# Hybrid parallelization of a seeded region growing segmentation of brain images for a GPU cluster

Anna Maria Lührs<sup>1</sup>, Dr. Markus Axer<sup>2</sup>, Oliver Bücker<sup>3</sup>, Prof. Dr. Johannes Grotendorst<sup>3</sup>

<sup>1</sup> Simulation Lab Neuroscience - Bernstein Facility for Simulation and Database Technology, Jülich Supercomputing Centre, Institute for Advanced Simulation,

Jülich Aachen Research Alliance, Forschungszentrum Jülich, 52425 Jülich, Germany

<sup>2</sup> Institute for Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, 52425 Jülich, Germany

<sup>3</sup> Mathematics and Education, Jülich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany

Acknowledgment: Partially funded by the Helmholtz Association through the Helmholtz Portfolio Theme "Supercomputing and Modeling for the Human Brain".

Contact: a.luehrs@fz-juelich.de



The introduction of novel technologies always carries new challenges regarding the processing of data.

- Newly developed imaging technique:
   Polarized Light Imaging
- Reconstructing hundreds of terabytes of image data
- Image segmentation as a preprocessing step: masking of brain and non-brain regions
- Parallelization of the segmentation for a GPU cluster

# Polarized Light Imaging

- Development at the Institute for Neuroscience and Medicine (INM-1), Forschungszentrum Jülich
- Aim: extracting the course of single nerve fibers
- Sections of postmortem human brain tissue, each  $70\mu m$  thick
- Imaging of the sections under linearly polarized light with varying polarization

1500 sections per brain  $30 \times 25$  tiles per section MB per tile  $1500 \cdot 750 \cdot 500$ MB  $\approx 500$ TB per brain



# Automated Choice of Seeds

- Brain tissue on a bright background
- Including artifacts and image noise
- Joint intensity histogram of all tiles
- Threshold between brain and background intensities defined by user
  → single point of interaction per brain



**Measure**  $m_{cand}$  for every intensity interval

$$m_{cand}(x, y) = \max\left(\frac{g(x, y) - q_{0.5}}{q_{0.5} - q_{\alpha}}, \frac{q_{0.5} - g(x, y)}{q_{1-\alpha} - q_{0.5}}\right)$$

**Linear smoothing** of  $m_{cand}$  to minimize the influence of image noise

$$m_{final}(x, y) = \sum_{i=-m}^{m} \sum_{k=-n}^{n} w(i, k) \cdot m_{cand}(x + i, y + k)$$

5 Removing dirt particles in the background marked as seeds







## Multi-Core Parallelization

- Neighboring tiles: overlapping of  $\sim 30\% o$  independent processing
- Tiles equally distributed between the processes





Single inter-process communication (MPI\_ALL\_REDUCE)

No communication required

→ linear speedup

## **GPU Parallelization**

- Automated choice of seeds consists of data parallel steps
- ullet GPUs take advantage of data parallelism o CUDA
- One-to-one assignment of pixels to CUDA threads



All steps executed on a CPU

These steps are CUDA parallelized

Additional GPU accelerates the segmentation by a factor of 20



