content (jdbc:h2:/home/livetau/.ParaProf//perfdmf;AUTO_SERVER=TRUE) Add Application TRUE)		
periodalar of have the date of the have a set of the have the period of have the have the period of have the period		
Add Experiment		
Add Trial		
J	8	


ParaProf: File Preferences Window


	ParaProf Preferences	_ 0	×
File			
Font SansSerif Bold Size	n,c,t 0,0,0 n,c,t 0,0,1 n,c,t 0,0,2		
litalic 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Window defaults	_ Settings		
Units Seconds 💌	 Show Path Title in Reverse Reverse Call Paths Interpret threads that do not call a given function as a 0 value for statistics computation 		
Show Values as Percent	Generate data for reverse calltree (requires lots of memory) (does not apply to currently loaded profiles) Show Source Locations Auto label node/context/threads		
Restore Defaults	Apply	Cance	el

ParaProf: Group Changer Window

ParaProf: Derived Metric Panel in Manager Window



SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Download TAU from U. Oregon

http://tau.uoregon.edu

http://www.hpclinux.com [LiveDVD, OVA]

Free download, open source, BSD license

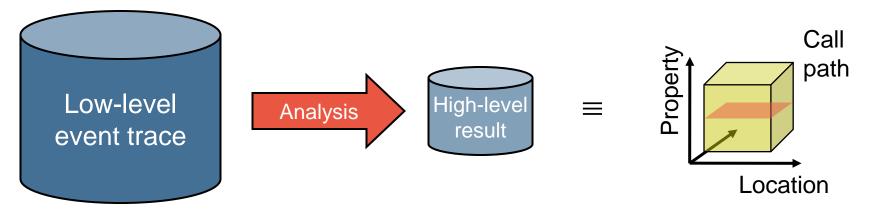
Automatic trace analysis with Scalasca

Markus Geimer Jülich Supercomputing Centre

UNIVERSITÄT

Lawrence Livermore National Laboratory

earch School


UNIVERSITY OF OREGON

- Idea
 - Automatic search for patterns of inefficient behavior
 - Classification of behavior & quantification of significance

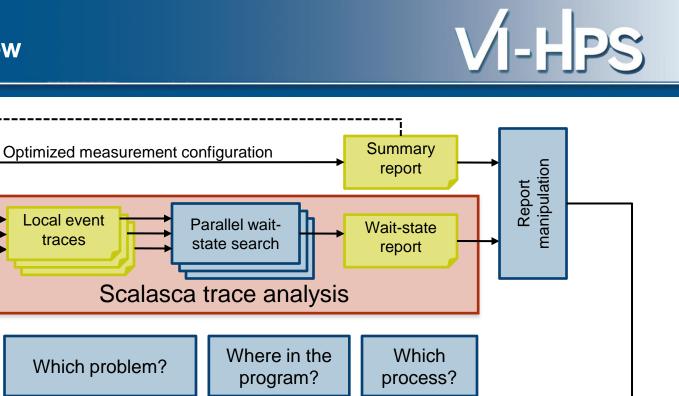
- Guaranteed to cover the entire event trace
- Quicker than manual/visual trace analysis
- Parallel replay analysis exploits available memory & processors to deliver scalability

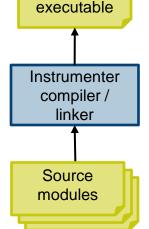
- Project started in 2006
 - Follow-up to pioneering KOJAK project (started 1998)
- Joint development of
 - Jülich Supercomputing Centre
 - German Research School for Simulation Sciences

- Development of a scalable performance analysis toolset for most popular parallel programming paradigms
- Specifically targeting large-scale parallel applications
 - such as those running on IBM BlueGene or Cray XT systems with one million or more processes/threads
- Latest release:
 - Scalasca v2.1 (August 2014)

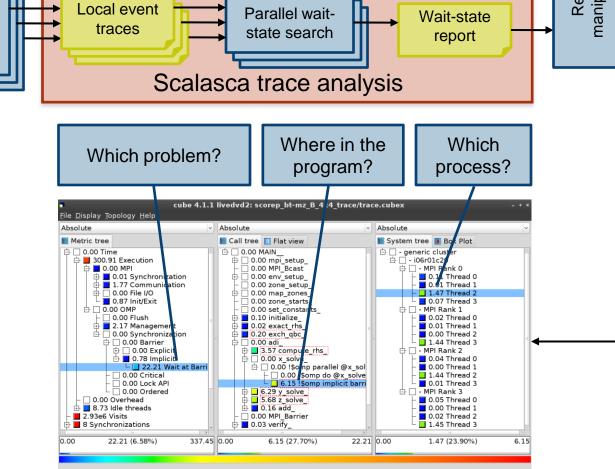
- Open source, BSD 3-clause license
- Fairly portable
 - IBM Blue Gene, IBM SP & blade clusters, Cray XT/XE/XK/XC, SGI Altix, Solaris & Linux clusters, Fujitsu FX10 & K computer, ...
- Uses Score-P instrumenter & measurement libraries
 - Scalasca 2.1 core package focuses on trace-based analyses
 - Supports common data formats
 - Reads event traces in OTF2 format
 - Writes analysis reports in CUBE4 format
- Current limitations:
 - No support for nested OpenMP parallelism and tasking
 - Unable to handle OTF2 traces containing CUDA events

Scalasca workflow

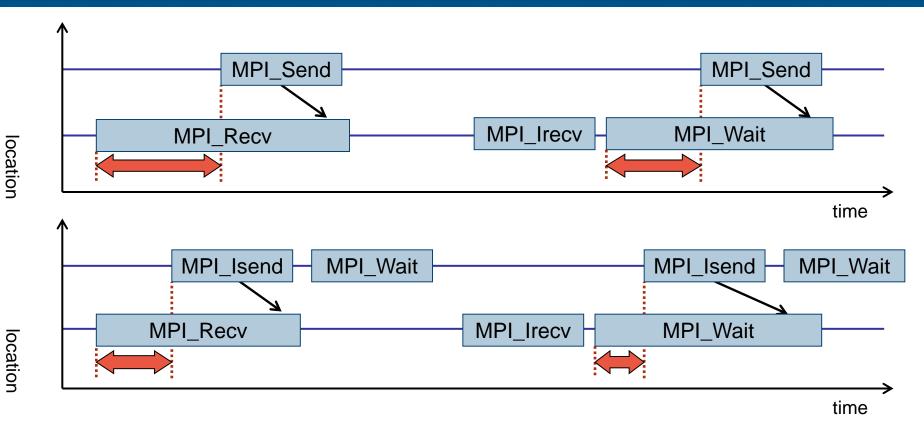

Measurement


HWC

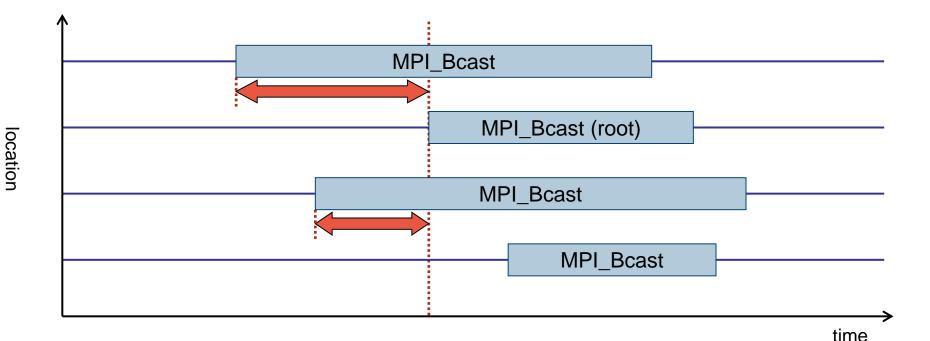
library


Instr.

target application


Instrumented

SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering


Example: Late Sender

- Waiting time caused by a blocking receive operation posted earlier than the corresponding send
- Applies to blocking as well as non-blocking communication

Example: Late Broadcast

 Waiting times if the destination processes of a collective 1-to-N operation enter the operation earlier than the source process (root)

• Applies to: MPI_Bcast, MPI_Scatter, MPI_Scatterv

Hands-on exercise: NPB-MZ-MPI / BT

scalasca 🗖

• One command for (almost) everything...

```
<sup>8</sup> scalasca
Scalasca 2.1
Toolset for scalable performance analysis of large-scale applications
usage: scalasca [OPTION]... ACTION <argument>...
    1. prepare application objects and executable for measurement:
       scalasca -instrument <compile-or-link-command> # skin (using scorep)
    2. run application under control of measurement system:
       scalasca -analyze <application-launch-command> # scan
    3. interactively explore measurement analysis report:
       scalasca -examine <experiment-archive|report> # square
   -c, --show-config show configuration and exit
   -h, --help
                      show this help and exit
   -n, --dry-run
                      show actions without taking them
       --quickref
                      show quick reference quide and exit
   -v, --verbose
                      enable verbose commentary
   -V, --version
                      show version information and exit
```

Scalasca application instrumenter

```
% skin
Scalasca 2.1: application instrumenter using scorep
usage: skin [-v] [-comp] [-pdt] [-pomp] [-user] <compile-or-link-cmd>
-comp={all|none|...}: routines to be instrumented by compiler
        (... custom instrumentation specification for compiler)
        -pdt: process source files with PDT instrumenter
        -pomp: process source files for POMP directives
        -user: enable EPIK user instrumentation API macros in source code
        -v: enable verbose commentary when instrumenting
        --*: options to pass to Score-P instrumenter
```

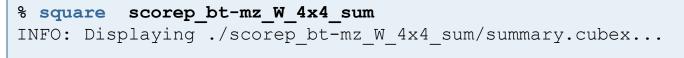
- Deprecated command
 - Provides compatibility with Scalasca 1.x
 - Prints corresponding Score-P instrumenter command
 - Helps in transitioning existing configurations
- Recommended: use Score-P instrumenter directly

VI-H

° scan							
Scalasca 2.1: measurement collection & analysis nexus							
usage: scan {options} [launchcmd [launchargs]] target [targetargs]							
where {options} may include:							
-h Help: show this brief usage message and exit.							
-v Verbose: increase verbosity.							
-n Preview: show command(s) to be launched but don't execute.							
-q Quiescent: execution with neither summarization nor tracing.							
-s Summary: enable runtime summarization. [Default]							
-t Tracing: enable trace collection and analysis.							
-a Analyze: skip measurement to (re-)analyze an existing trace.							
-e exptdir : Experiment archive to generate and/or analyze.							
(overrides default experiment archive title)							
-f filtfile : File specifying measurement filter.							
-l lockfile : File that blocks start of measurement.							

- scan configures Score-P measurement by setting some environment variables automatically
 - e.g., experiment title, profiling/tracing mode, filter file, ...
 - Precedence order:
 - Command-line arguments
 - Environment variables already set
 - Automatically determined values
- Also, scan includes consistency checks and prevents corrupting existing experiment directories
- For tracing experiments, after trace collection completes then automatic parallel trace analysis is initiated
 - uses identical launch configuration to that used for measurement (i.e., the same allocated compute resources)

• Run the application using the Scalasca measurement collection & analysis nexus prefixed to launch command


```
% export SCOREP EXPERIMENT DIRECTORY=scorep bt-mz W 4x4 sum
% OMP NUM THREADS=4 scan mpiexec -np 4 ./bt-mz W.4
S=C=A=N: Scalasca 2.1 runtime summarization
S=C=A=N: ./scorep bt-mz W 4x4 sum experiment archive
S=C=A=N: Thu Jun 12 18:05:17 2014: Collect start
mpiexec -np 4 ./bt-mz W.4
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 8 x 8
Iterations: 200 dt: 0.000300
Number of active processes:
                                 4
 [... More application output ...]
S=C=A=N: Thu Jun 12 18:05:39 2014: Collect done (status=0) 22s
S=C=A=N: ./scorep bt-mz W 4x4 sum complete.
```

Creates experiment directory ./scorep_bt-mz_W_4x4_sum

• Score summary analysis report

```
% square -s scorep_bt-mz_W_4x4_sum
INFO: Post-processing runtime summarization result...
INFO: Score report written to ./scorep_bt-mz_W_4x4_sum/scorep.score
```

Post-processing and interactive exploration with CUBE

[GUI showing summary analysis report]

 The post-processing derives additional metrics and generates a structured metric hierarchy

Post-processed summary analysis report

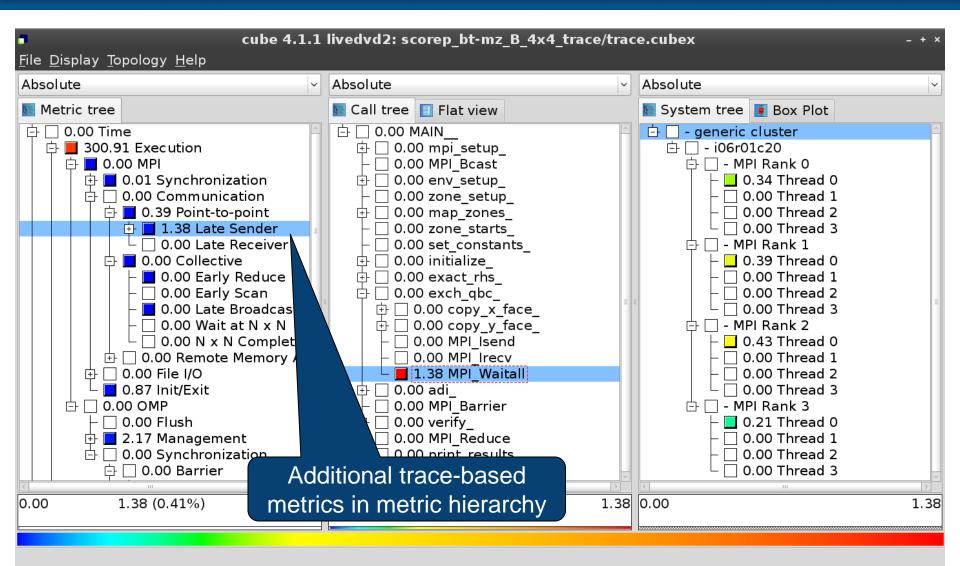
- 1. Reference preparation for validation
- 2. Program instrumentation
- 3. Summary measurement collection
- 4. Summary analysis report examination
- 5. Summary experiment scoring
- 6. Summary measurement collection with filtering
- 7. Filtered summary analysis report examination
- 8. Event trace collection
- 9. Event trace examination & analysis

• Re-run the application using Scalasca nexus with "-t" flag

```
% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_trace
% OMP_NUM_THREADS=4 scan -t mpiexec -np 4 ./bt-mz_W.4
S=C=A=N: Scalasca 2.1 trace collection and analysis
S=C=A=N: Scalasca 2.1 trace collection and analysis
S=C=A=N: ./scorep_bt-mz_W_4x4_trace experiment archive
S=C=A=N: Thu Jun 12 18:05:39 2014: Collect start
mpiexec -np 4 ./bt-mz_B.4
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 8 x 8
Iterations: 200 dt: 0.000300
Number of active processes: 4
[... More application output ...]
S=C=A=N: Thu Jun 12 18:05:58 2014: Collect done (status=0) 19s
[... continued ...]
```

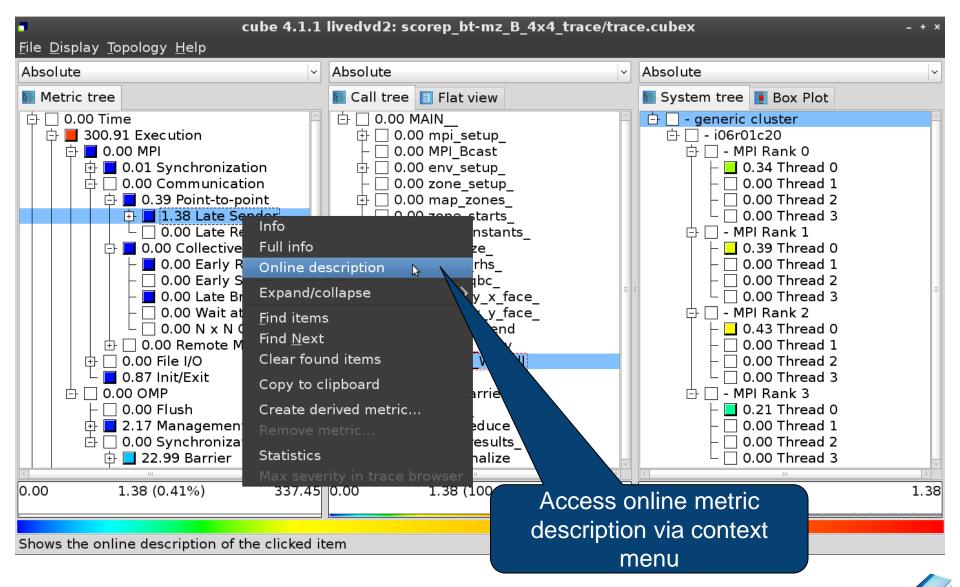
• Continues with automatic (parallel) analysis of trace files

```
S=C=A=N: Thu Jun 12 18:05:58 2014: Analyze start
mpiexec -np 4 scout.hyb ./scorep bt-mz W 4x4 trace/traces.otf2
SCOUT Copyright (c) 1998-2012 Forschungszentrum Juelich GmbH
       Copyright (c) 2009-2012 German Research School for Simulation
                              Sciences GmbH
Analyzing experiment archive ./scorep bt-mz W 4x4 trace/traces.otf2
Opening experiment archive ... done (0.002s).
Reading definition data ... done (0.004s).
Reading event trace data ... done (0.130s).
              ... done (0.259s).
Preprocessing
Analyzing trace data ...
  Wait-state detection (fwd) (1/4) ... done (0.575s).
  Wait-state detection (bwd) (2/4) ... done (0.138s).
  Synchpoint exchange
                             (3/4) ... done (0.358s).
  Critical-path analysis (4/4) ... done (0.288s).
done (1.360s).
Writing analysis report ... done (0.121s).
Total processing time : 1.924s
S=C=A=N: Thu Jun 12 18:06:00 2014: Analyze done (status=0) 2s
```



 Produces trace analysis report in experiment directory containing trace-based wait-state metrics

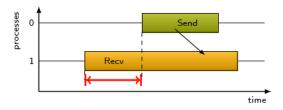
```
% square scorep_bt-mz_W_4x4_trace
INFO: Post-processing runtime summarization result...
INFO: Post-processing trace analysis report...
INFO: Displaying ./scorep_bt-mz_W_4x4_trace/trace.cubex...
```

[GUI showing trace analysis report]


Post-processed trace analysis report

Online metric description

Online metric description


VI-H

Performance properties

Late Sender Time

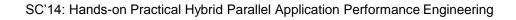
Description:

Refers to the time lost waiting caused by a blocking receive operation (e.g., MPI Recv or MPI Wait) that is posted earlier than the corresponding send operation.

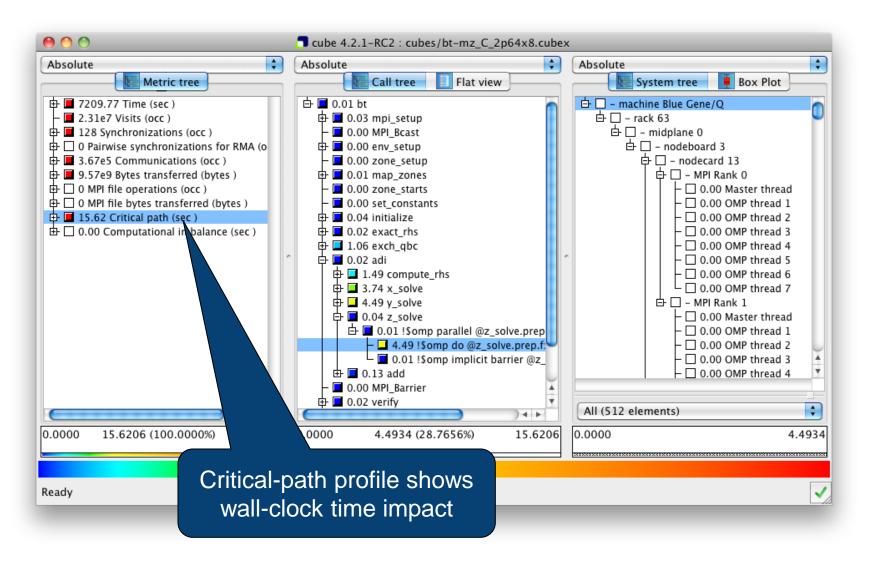
If the receiving process is waiting for multiple messages to arrive (e.g., in an call to MPI Waitall), the maximum waiting time is accounted, i.e., the waiting time due to the latest sender.

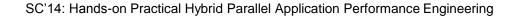
Unit:

Seconds

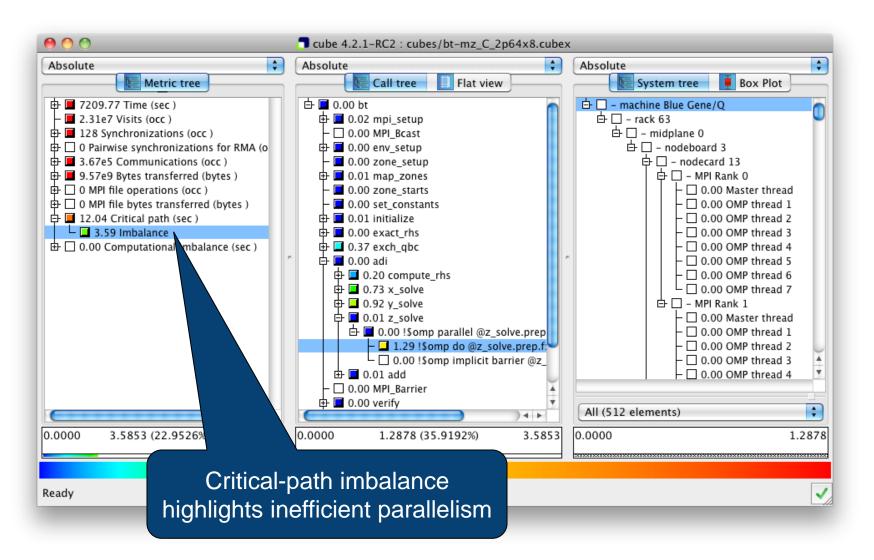

Diagnosis:

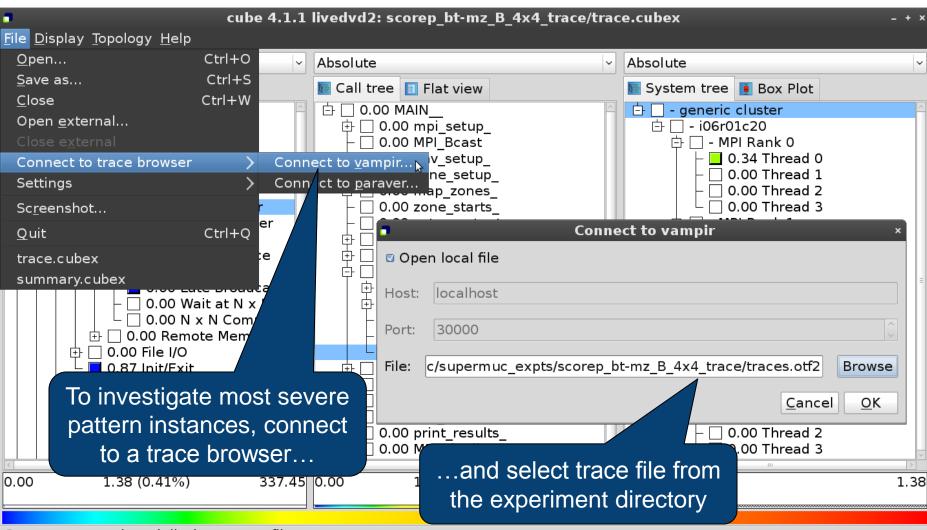
Try to replace MPI Recv with a non-blocking receive MPI Irecv that can be posted earlier, proceed concurrently with computation, and complete with a wait operation after the message is expected to have been sent. Try to post sends earlier, such that they are available when receivers need them. Note that outstanding messages (i.e., sent before the receiver is ready) will occupy internal message buffers, and that large numbers of posted receive buffers will also introduce message management overhead, therefore moderation is advisable.


Parent:

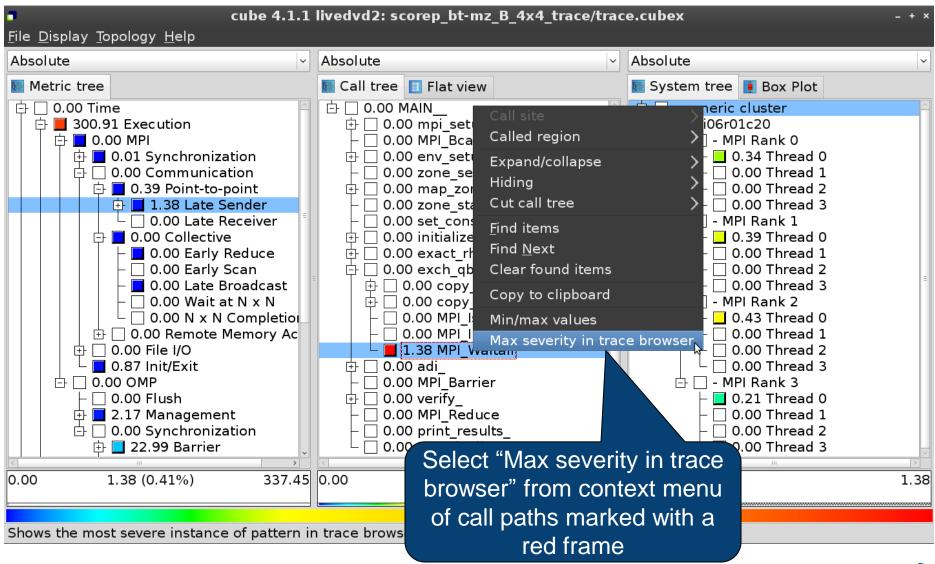

MPI Point-to-point Communication Time Children:

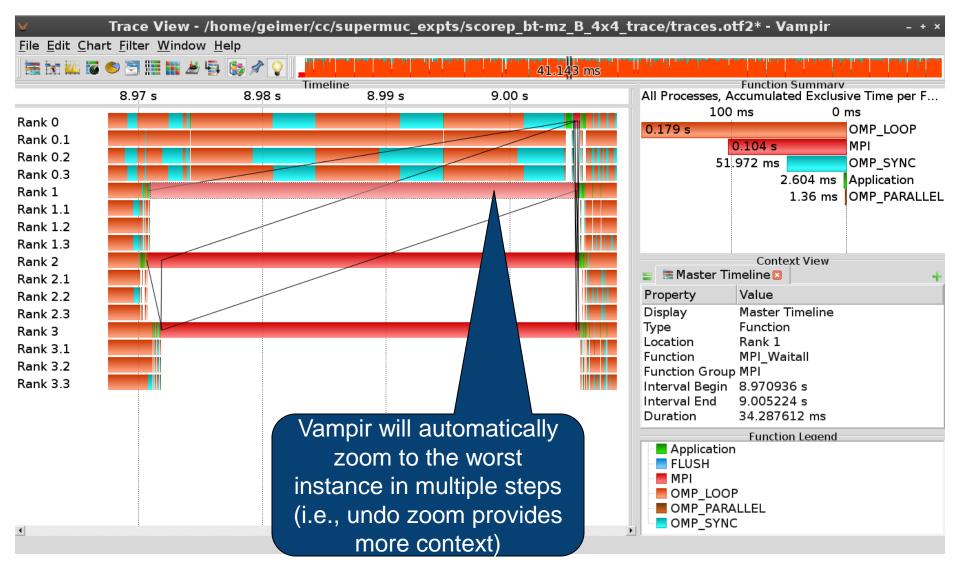
Close




Pattern instance statistics

•	cube 4.1.1 liv	vedvd2: scorep_b	t-mz_B_4x4_trace/t	race.cubex		- + ×
<u>F</u> ile <u>D</u> isplay <u>T</u> opology <u>H</u> elp						
Absolute	~ A	bsolute		 Absolute 		~
📕 Metric tree	D:	🛾 Call tree 🔲 Fla	Statistics info ×	Stat	istics info	×
Image: Construction Image: Construction Image: Constrediate construction Image: Co	ization cation p-point		0.035 0.03 0.025 0.02 0.015 0.01 0.005 0 Close results_inalize Access patter statistics via o	Click to statistics d	•	5% 13% 100% 3% 2% 0% Close


Connect to Vampir trace browser


Connect to vampir and display a trace file

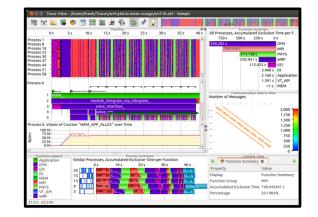
Show most severe pattern instances

Website: User support:

www.scalasca.org scalasca@fz-juelich.de

000	Scalasca	u ²¹
🔺 🕨 🖄 🖄 🕂 🗖 scalasca.or	g	C Reader
C Apple iCloud Facebook Twitter Wikip	edia Yahoo News ▼ Popular ▼	+
scalasca 🗖		Home Imprint
	ftware Team Publications Projects News Contact Scalasca Scalasca is a software tool that supports the performance optimization of parallel programs by measuring and analyzing their runtime behavior. The analysis identifies potential performance bottlenecks – in particular those concerning communication and synchronization – and offers guidance in exploring their causes.	News Scalasca 2.1 released Aug 29, 2014: The Scalasca 2.1 release is available! Scalasca is a software tool that more Scalasca at SC'13 17-22 November 2013: Join us at SC'13 in Denver, CO, USA. Scalasca team members more

SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering


Performance Analysis with Vampir

Bert Wesarg, Andreas Knüpfer ZIH, Technische Universität Dresden

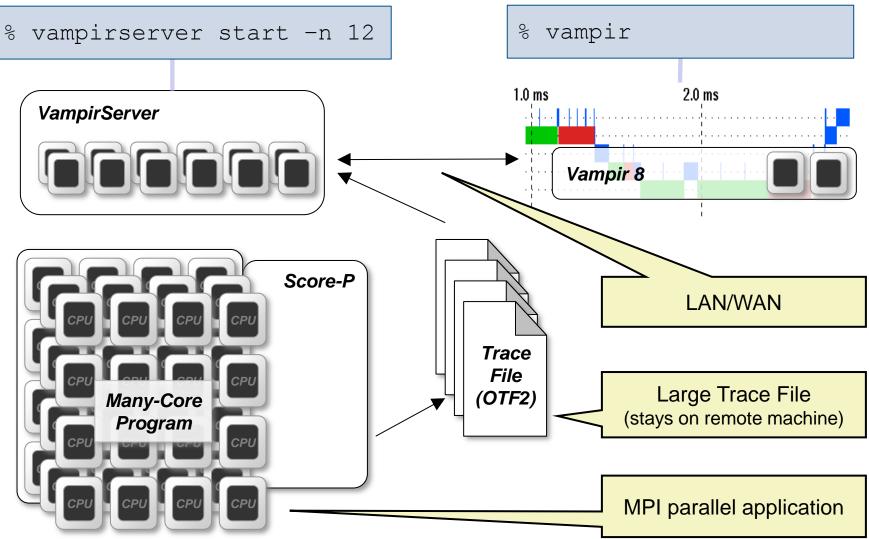
Mission

- Visualization of dynamics
 of complex parallel processes
- Full details for arbitrary temporal and spatial levels
- Supplement to automatic analysis


Typical questions that Vampir helps to answer:

- What happens in my application execution during a given time in a given process or thread?
- How do the communication patterns of my application execute on a real system?
- Are there any imbalances in computation, I/O or memory usage and how do they affect the parallel execution of my application?

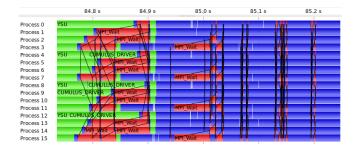
Vampir – Visualization Modes (1)

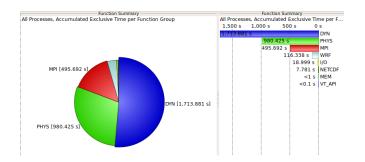

• Directly on front end or local machine

% vampir

Vampir – Visualization Modes (2)

On local machine with remote VampirServer


SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering


- Vampir & VampirServer
 - Interactive trace visualization and analysis
 - Intuitive browsing and zooming
 - Scalable to large trace data sizes (20 TByte)
 - Scalable to high parallelism (200000 processes)
- Vampir is available for Linux, Windows and Mac OS X

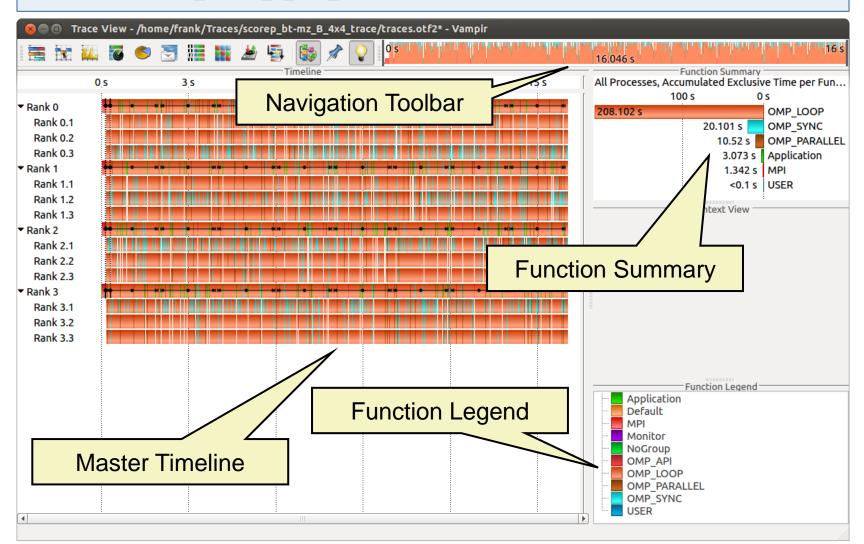
The Main Displays of Vampir

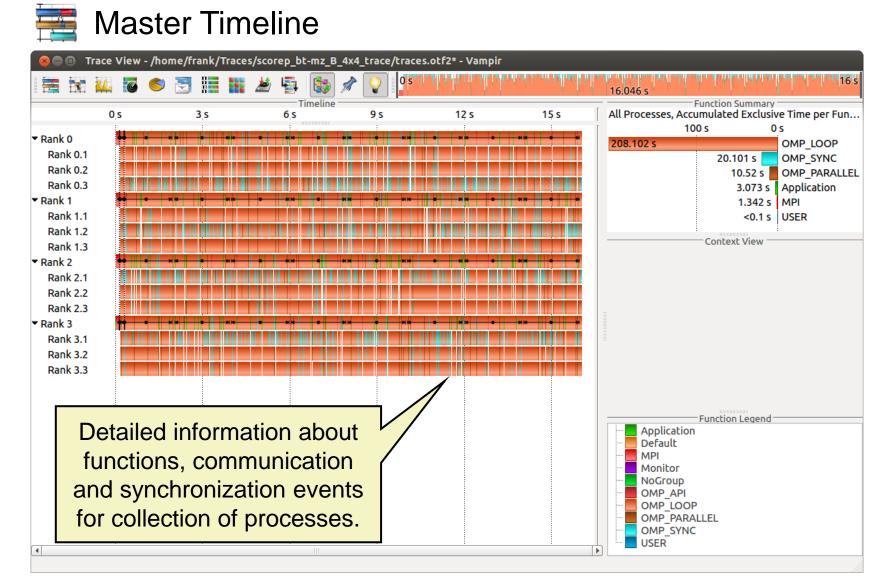
- Timeline Charts:
 - 🚟 Master Timeline
 - Process Timeline
 - Lounter Data Timeline
 - Performance Radar
- Summary Charts:
 - Summary
 - 📑 Message Summary
 - Process Summary
 - Communication Matrix View

Show application activities and communication along a time axis

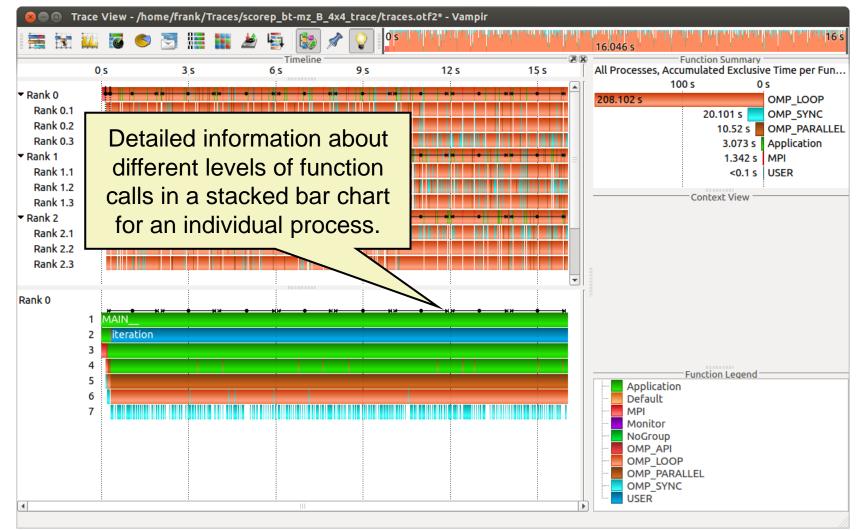
Provide quantitative results for the currently selected time interval

Vampir hands-on

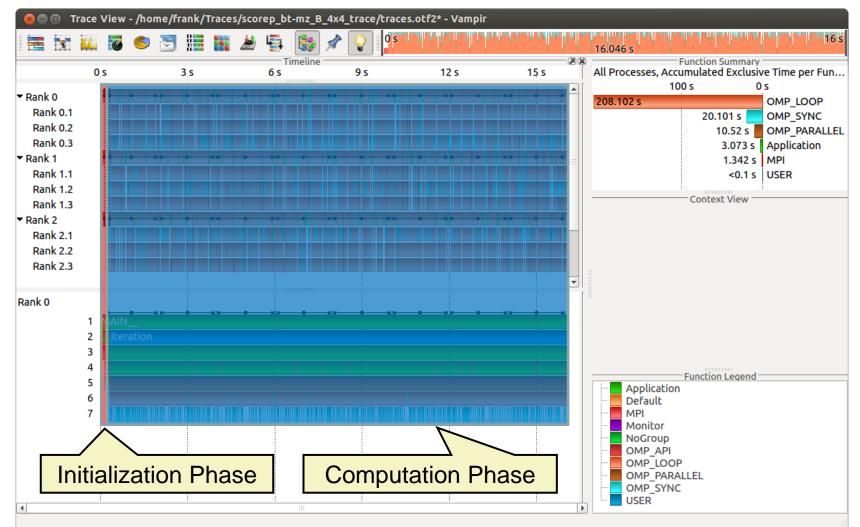

Visualizing and analyzing NPB-MZ-MPI / BT


- 1. Reference preparation for validation
- 2. Program instrumentation
- 3. Summary measurement collection
- 4. Summary analysis report examination
- 5. Summary experiment scoring
- 6. Summary measurement collection with filtering
- 7. Filtered summary analysis report examination
- 8. Event trace collection
- 9. Event trace examination & analysis

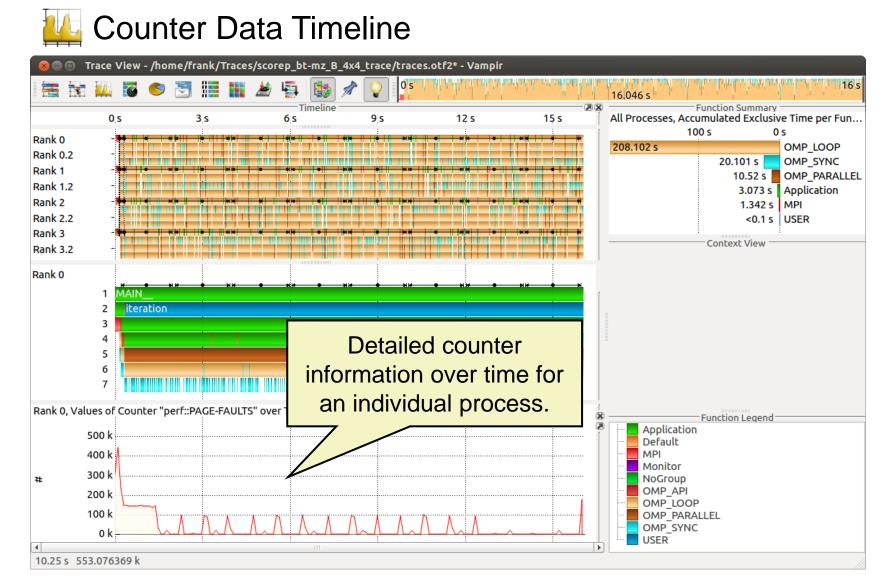
% vampir scorep_bt-mz_B_4x4_trace


SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

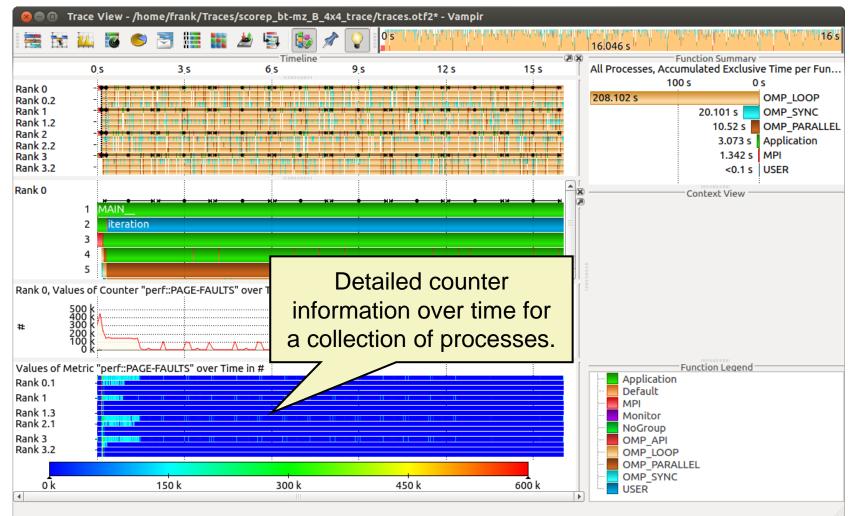
VI-H



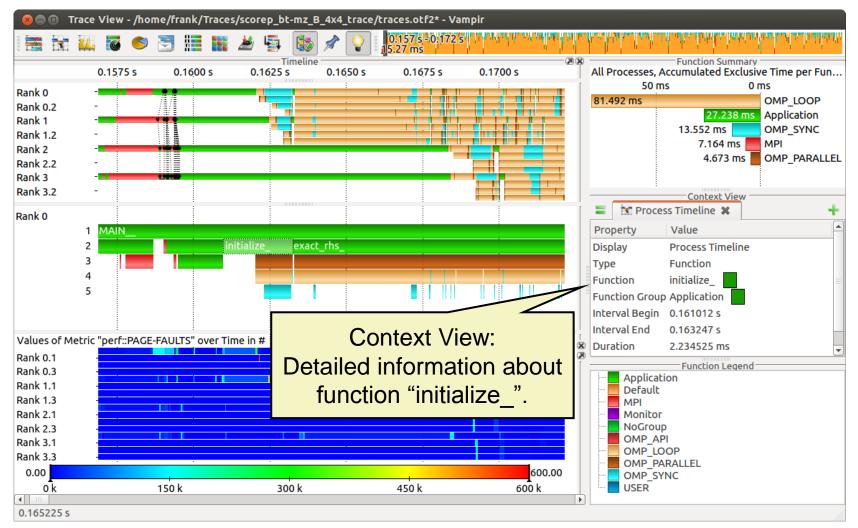
- + PS


😴 Process Timeline

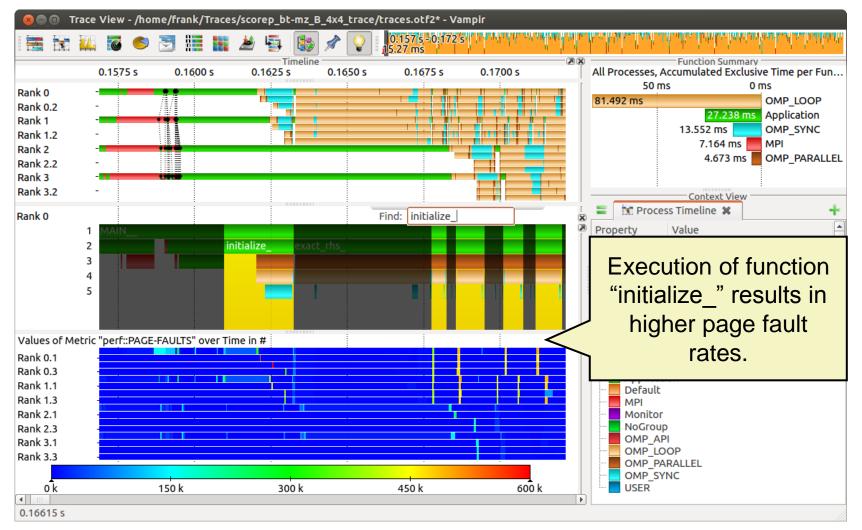
Typical program phases

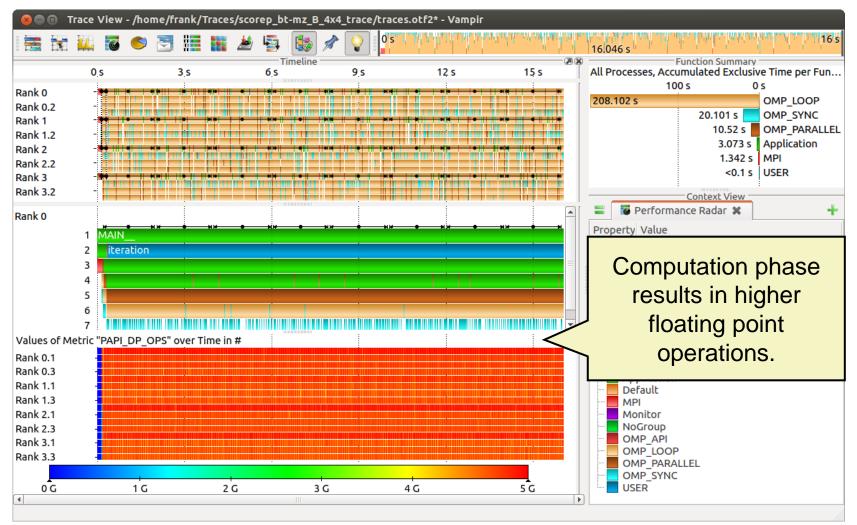


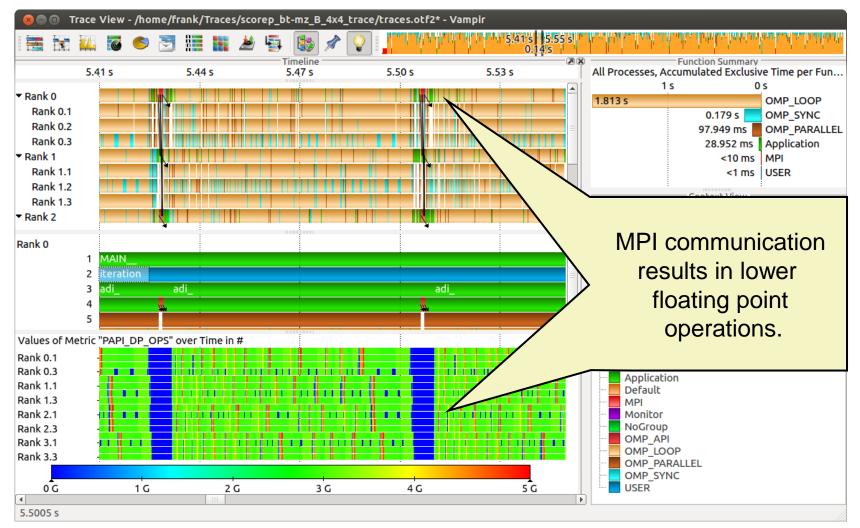
1-PS



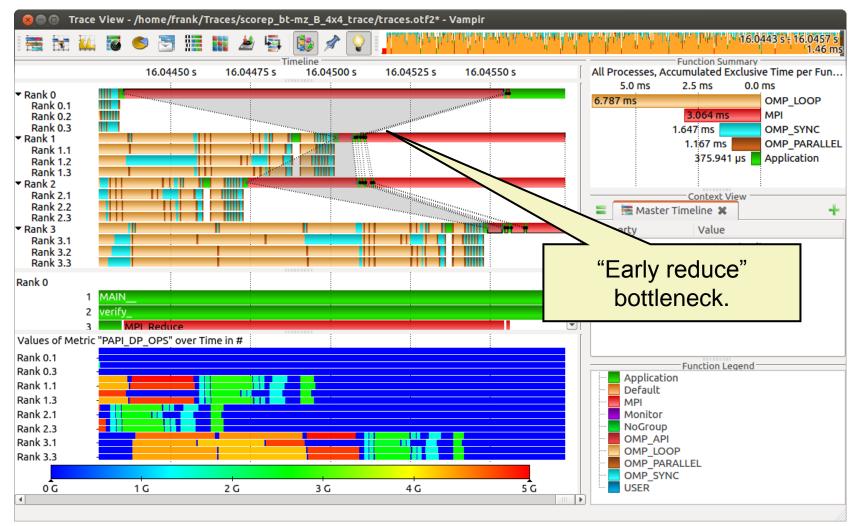
SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering




Zoom in: Initialization Phase


Feature: Find Function

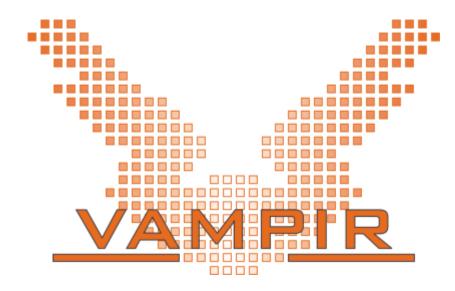
Computation Phase



Zoom in: Computation Phase

SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Zoom in: Finalization Phase


Process Summary

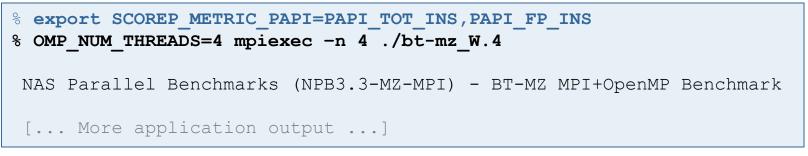
😣 🗐 🗊 Trace View	- /home/frank/1	Traces/scorep_bt	-mz_B_4x4_trac	e/traces.otf2* - Vamp	ir					
🗮 🔛 🔛 🐻	≤ 📑 🔚	🏭 🛎 <table-of-contents></table-of-contents>	🔯 🖈 💡	OSTRUCTURE		16.046 s	di kudu ni jan dahiri di ku	16.s		
Timeline - 0.s	All			Time per Function	Function Summa		_			
▼ Rank 0	58	50 s .583 s	40 s	30 s	20 s	10 s	0 s !\$omp do @y_so	olve.f:52		
Rank 0.1		57.131 s 56.199 s					\$000 !\$000 !\$000 !\$000 !\$000 !\$000 !\$			
							5.594 s !\$omp do @rhs.	.f:191		
Function Summary: Process Summary:										
Ove	Overview of the Overview									
accumu	accumulated information						ted informa	ition		
across a	actions and for ated Exclusive Time per Function					unctions ar	ctions and for			
a collection of processes.										
			e.f:52	!\$omp do @x_s	e.r:5	ery proce	ss muepend			
Rank 2.1	Rar	nk 1 l\$omp do	@y_solve.f:52	omp doolve.f:54 <mark>!\$00</mark> !\$omp do @x_solv	e.f:54 !\$ o	mp do @z_solve.f:52		Others		
Rank 2.2			@y_solve.f:52 olve.f:52	\$000 \$150 \$150 \$150 \$150 \$150 \$150 \$150		mp do @z_solve.f:5 e.f:52		Others Others		
Rank 2.3		· · · ·	@y_solve.f:52 @y_solve.f:52	!\$omp do @x_solv !\$omp do @x_solv		mp do @z_solve.f:5 mp do @z_solve.f:52		Others Others		
▼ Rank 3	Rar	nk 2.1 !\$omp do	olve.f:52 !\$0	omp doolve.f:54 !\$o	mp do @z_solv	e.f:52	5 <u>!</u> \$07	Others		
Rank 3.1	Rar	nk 2.3 !\$omp do	@y_solve.f:52 @y_solve.f:52	\$000 !\$000 !\$000 !\$000 !\$000 !\$!\$000 do @x_solv!	e.f:54 !\$ o	mp do @z_solve.f:52 mp do @z_solve.f:52	2	Others Others		
Rank 3.2		<u> </u>	@y_solve.f:52	\$000 \$200 \$200 \$200 \$200 \$200 \$200 \$200		mp do @z_solve.f:52		Others Others		
Rank 3.3		nk 3.2 I\$omp do	@y_solve.f:52 @y_solve.f:52	!\$omp do @x_solv !\$omp do @x_solv	e.f:54 !\$ o	mp do @z_solve.f:5 mp do @z_solve.f:5	2	Others Others		
		in 5.5 iSomb do	wy_solve.1.52	somp do @x_som	C.1.54 15C	mp do @2_30tve.1.5		others		
4.025 s										

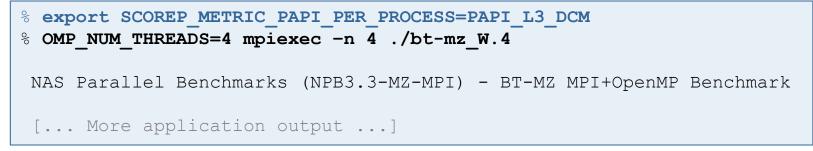
Process Summary

800 T	race View - /home/fi	rank/Traces/s	scorep_bt	:-mz_B_4	x4_trac	e/traces.otf2*	- Vampir						
📰 🔛	🟭 🐻 🥌 🗮		🛃 🛓	1	e 🖉	0 sm 1 m	ta Maria Marak	hP b	ll de la la	16.046 s	h dic'h		16's
	Timeline 0 s	All Process	es. Accum	nulated E	xclusive	Time per Func		n Summ	nary ———				
		· 	50 s		40 s	30 :		20 s		10 s	0	s	_
Rank 0		58.583 s										!\$omp do @y_sol	
Rank 0.1		57.131 s 56.199										!\$omp do @x_sol !\$omp do @z_sol	
Rank 0.2											5.594 s	!\$omp do @rhs.f:	
											5.391 s 4.83 s	!\$omp do @rhs.f: !\$omp do @rhs.f:	
Rank 0.3										4.323		!\$omp impliciy	
▼ Rank 1										4.287	s	!\$omp implicix_	solve.f:407
Rank 1.1					cess Sum			s —			Process S	Summary	•
Rank 1.2			Processes s	, Accumu 5		clusive Time po 10 s	er Function 15 s	Simi	lar Proces 0 s	sses, Accum	nulated Ex 5 s	clusive Time per F 10 s	unction 15 s
		Rank 0	!\$omp		-	!\$omf:52	Others	12		omf:52		4 !\$omf:52	Others
Rank 1.3		Rank 0.1	!\$omp				0s	4	!\$0	o:52 <mark>!\$o</mark>	:54 <mark>!\$</mark> c	o:52	Os
🕶 Rank 2		Rank 0.2 Rank 0.3	!\$omp !\$o:52			!\$omf:52	0s						
Rank 2.1		Rank 1	!\$omp	f:52 !\$or	nf:54	!\$omf:52	Others						
Rank 2.2			!\$omp !\$o:52		-	4 !\$omf:52	0s	=					
Rdnk 2.2						4 !\$omf:52	05			Fin	dar	oups of s	imilar
Rank 2.3		Rank 2	!\$omp	f:52 !\$on	nf:54	!\$omf:52	Others				U	•	
▼ Rank 3		Rank 2.1 Rank 2.2	!\$o:52 !\$omp		4 <u>!</u> \$o	.:52 !\$omf:52	0s				proc	esses a	nd
Rank 3.1		Rank 2.3	!\$omp			!\$omf:52	0s			t	hrea	ds by us	ina
		Rank 3 Rank 3.1	!\$omp				Others						U
Rank 3.2			!\$o:52 !\$omp			4 !\$omf:52	0s			sur	nma	rized fur	nction
Rank 3.3					-	4 !\$omf:52	0s				inf	ormation	
	111	•											

Vampir is available at http://www.vampir.eu, Get support via vampirsupport@zih.tu-dresden.de

Hardware performance/soft counter measurements hands-on


VI-HPS Team


- If Score-P has been built with performance metric support it is capable of recording performance counter information
- Requested counters will be recorded with every enter/exit event
- Supported metric sources
 - PAPI
 - Resource usage statistics
 - Custom written metric plug-ins

Note: Additional memory is needed to store metric values. Therefore, you may have to adjust SCOREP_TOTAL_MEMORY, for example as reported using "scorep-score -c"

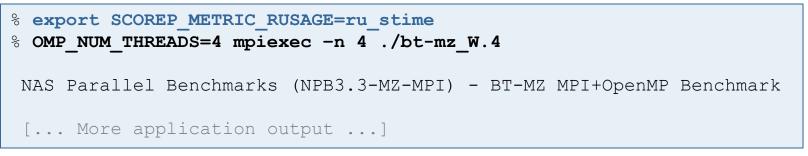
• Also possible to record them only per rank

- Preset events: common set of events deemed relevant and useful for application performance tuning
 - Abstraction from specific hardware performance counters, mapping onto available events done by PAPI internally

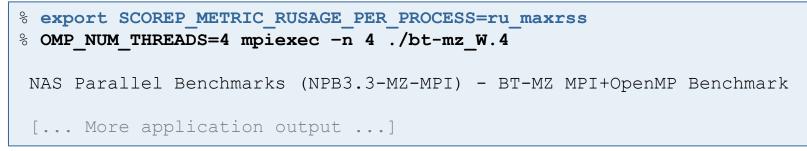
% papi_avail

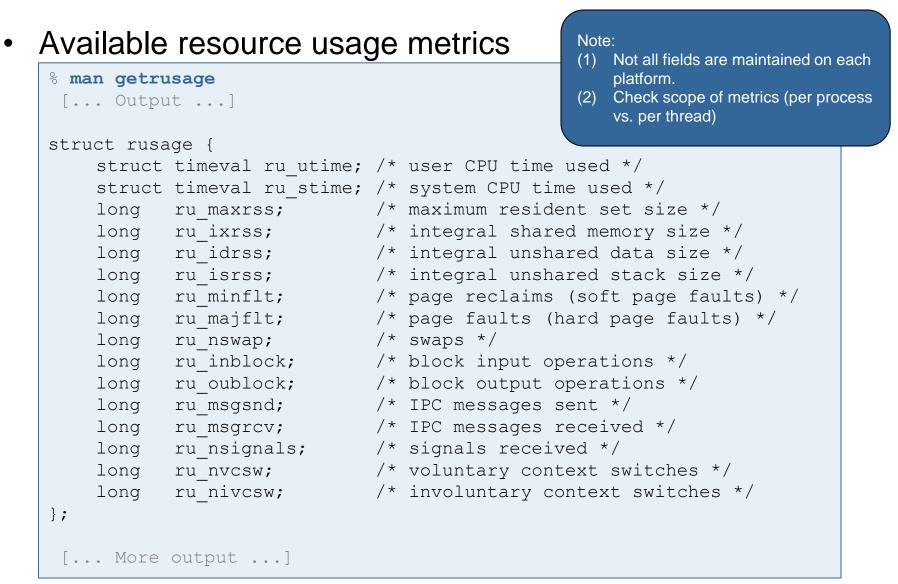
Native events: set of all events that are available on the CPU (platform dependent)

% papi_native_avail


Note:

Due to hardware restrictions


- number of concurrently measured events is limited
- there may be unsupported combinations of concurrent events
- Use papi_event_chooser tool to test event combinations



Recording operating system resource usage

• Also possible to record them only per rank

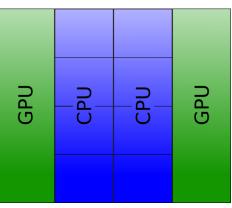
Score-P Hands-On CUDA: Jacobi example

Jacobi Solver

- Jacobi Example
 - Iterative solver for system of equations

 $U_{old} = U$ $u_{i,j} = b u_{old,i,j} + a_x (u_{old,i-1,j} + u_{old,i+1,j}) + a_y (u_{old,i,j-1} + u_{old,i,j+1}) - rHs/b$

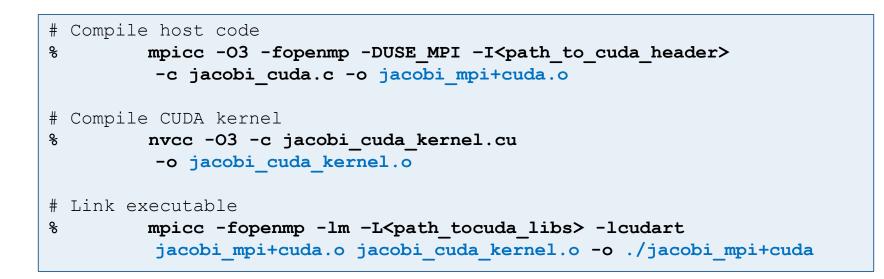
- Code uses OpenMP, CUDA and MPI for parallelization
- Domain decomposition
 - Halo exchange at boundaries:
 - Via MPI between processes
 - Via CUDA between hosts and accelerators


U_{i-1,j}U_{i,j}U_{i+1,j} U_{i,j+1}

MPI

Process 2

U_{i,j-1}



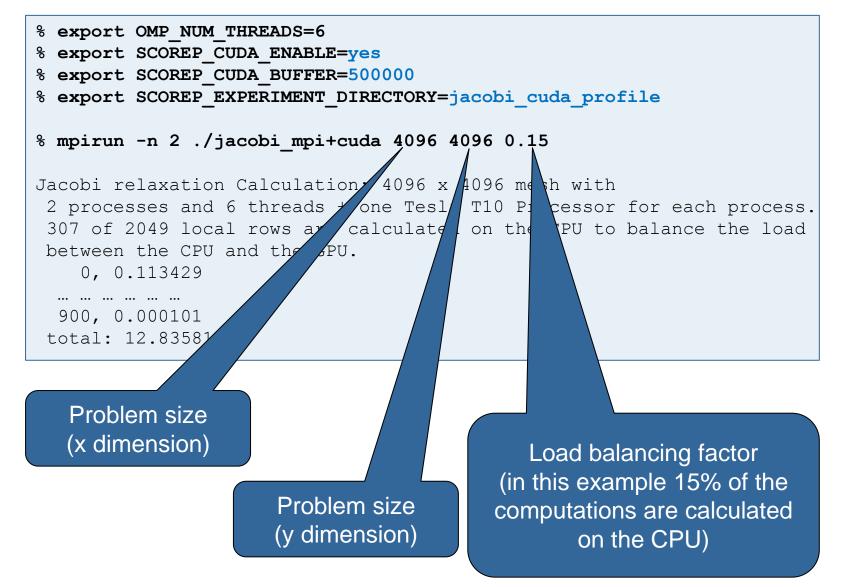
MPI

Process 1


```
# Compile host code
% scorep mpicc -O3 -fopenmp -DUSE_MPI -I<path_to_cuda_header>
        -c jacobi_cuda.c -o jacobi_mpi+cuda.o
# Compile CUDA kernel
% scorep nvcc -O3 -c jacobi_cuda_kernel.cu
        -o jacobi_cuda_kernel.o
# Link executable
% scorep mpicc -fopenmp -lm -L<path_tocuda_libs> -lcudart
        jacobi_mpi+cuda.o jacobi_cuda_kernel.o -o ./jacobi_mpi+cuda
```

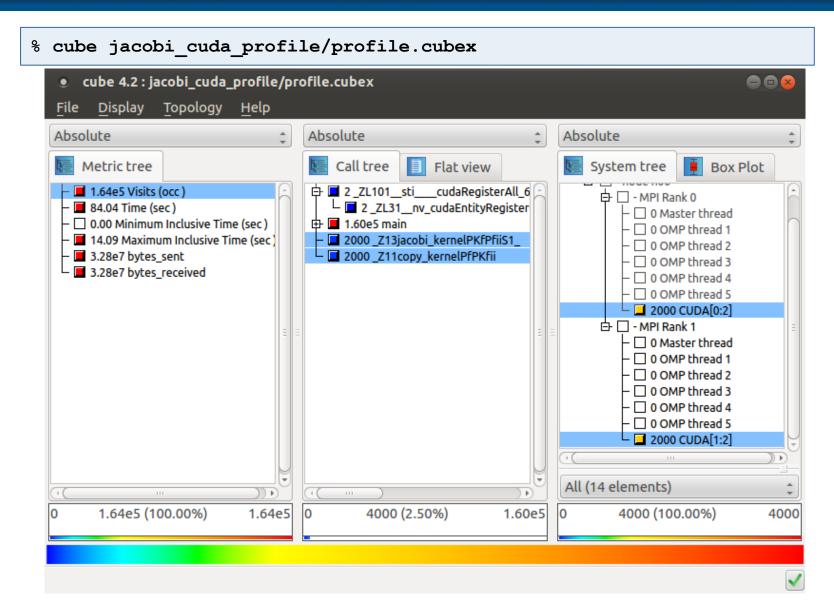
- Enable recording of CUDA events with the CUPTI interface via environment variable
 SCOREP CUDA ENABLE
- Provide a list of recording types, e.g.

% export SCOREP_CUDA_ENABLE=runtime,driver,gpu,kernel,idle


• Start with using the default configuration

% export SCOREP_CUDA_ENABLE=yes

• Adjust CUPTI buffer size (in bytes) as needed


% export SCOREP CUDA BUFFER=100000

Recording type	Remark	
yes/DEFAULT/1	"runtime, kernel, memcpy"	
no	Disable CUDA measurement (same as unset SCOREP_CUDA_ENABLE)	
runtime	CUDA runtime API	
driver	CUDA driver API	
kernel	CUDA kernels	
kernel_counter	Fixed CUDA kernel metrics	
idle	GPU compute idle time	
pure_idle	GPU idle time (memory copies are not idle)	
тетсру	CUDA memory copies	
sync	Record implicit and explicit CUDA synchronization	
gpumemusage	Record CUDA memory (de)allocations as a counter	

CUBE4 Analysis

Do we need to filter? (Overhead and memory footprint)

<pre>% scorep-score jacobi_cuda_profile/profile.cubex</pre>						
Estimated ag	gregate size of e	event trace	e (total_tbc): 3.875.472 bytes			
Estimated requirements for largest trace buffer (max tbc): 1.937.936 bytes						
(hint: When	tracing set SCORE	EP TOTAL MI	\underline{EMORY} > max tbc to avoid			
inter	mediate flushes o	or reduce :	requirements using file listing			
names	names of USR regions to be filtered.)					
	_					
flt type	max tbc	time	% region			
ALL	1937936	24.97	100.0 ALL			
OMP	1154110	18.78	75.2 OMP			
USR	667480	5.95	23.8 USR			
MPI	116192	0.14	0.5 MPI			
COM	154	0.10	0.4 COM			

Very small example => no filtering


```
% export OMP NUM THREADS=6
% export SCOREP CUDA ENABLE=yes
% export SCOREP CUDA BUFFER=500000
% export SCOREP EXPERIMENT DIRECTORY=jacobi cuda trace
% export SCOREP ENABLE PROFILING=false
% export SCOREP ENABLE TRACING=true
% mpirun -n 2 ./jacobi mpi+cuda 4096 4096 0.15
Jacobi relaxation Calculation: 4096 x 4096 mesh with
 2 processes and 6 threads + one Tesla T10 Processor for each process.
 307 of 2049 local rows are calculated on the CPU to balance the load
between the CPU and the GPU.
    0, 0.113429
  ... ... ... ... ...
 900, 0.000101
 total: 12.875220 s
```

Vampir Analysis

File

Mast...ad:0

OMP ... 1:0

OMP ... 2:0

OMP ... 3:0

OMP ... 4:0

OMP ... 5:0

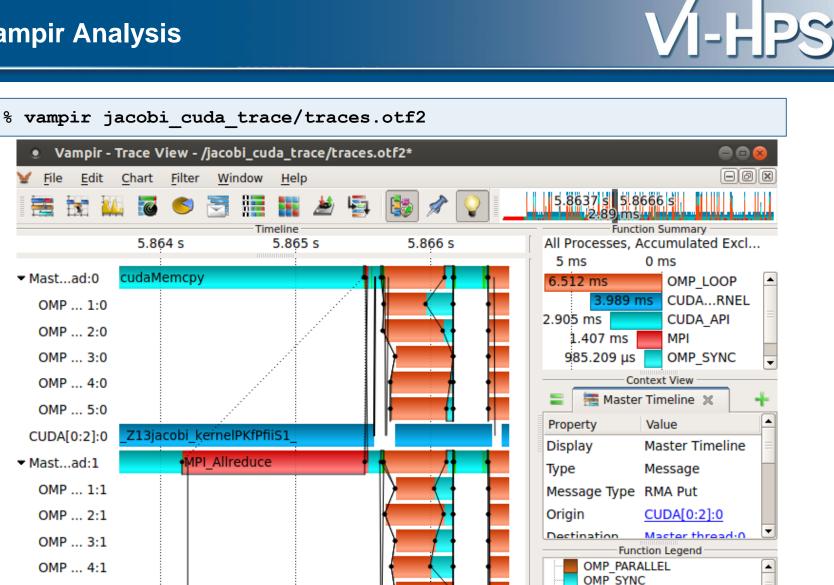
CUDA[0:2]:0

OMP ... 1:1

OMP ... 2:1

OMP ... 3:1

OMP ... 4:1

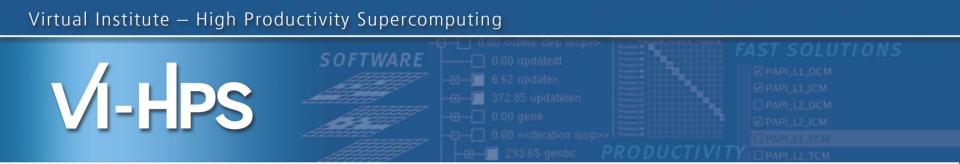

OMP ... 5:1

CUDA[1:2]:1

4

Mast...ad:1

1



OMP LOOP Application

OMP API MPI

۲

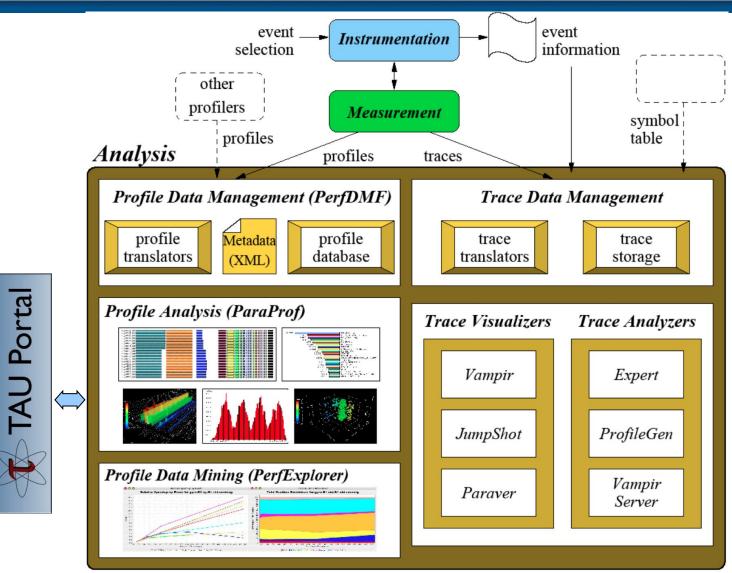
SC'13: Hands-on Practical Hybrid Parallel Application Performance Engineering

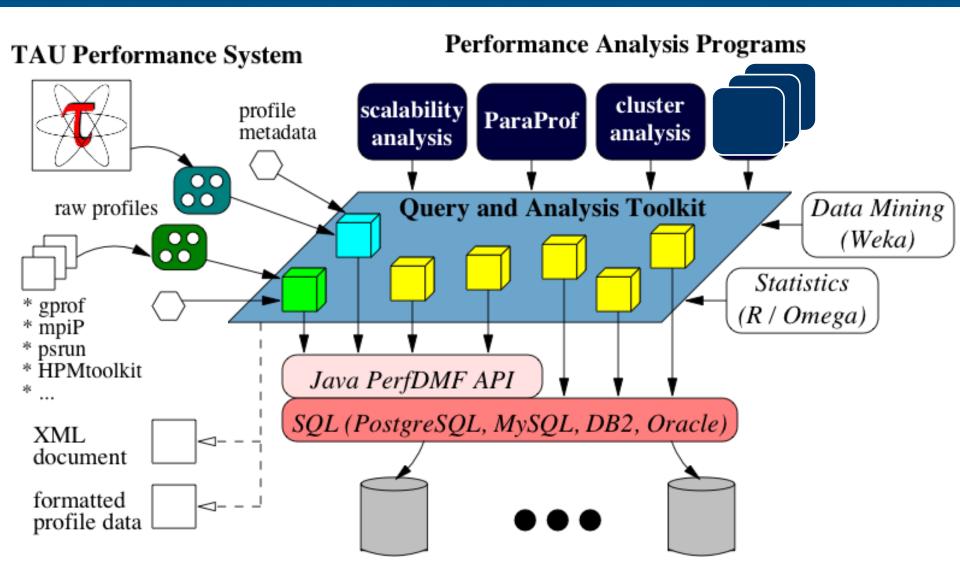
Performance Data Management with TAU PerfExplorer

Sameer Shende Performance Research Lab, University of Oregon http://TAU.uoregon.edu

UNIVERSITÄT

Lawrence Livermore National Laboratory

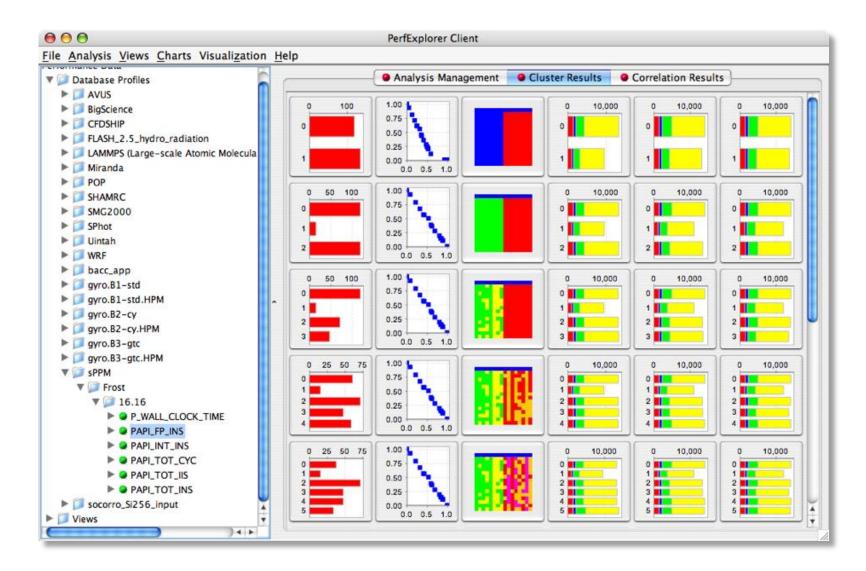




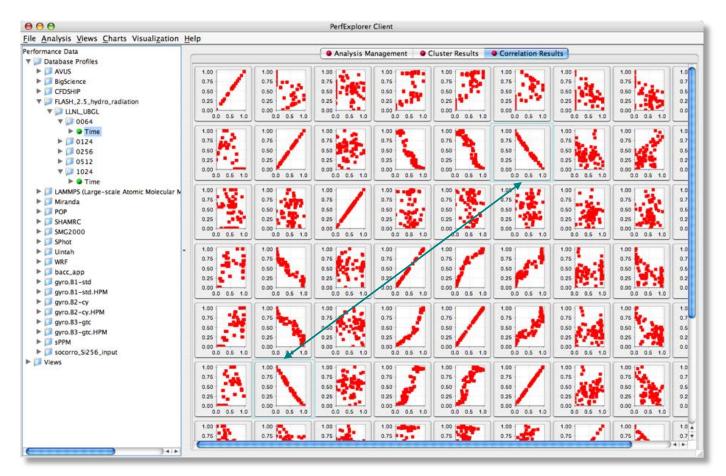
TAU Analysis

TAUdb: Performance Data Management Framework

Using TAUdb

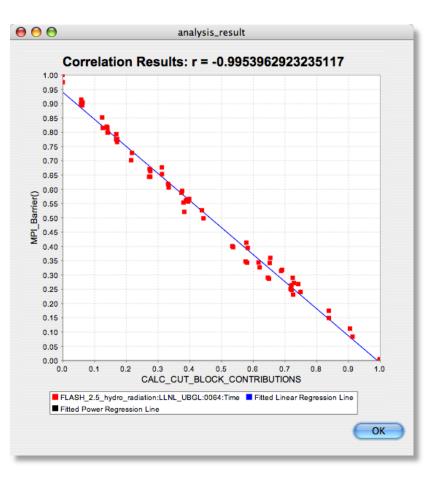


- Configure TAUdb (Done by each user)
 - % taudb_configure --create-default
 - Choose derby, PostgreSQL, MySQL, Oracle or DB2
 - Hostname
 - Username
 - Password
 - Say yes to downloading required drivers (we are not allowed to distribute these)
 - Stores parameters in your ~/.ParaProf/taudb.cfg file
- Configure PerfExplorer (Done by each user) % perfexplorer_configure
- Execute PerfExplorer
 - % perfexplorer


```
% wget http://tau.uoregon.edu/data.tgz (Contains CUBE profiles from Score-P)
% taudb configure --create-default
(Chooses derby, blank user/passwd, yes to save passwd, defaults)
% perfexplorer configure
(Yes to load schema, defaults)
% paraprof
(load each trial: DB -> Add Trial -> Type (Paraprof Packed Profile) -> OK) OR use
   taudb loadtrial -a "app" -x "experiment" -n "name" file.ppk
Then,
% tar zxf $TAU/data.tgz; cd data/tau;
% taudb loadtrial -a BT MZ -x "Class B" bt-mz B.*.ppk
% perfexplorer
(Select experiment, Menu: Charts -> Speedup)
```

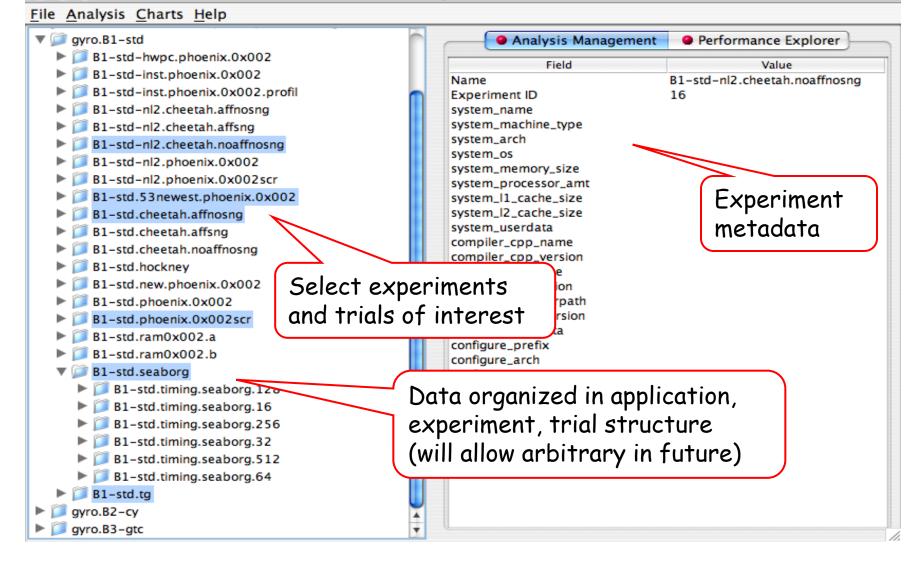
- Performance knowledge discovery framework
 - Data mining analysis applied to parallel performance data
 - comparative, clustering, correlation, dimension reduction, ...
 - Use the existing TAU infrastructure
 - TAU performance profiles, taudb
 - Client-server based system architecture
- Technology integration
 - Java API and toolkit for portability
 - taudb
 - R-project/Omegahat, Octave/Matlab statistical analysis
 - WEKA data mining package
 - JFreeChart for visualization, vector output (EPS, SVG)

- Performance data represented as vectors each dimension is the cumulative time for an event
- *k*-means: *k* random centers are selected and instances are grouped with the "closest" (Euclidean) center
- New centers are calculated and the process repeated until stabilization or max iterations
- Dimension reduction necessary for meaningful results
- Virtual topology, summaries constructed

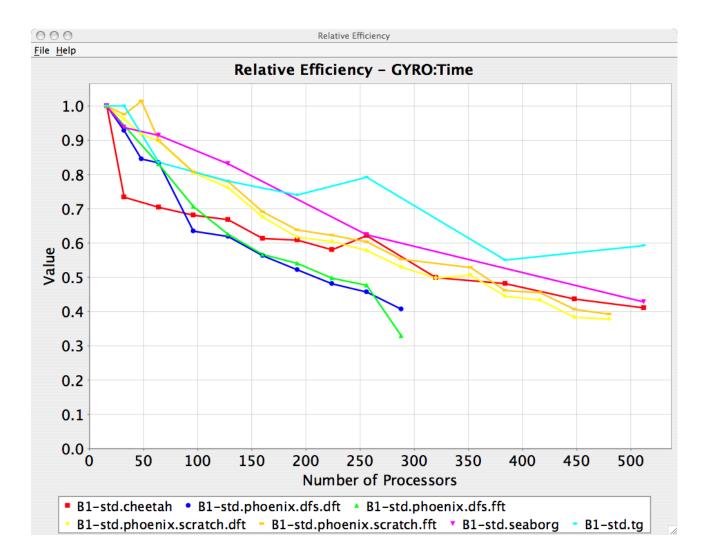


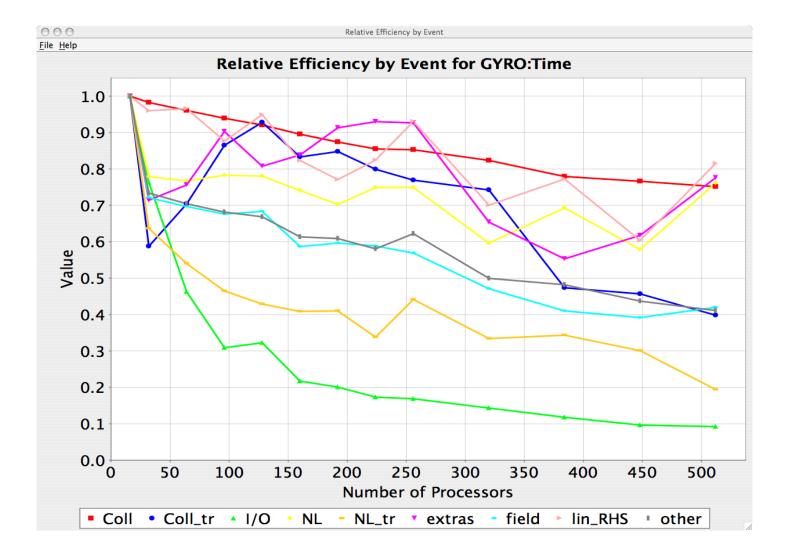
 Describes strength and direction of a linear relationship between two variables (events) in the data

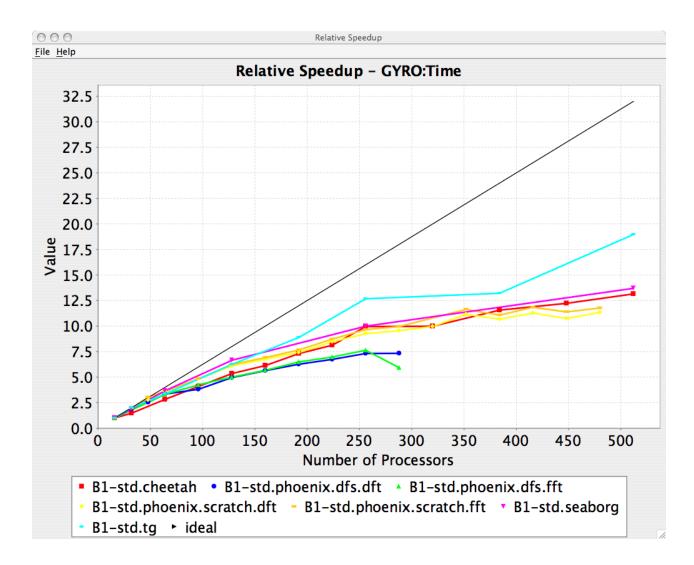
- -0.995 indicates strong, negative relationship
- As CALC_CUT_ BLOCK_CONTRIBUTIO NS() increases in execution time, MPI_Barrier() decreases

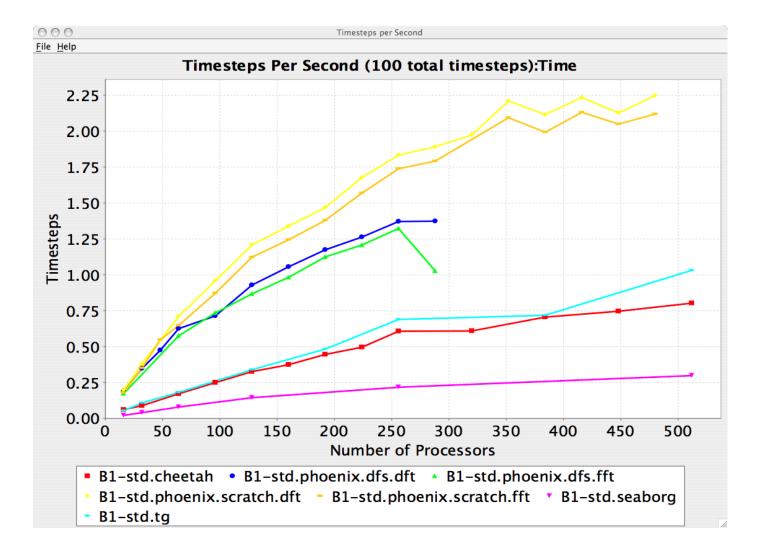


- Relative speedup, efficiency
 - total runtime, by event, one event, by phase
- Breakdown of total runtime
- Group fraction of total runtime
- Correlating events to total runtime
- Timesteps per second

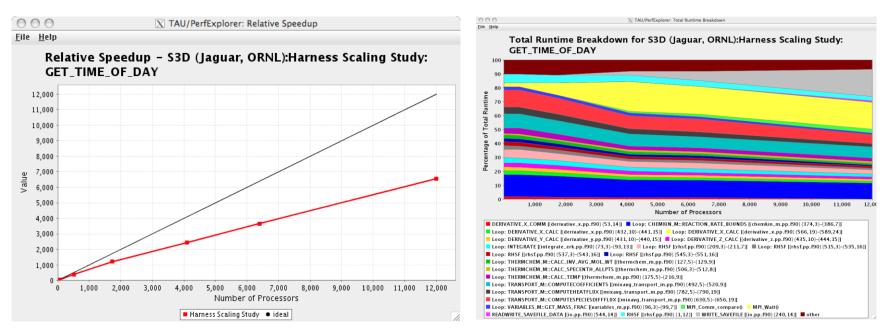

PerfExplorer - Interface

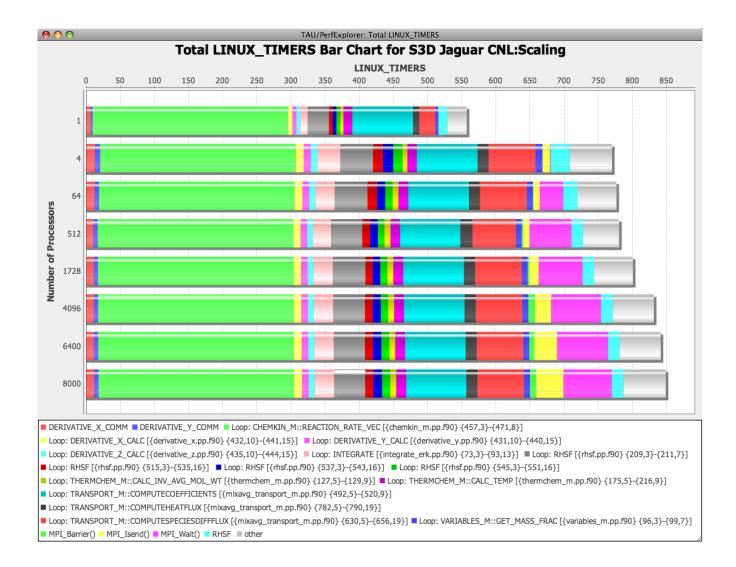



PerfExplorer Client

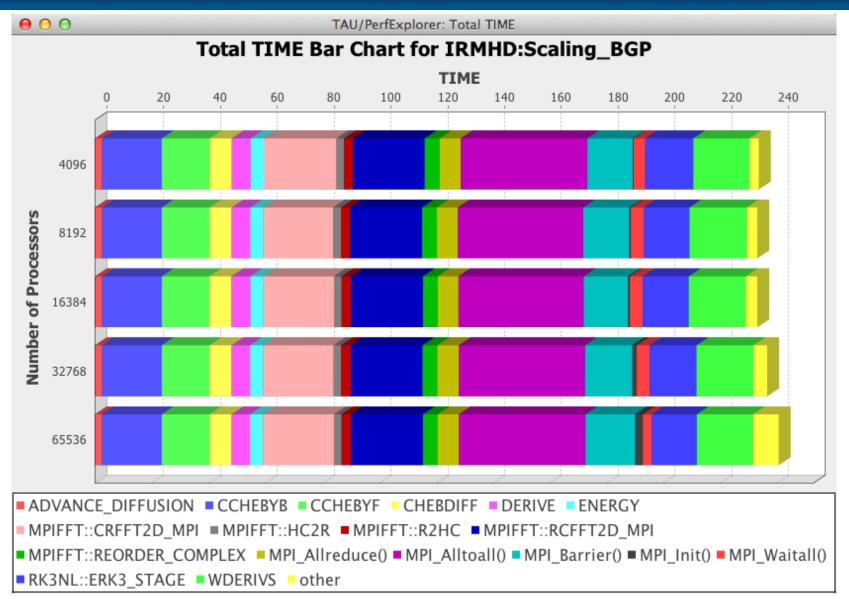


000	PerfExplorer Client	
ile <u>A</u> nalysis <u>C</u> harts <u>H</u> elp		
V gyro.B1-s Set <u>G</u> roup Name	Analysis Management	Performance Explorer
B1-stc Set Metric of Interest	Field	Value
B1-stc Set Event of Interest	Name	B1-std-nl2.cheetah.noaffnosng
B1-stc Set Total Number of Timesteps	Experiment ID	16
B1-stc Timesteps Per Second	system_name	
B1-stc Relative Efficiency	system_machine_type	
B1-stc Relative Efficiency by Event	system_arch	
B1-stc Relative Efficiency for One Event	system_os system_memory_size	
B1-stc Relative Speedup	system_processor_amt	
B1-stc Relative Speedup by Event	system_l1_cache_size	
B1-stt Relative Speedup for One Event	system_l2_cache_size	
Communication Time / Total Run	time tem_userdata	
B1-sttBreakdown		
B1-std.hockney	Select analysis	
B1-std.new.phoenix.0x002	complier_cc_version	
B1-std.phoenix.0x002	compiler_java_dirpath	
B1-std.phoenix.0x002scr	compiler_java_version	
B1-std.ram0x002.a	compiler_userdata	
B1-std.ram0x002.b	configure_prefix configure_arch	
🔻 📁 B1-std.seaborg	configure_cpp	
B1-std.timing.seaborg.128	configure_cc	
B1-std.timing.seaborg.16	configure_jdk	
B1-std.timing.seaborg.256	configure_profile	
B1-std.timing.seaborg.32	configure_userdata userdata	
B1-std.timing.seaborg.512	useruata	
B1-std.timing.seaborg.64		
B1-std.tg		
▶ 📁 gyro.B2-cy		
▶ 河 gyro.B3-gtc		

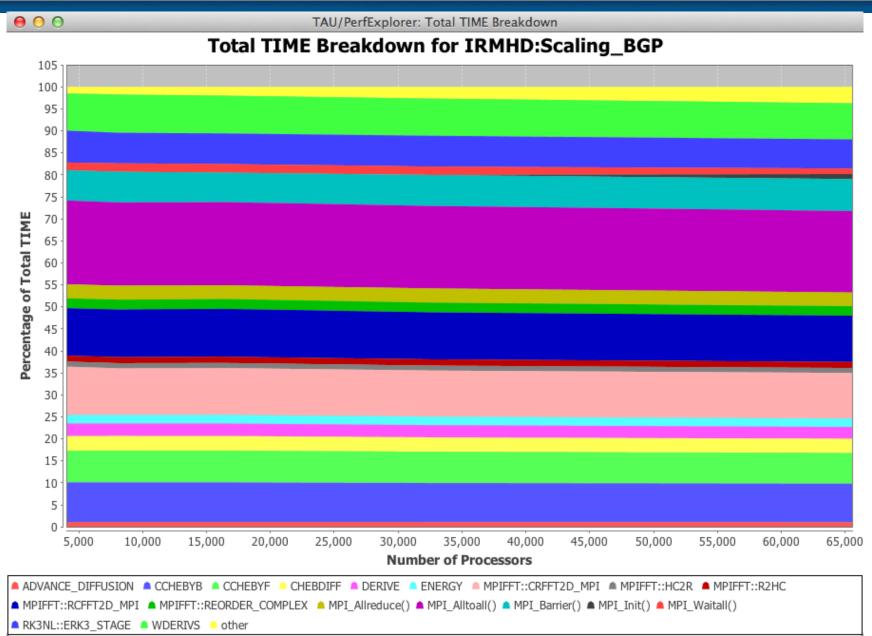




- Goal: How does my application scale? What bottlenecks occur at what core counts?
- Load profiles in taudb database and examine with PerfExplorer



PerfExplorer



SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

PerfExplorer

PRL, University of Oregon, Eugene

www.uoregon.edu

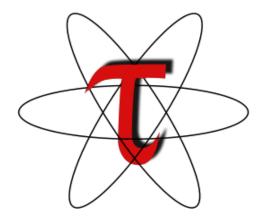
SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Support Acknowledgments

- U.S. Department of Energy (DOE)
 - Office of Science
 - PNNL, LBL, ORNL
 - ASC/NNSA, Tri-labs (LLNL, LANL, SNL)
- U.S. Department of Defense (DoD) – HPC Modernization Office (HPCMO)
- NSF Software Development for Cyberinfrastructure (SDCI)
- Juelich Supercomputing Center, NIC
- Argonne National Laboratory
- T.U. Dresden
- ParaTools, Inc.

OS A

Office of



fic Northwest

Download TAU from U. Oregon

http://tau.uoregon.edu

http://www.hpclinux.com [LiveDVD, OVA]

Free download, open source, BSD license

Typical performance bottlenecks and how they can be identified

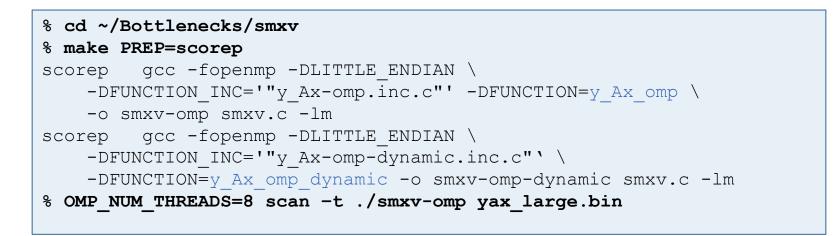
Bert Wesarg ZIH, Technische Universität Dresden

- Case I:
 - Load imbalances in OpenMP codes

- Case II:
 - Communication and computation overlapping in MPI codes
- **Note:** We won't do the complete performance engineering cycle here.

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

- A sparse matrix is a matrix populated primarily with zeros
- Only non-zero elements of a_{ij} are saved efficiently in memory
- Algorithm

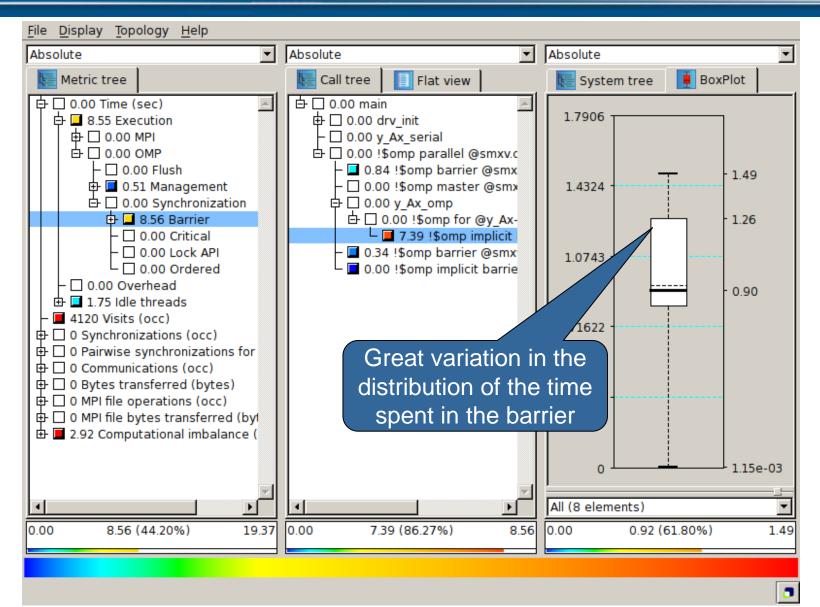

```
foreach row r in A
y[r.x] = 0
foreach non-zero element e in row
y[r.x] += e.value * x[e.y]
```

Naive OpenMP Algorithm

```
#pragma omp parallel for
foreach row r in A
y[r.x] = 0
foreach non-zero element e in row
y[r.x] += e.value * x[e.y]
```

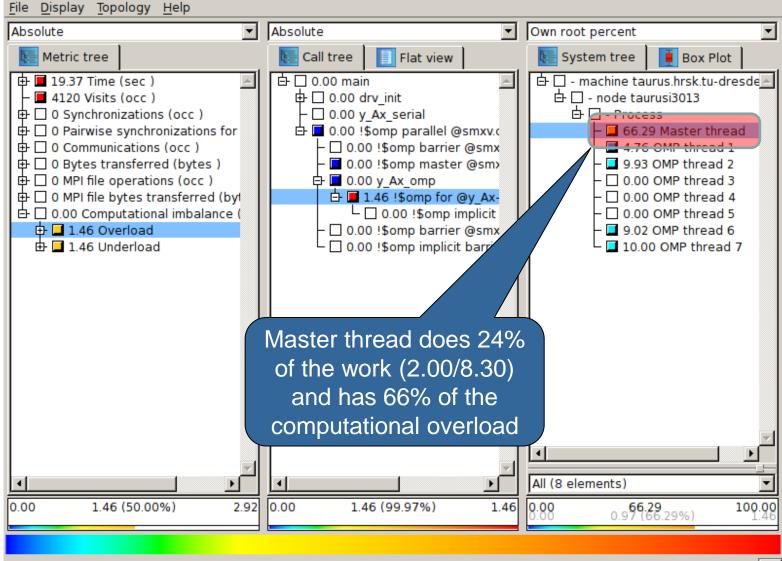
- Distributes the rows of A evenly across the threads in the parallel region
- The distribution of the non-zero elements may influence the load balance in the parallel application

Measuring the static OpenMP application


- Two metrics which indicate load imbalances:
 - Time spent in OpenMP barriers
 - Computational imbalance

• Open prepared measurement on the LiveDVD with Cube

% cube ~/Bottlenecks/smxv/scorep_smxv-omp_large/trace.cubex


[CUBE GUI showing trace analysis report]

Case I: Time spent in OpenMP barriers

Case I: Computational imbalance

VI-HPS

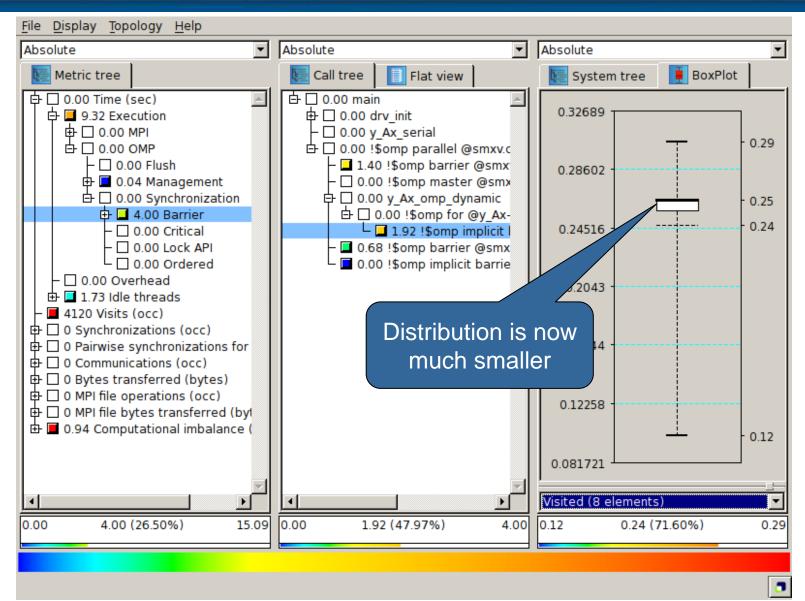
Selected "66.29 Master thread"

SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

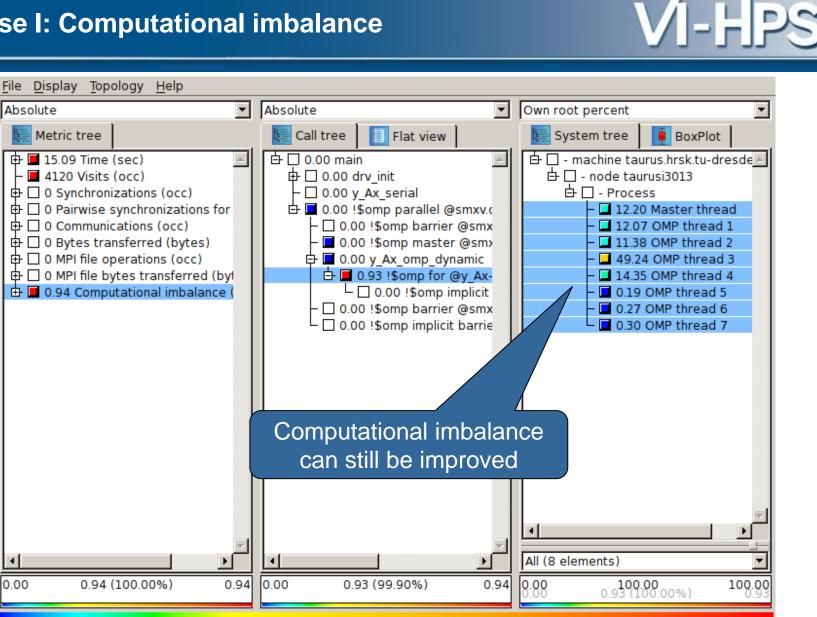
Improved OpenMP Algorithm

```
#pragma omp parallel for schedule(dynamic,1000)
foreach row r in A
  y[r.x] = 0
  foreach non-zero element e in row
   y[r.x] += e.value * x[e.y]
```

• Distributes the rows of A *dynamically* across the threads in the parallel region

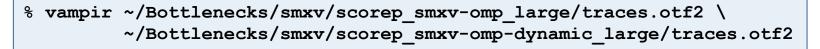

- Two metrics which indicate load imbalances
 - Time spent in OpenMP barriers
 - Computational imbalance

• Open prepared measurement on the LiveDVD with Cube

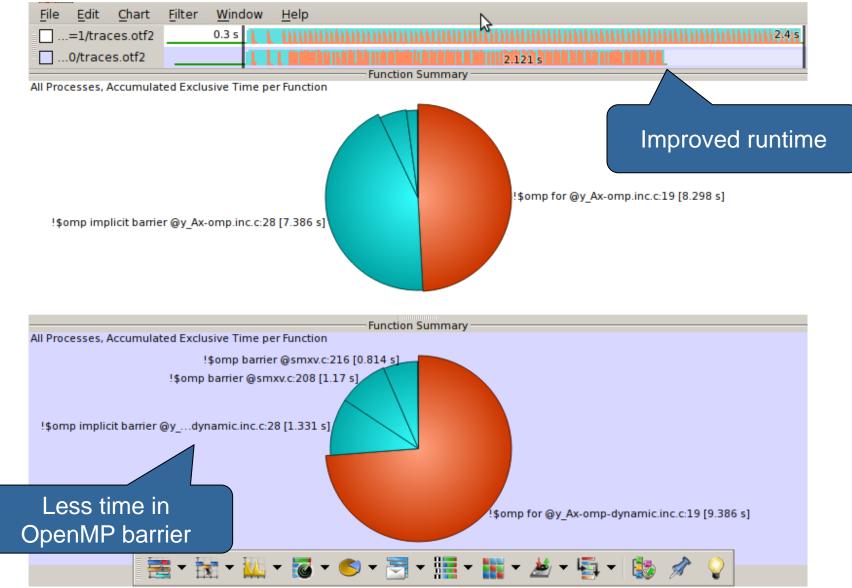

% cube ~/Bottlenecks/smxv/scorep_smxv-omp-dynamic_large/trace.cubex

[CUBE GUI showing trace analysis report]

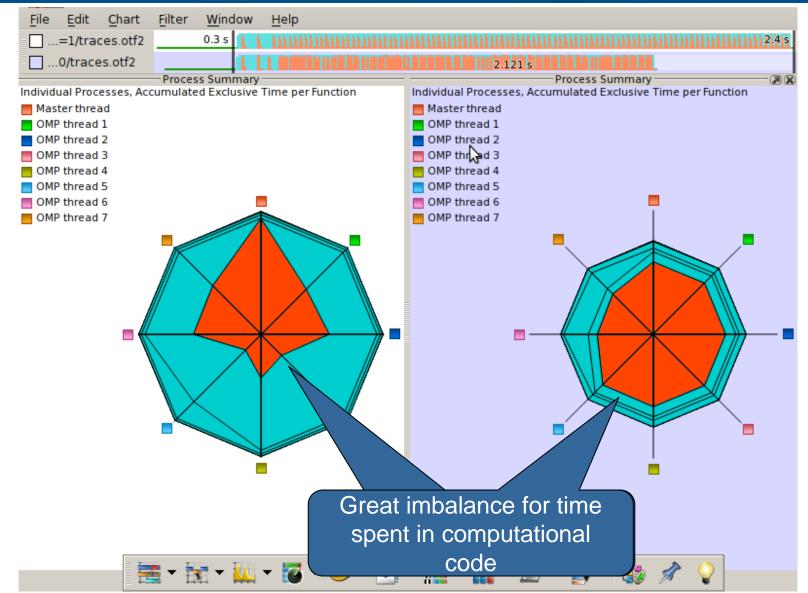
Case I: Time spent in OpenMP barriers


Case I: Computational imbalance

0


 Open prepared measurement on the LiveDVD with Vampir

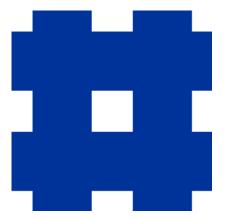
[Vampir GUI showing trace]


Case I: Time spent in OpenMP barriers

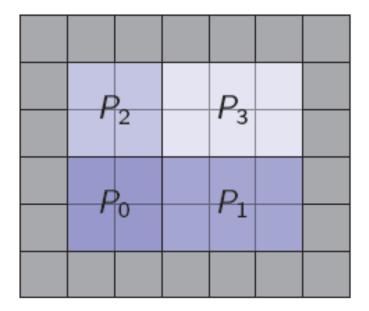
SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case I: Computational imbalance

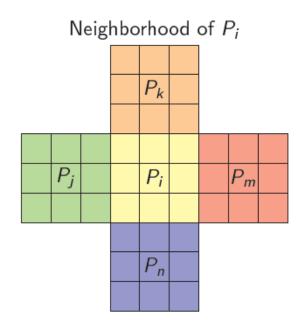
SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering



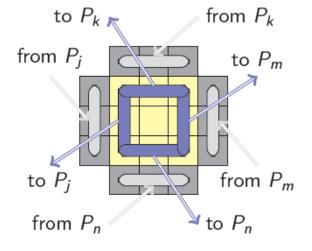
- Case I:
 - Load imbalances in OpenMP codes


- Case II:
 - Communication and computation overlapping in MPI codes

- Calculating the heat conduction at each time step
- Discretized formula for space dx, dy and time dt


$$\theta_{i,j}^{t+1} = \theta_{i,j}^{t} + \left(\frac{\theta_{i+1,j}^{t} - 2\theta_{i,j}^{t} + 2\theta_{i-1,j}^{t}}{dx^{2}} + \frac{\theta_{i,j+1}^{t} - 2\theta_{i,j}^{t} + 2\theta_{i,j-1}^{t}}{dy^{2}}\right) \cdot k \cdot dt$$

- Application uses MPI for boundary exchange
- Simulation grid is distributed across MPI ranks



 Ranks need to exchange boundaries before next iteration step

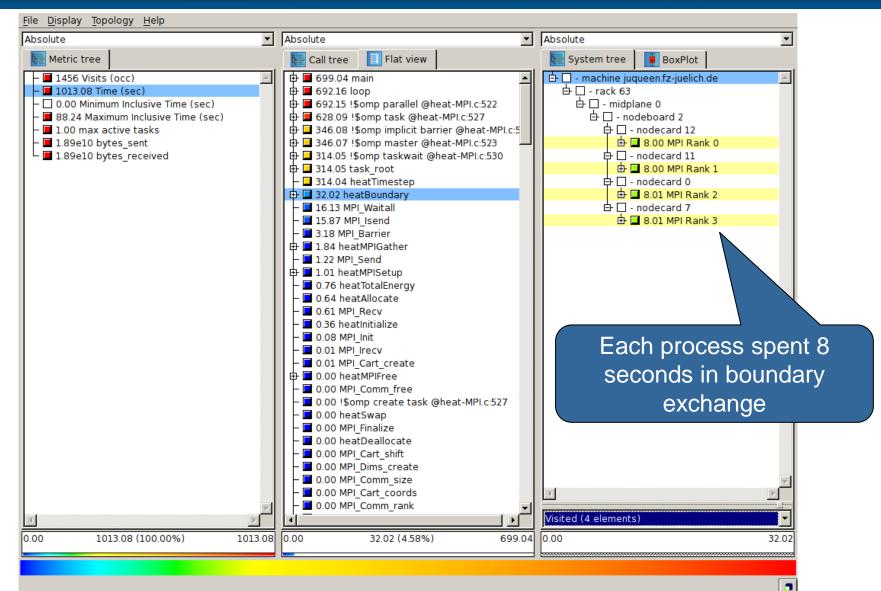
Data exchanges of P_i

VÍ-H

• MPI algorithm

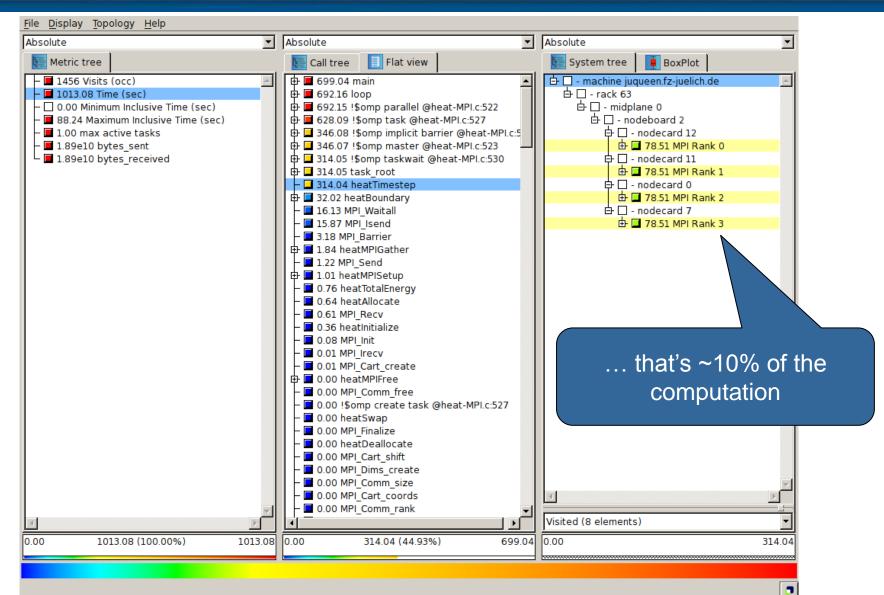
foreach step in [1:nsteps]
exchangeBoundaries
computeHeatConduction

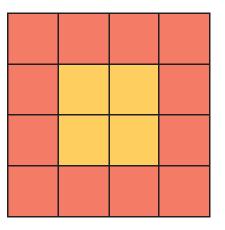
Building and measuring the heat conduction application

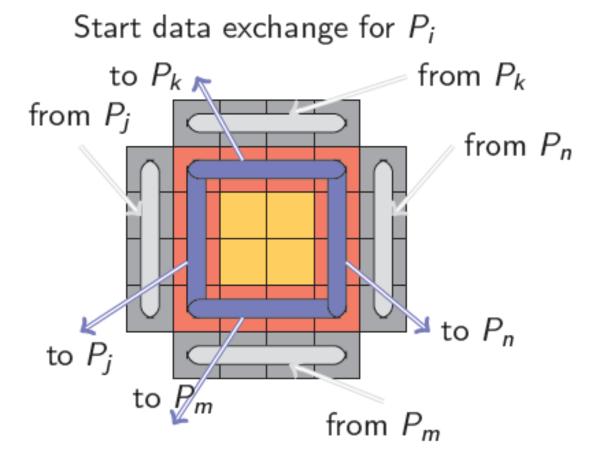

```
% cd ~/Bottlenecks/heat
% make PREP=`scorep --user'
[... make output ...]
% scan mpirun -np 16 ./heat-MPI 3072 32
```

Open prepared measurement on the LiveDVD with Cube

% cube ~/Bottlenecks/heat/scorep_heat-MPI_small/profile.cubex
[CUBE GUI showing trace analysis report]

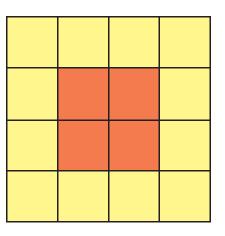

Case II: Time spent in Boundary Exchange


Case II: Time spent in Boundary Exchange



• Step 1: Compute heat in the area which is communicated to your neighbors

Compute heat conduction in the boundaries of P_i



 Step 2: Start communicating boundaries with your neighbors

• Step 3: Compute heat in the interior area

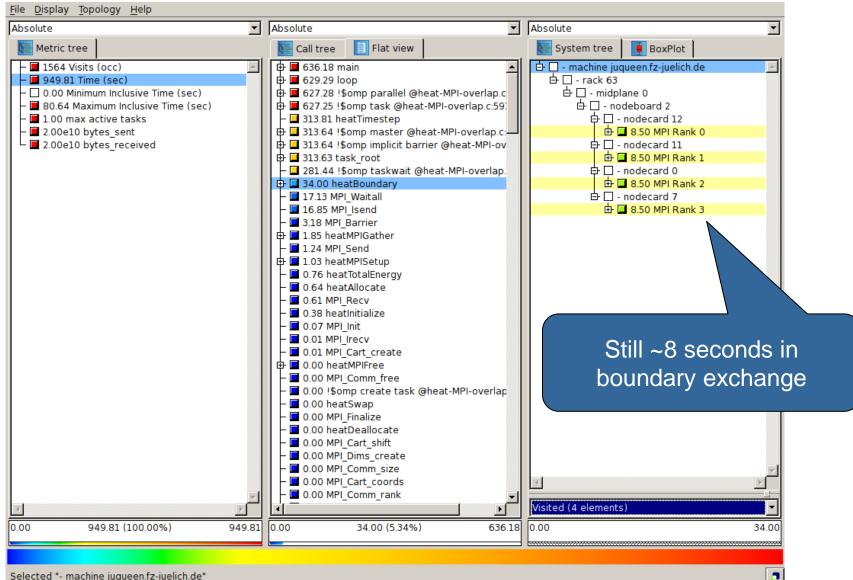
Compute heat conduction in the interior of P_i

Improved MPI algorithm

foreach step in [1:nsteps]
 computeHeatConductionInBoundaries
 startBoundaryExchange
 computeHeatConductionInInterior
 waitForCompletionOfBoundaryExchange

- Note: As not all MPI implementations support overlapping, it is here done with the help of OpenMP tasks.
- Measuring the improved heat conduction application

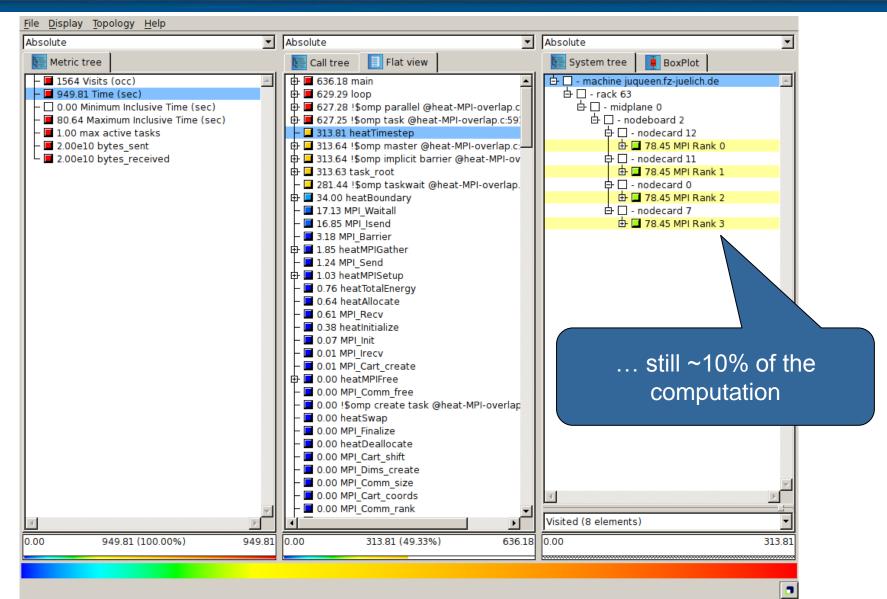
% scan mpirun -np 16 ./heat-MPI-overlap 3072 32


Open prepared measurement on the LiveDVD with Cube

% cube ~/Bottlenecks/heat/scorep_heat-MPI-overlap_small/profile.cubex

[CUBE GUI showing trace analysis report]

Case II: Time spent in Boundary Exchange

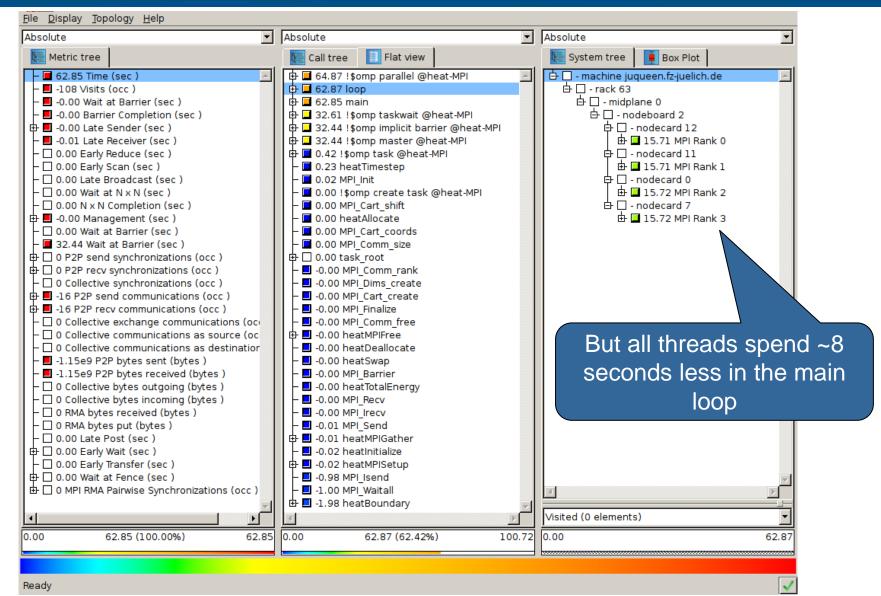


Selected "- machine juqueen.fz-juelich.de"

SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Case II: Time spent in Boundary Exchange

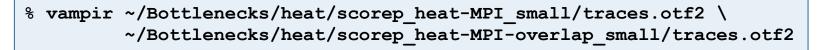
• Calculate differences between profiles


• Open prepared profile diff on the LiveDVD with Cube

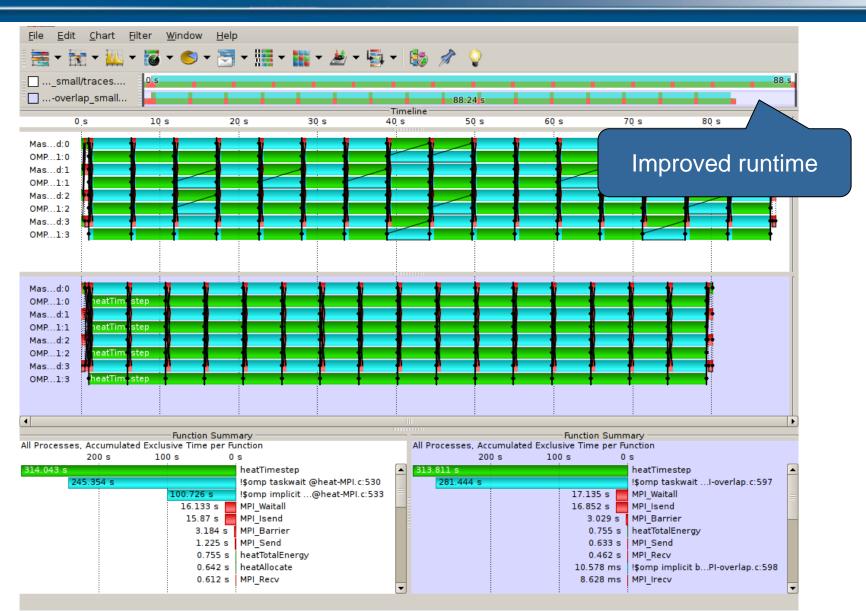
% cube ~/Bottlenecks/heat/diff.cubex

[CUBE GUI showing trace analysis report]

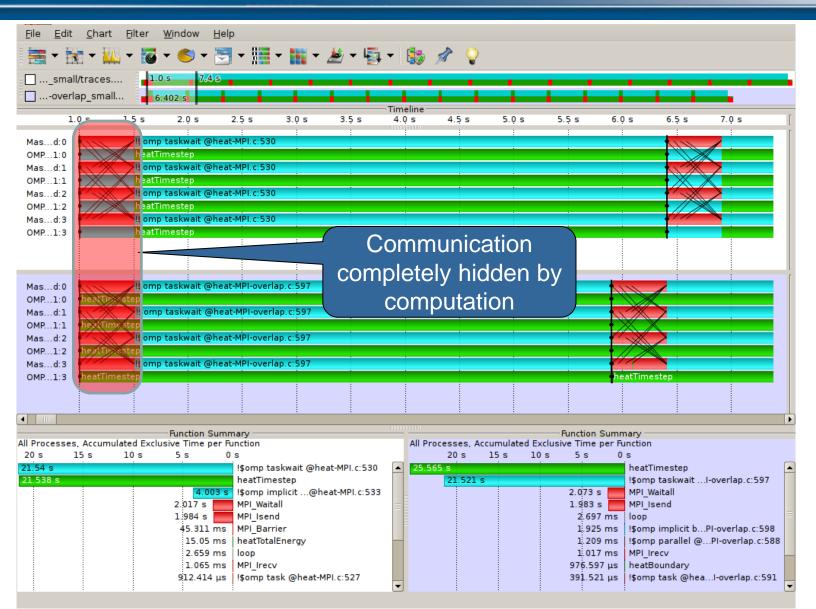
Case II: Profile Comparison


VI-HPS

SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering



 Open prepared measurement on the LiveDVD with Vampir


[Vampir GUI showing trace]

Case II: Trace Comparison


- - DS

Case II: Trace Comparison

 Thanks to Dirk Schmidl, RWTH Aachen, for providing the sparse matrix vector multiplication code

Review

Brian Wylie Jülich Supercomputing Centre

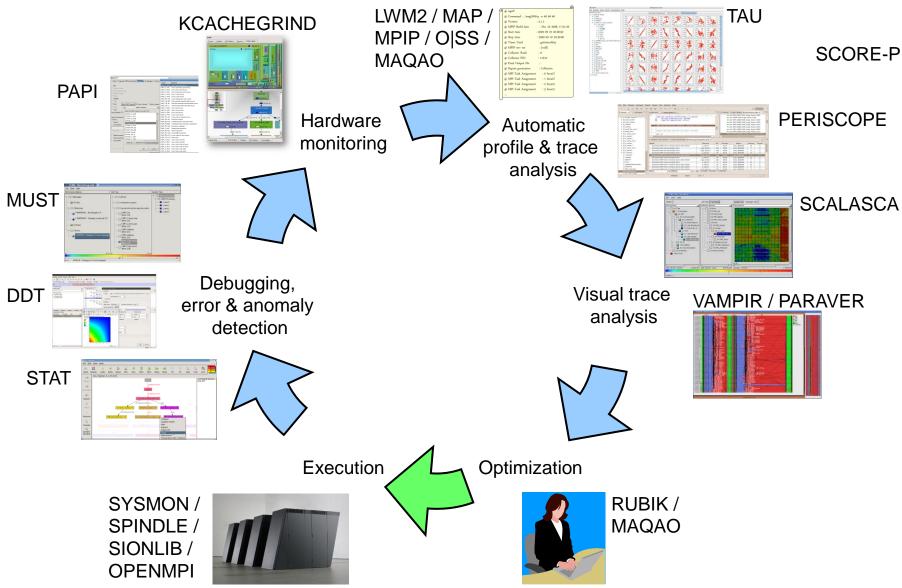
You've been introduced to a variety of tools

- with hints to apply and use the tools effectively
- Tools provide complementary capabilities
 - computational kernel & processor analyses
 - communication/synchronization analyses
 - load-balance, scheduling, scaling, …
- Tools are designed with various trade-offs
 - general-purpose versus specialized
 - platform-specific versus agnostic
 - simple/basic versus complex/powerful

- Which tools you use and when you use them likely to depend on situation
 - which are available on (or for) your computer system
 - which support your programming paradigms and languages
 - which you are familiar (comfortable) with using
 - which type of issue you suspect
 - which question you want to have answered
- Being aware of (potentially) available tools and their capabilities can help finding the most appropriate tools

- First ensure that the parallel application runs correctly
 - no-one will care how quickly you can get invalid answers or produce a directory full of corefiles
 - parallel debuggers help isolate known problems
 - correctness checking tools can help identify other issues
 - (that might not cause problems right now, but will eventually)
 - e.g., race conditions, invalid/non-compliant usage
- Generally valuable to start with an overview of execution performance
 - fraction of time spent in computation vs comm/synch vs I/O
 - which sections of the application/library code are most costly
- and how it changes with scale or different configurations
 processes vs threads, mappings, bindings

- Communication/synchronization issues generally apply to every computer system (to different extents) and typically grow with the number of processes/threads
 - Weak scaling: fixed computation per thread, and perhaps fixed localities, but increasingly distributed
 - Strong scaling: constant total computation, increasingly divided amongst threads, while communication grows
 - Collective communication (particularly of type "all-to-all") result in increasing data movement
 - Synchronizations of larger groups are increasingly costly
 - Load-balancing becomes increasingly challenging, and imbalances increasingly expensive
 - generally manifests as waiting time at following collective ops


- Waiting times are difficult to determine in basic profiles
 - Part of the time each process/thread spends in communication & synchronization operations may be wasted waiting time
 - Need to correlate event times between processes/threads
 - *Periscope* uses augmented messages to transfer timestamps and additional on-line analysis processes
 - Post-mortem event trace analysis avoids interference and provides a complete history
 - Scalasca automates trace analysis and ensures waiting times are completely quantified
 - *Vampir* allows interactive exploration and detailed examination of reasons for inefficiencies

Effective computation within processors/cores is also vital

- Optimized libraries may already be available
- Optimizing compilers can also do a lot
 - provided the code is clearly written and not too complex
 - appropriate directives and other hints can also help
- Processor hardware counters can also provide insight
 - although hardware-specific interpretation required
- Tools available from processor and system vendors help navigate and interpret processor-specific performance issues

Technologies and their integration

VI-HPS

SC'14: Hands-on Practical Hybrid Parallel Application Performance Engineering

Score-P

 community-developed instrumenter & measurement libraries for parallel profiling and event tracing

CUBE & ParaProf/PerfExplorer

- interactive parallel profile analyses

Scalasca

- automated event-trace analysis

Vampir

interactive event-trace visualizations and analyses

• TAU/PDT

comprehensive performance system

- Website
 - Introductory information about the VI-HPS portfolio of tools for high-productivity parallel application development
 - VI-HPS Tools Guide
 - links to individual tools sites for details and download
 - Training material
 - tutorial slides
 - latest ISO image of VI-HPS Linux DVD with productivity tools
 - user guides and reference manuals for tools
 - News of upcoming events
 - tutorials and workshops
 - mailing-list sign-up for announcements

http://www.vi-hps.org