

Review of physical properties of NASICON materials for use in sodium batteries

M. Guin, F. Tietz, H.P. Buchkremer

Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung IEK-1, Jülich, Germany

The structure, compositional diversity and ionic conductivity of Na⁺ ion-conducting NASICON materials are reviewed in order to correlate the lattice parameters and specific crystal structure data with the sodium mobility and the activation energy.

Correlation structure / ionic conductivity:

General formula of a sodium NASICON material: $Na_{1+2x+y}M^{II}_{x}M^{II}_{y}M^{IV}_{2-x-y}(SiO_{4})_{z}(PO_{4})_{3-z}$

Extensive study for approximately 150 compositions:

Introduction of a geometrical parameter: the effective ionic radius r_{eff}

$$r_{eff} = \frac{x \times r_{M^{II}} + y \times r_{M^{III}} + (2 - x - y) \times r_{M^{IV}}}{2}$$

- Illustration of an optimal size for M^{\parallel} , $M^{\parallel\parallel}$ and $M^{\parallel\vee}$, $r_{eff} \approx r_{ZrIV} = 0,72 \text{ Å}$
- Impact of the amount of Na per formula on the conductivity.
- Importance of the substitution of P with Si

Figure 1: $log(\sigma_{RT})$ as a function of the Na content per formula and the effective ionic radius of the cations in $Na_{1+2x+y}M^{II}_{x}M^{III}_{y}M^{IV}_{2-x-y}(SiO_{4})_{z}(PO_{4})_{3-z}$.

Bottleneck for Na⁺ conduction, correlation with the activation energy:

Figure 2: representation of the geometric bottleneck for the Na⁺ conduction and the path of Na⁺ ion hoping in Na₃Zr₂(SiO₄)₂(PO₄)

Factors influencing the bottleneck for the Na⁺ conduction:

Size of the cations M^{II}, M^{III}, M^{IV} (r_{eff})

Legend: M^{II}_xM^{III}_yM^{IV}_{2-x-y}Si_z Fe2 0.8 -0.7 Cr2 Hf2 Al0.13Ge1.87 0.6) 10.5 -NbZr Ба 0.4 Zr2Si2 0.3 -Sc0.5Zr1.5Si1.3 Sc0.5Zr1.5Si1 0.2 -5.8 5.4 5.6 5.2 5.0 4.4 area T1 [Å²]

Figure 3: Influence of the area T1 on the activation energy for different **NASICON** materials

Presence of Si in the formula

0.9 -

The activation energy is correlated to the geometric bottleneck for the Na⁺ conductivity, the area T1, which increases with the size of the cations M^{II}, M^{III} and M^{IV} and the presence of Si in the formula. The existence of an optimal size for M^{II}, M^{III} and M^{IV}, $r_{eff} \approx r_{ZrIV} = 0.72$ Å can not be explained only by a geometrical parameter.