Comp 1.1: Phenotyping wheat root system architecture
for deep rooting traits and greater deep water
acquisition as a strategy to escape drought
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Impact Main research methods

Deep rooting is the most promising root phenotype for drought Y
avoidance in dryland agriculture (See also poster by Wait et
al). This research will have direct impact on breeding and
agronomy for improvement of deep water acquisition, what
genetic material may have a deep rooting phenotype, and
what traits cause deeper rooting.
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understanding into how these traits combine in a deep rooting,
drought tolerant phenotype.
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Fig 3: Dwarfing genes, involved in gibberellin pathway, not only reduce stem elongation, but Fig 6: Development of barley root system and the water exiraction by that root system can be
also result in comparatively smaller root systems (3). However, the mechanisms are not well observed by MRI and be modeled with SimRoot. Left: MRI image of barley root system at 4,6
understood. and 7 weeks after germination (for MRI see 6). Right: Simulation of barley root system growing

In a drying soil profile (for SimRoot model see 1).

Novelty of approaches

Current technological advances with MRI, portable NMR and high throughput root phenotyping methods, allow for a radically new
approach and novel insights into how and when deep rooting results in deep water extraction and what traits may influence rooting
depth, including tradeoffs such as the aforementioned connection between dwarfing and rooting depth.
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