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The industrial facilities inject noise to the power line. Concerning this issue, researchers are focusing their effort on 

developing new techniques for analyzing the power quality of the power net. This work presents a novel methodology for 

power quality disturbances detection and classification based on the Harris hawks optimization algorithm and discrete 
wavelet transforms decomposition of the signal. 
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Introduction 

A healthy power net is critical for the continuous 

manufacturing industry
1
. For this reason, there is a 

concern on power quality (PQ) monitoring for the 

power lines that feed these facilities.
2,3

 Most PQ 

analysis solutions are based in detecting and 

classifying PQD events by using features of power 

signals or certain transformation of them. Methods 

developed have used the d-q transform
4
, the 

continuous wavelet transform
5,6

, the wavelet packet 

transform
7,8

, the S-transform
9,10

, the empirical mode 

decomposition
11

 and the discrete wavelet transform
12–

14
as the base for the extracting features from the 

signal to analyze. While, regarding to classification 

techniques, support vector machine
15

 (SVM), artificial 

neural network
16

 (ANN), particle swarm 

optimization
17

 (PSO), genetic algorithms (GA)
18

 and 

ant colony framework (ACF)
19

 have been studied as 

well. Recently, novel methodologies have emerged 

for example using convolutional neural networks 

(CNN).
20

 Meta-heuristic optimization algorithms have 

been used for fitting synthetic to raw power signals as 

GA combined with particle swarm optimization 

(PSO)
21

 or differential evolution (DE).
22 

In this paper, a novel hybrid methodology for PQD 

detection and classification is proposed. The work use 

an optimization method known as Harris hawks 

optimization (HHO) and DWT decomposition of the 

signal takes place for obtaining features that allow 

classifying the remaining transient PQD. The 

proposed methodology is validated with synthetic 

power signal dataset and real power signals from the 

industry. 

Experimental Details 

Harris Hawks Optimization (HHO) 

Harris hawks optimization algorithm
23

 is a meta-

heuristic optimization technique. It is nature-inspired 

in the hunting behavior of Harris hawks, where a 

family of hawks prey for a rabbit, whose energy 

decreases over time as it tries to escape. The goal is to 

minimize the distance from the hawks to the rabbit in 

order to optimize the function. At first, the energy of 

the rabbit is high, after that, there is a first 

exploitation phase, where the rabbit tries to escape 

jumping and the hawks encircle it. Finally, at the last 

exploitation phase, the rabbit is so much exhausted 

that has not enough energy to escape and the prey is 

completed. 

Discrete Wavelet Transform Algorithm (DWT) 

The algorithm of discrete wavelet transform
24

 is 

used for decomposing a signal by the use of filters 

repeatedly. Where, for each step (level), there is a 

low-pass and a high-pass filtering process that results 

in the approximation and detail coefficients 

respectively. With it resulting in a higher number of 

features that can be extracted in order to feed a 

subsequent classification algorithm as support vector 

machine (SVM), a decision tree (DT) or a probabilistic 

neural network (PNN).  
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Power Quality Disturbances Detection and Classification 

The proposed methodology is based primarily on 

HHO and DWT. The complete methodology can be 

divided in two stages, at a first stage the steady PQD 

are characterized, while at a second stage the transient 

PQD are analyzed as well. Firstly, the voltage signal 

for a phase of the power line is acquired by a signal 

acquisition system, whose sampling frequency can be 

as high as the resolution of the system needed. In 

counterpart, because of high frequency content, as 

transient power quality disturbances and higher order 

harmonic content, a trade-off must be carried out. In 

this implementation, a sampling frequency of 10 kHz 

is used. Secondly, the steady PQD detection block 

adjust with the aid of HHO the raw power signal to a 

synthetic power signal whose frequency and phase 

matches the fundamental sine-wave by reducing the 

sum of squares error (SSE) using the sine wave 

mathematical model. The function to minimize,  , is 

shown in Eq. (1). In this function      represents the 

captured sample point at time  ,    is the estimated 

fundamental frequency and    is the estimated radial 

phase for the fundamental sine wave. After this 

optimization is performed, amplitude is estimated for 

each half cycle for detecting sag, swell, interruptions 

and flickers of the fundamental frequency and 

harmonic content as well by application of HHO too, 

resulting in      . This results in a synthetic power 

signal whose amplitude is defined by half cycles, 

expressed as      in Eq. (2). 
 

                       
 

    … (1) 
 

                               … (2) 
 

Thirdly, the transient PQD detection block is used 

to assess whether the power signal is affected by 

transient phenomena or not. In this case, the transient 

PQD that are detected by the system are: impulsive 

transients and oscillatory transients. In this step, a 

transient extraction system is used, a signal      is 

calculated by using the difference between the 

synthetic signal from the last block and the raw signal 

as shown in Eq. (3). Immediately after, the level 4 

DWT is extracted from the signal. After that result is 

obtained, an absolute threshold for certain   is applied 

over it, resulting in an indicator function      , shown 

in Eq. (4). Disturbances signatures are extracted by 

isolating the time ranges where,        . As the last 

step, a smoothing of this signature is performed  

and the number of zero-crossings is used for 

discrimination between the classes, the classification 

of transient PQD takes place. When the number of 

zero-crossings is less than 18 the disturbance is 

classified as an oscillatory transient, otherwise it is 

classified as an impulsive transient. Examples of the 

signatures for each kind of disturbance can be seen in 

Fig. 1, where, the previously described behaviors of 

the transient PQD are shown. 

 
 

Fig. 1 — (a) Power signal of an impulsive transient; (b) DWT of isolated impulsive transient; (c) Power signal of an oscillatory transient; 

(d) DWT of isolated oscillatory transient 
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               … (3) 
 

       
              
           

  … (4) 

 

Test Bench for Synthetic Power Signals 

A series of experiments have been developed to 

validate the proposed methodology. As a theoretical 

approach, a bank of synthetic power signals has been 

generated. Where, for each one of them, a set ofone or 

more power quality disturbances is present. The 

synthetic signals have been generated by the complete 

mathematical model described in a recent 

publication
25

, taking values for the parameters in the 

ranges shown in it. Testbench power signals are 

divided in two groups: steady PQD power signals and 

transient PQD power signals, as the nature of the 

methodology requires a different validation for each 

one of them.  

For the steady PQD power signals validation, a 

data bank of signals containing sag, swell, 

interruption, flicker and harmonic content is 

generated. After that, an estimation of the power 

signal parameters is performed by the methodology, 

leading to an estimated power signal. The relative 

sum of squares error is taken as an indicator in 

order to evaluate how the methodology performed; 

its formula is presented in Eq. (5). In this equation, 

     represents the estimation of the raw acquired 

signal     . As values of this indicator approach 

zero a better fit is obtained, elsewhere, when values 

of this indicator approach one, a worse fit is 

obtained. As a result of the testbench execution, a 

RSSE of 0.06% is obtained for flicker, 1.52% for 

harmonic content of third, fifth and seventh  

order, 2.79% for interruption, 0.26% for sag of 

3.6% for swell. It can be seen that the algorithm 

behaves reasonably well for every kind of steady 

PQD. 
 

          
            

 
 

       
 … (5) 

 

After the generation of steady PQD power 

signals, the transient PQD classification block 

needs to be validated. Having this a goal, synthetic 

signals containing oscillatory transient disturbances 

and impulsive transient disturbances are generated. 

The methodology computes the signal of fourth-

level DWT decomposition, extracts the PQD by 

using an absolute threshold, smooths them and 

classifies them by the number of zero-crossings 

found. A correct classification of 92.2% in the 

cases for the impulsive transient, while, on the 

other hand, classification accuracy for the 

oscillatory transient obtained is 94%. Based on 

these results, it could be affirmed that the present 

methodology behaves as expected when tackling 

with steady and transient PQD. 
 
Industrial Real Power Signal 

A real signal sampled from the power lines of an 

industrial environment present in the IEEE 

Workgroup database is used as input for the 

proposed methodology. Using descriptive analysis, 

the signal seems to contain a sag disturbance, where 

the amplitude of the sine wave has decreased over 

14%. This PQD could lead to malfunction of 

sensitive digital equipment as micro-processor 

control systems, what could lead to a stoppage of 

the production in some part of the plant. The steady 

PQD analysis of the proposed methodology is 

performed by using HHO, giving as result the  

Fig. 2. After measuring the signal decomposition 

obtained by the optimizer, average amplitude of 

86.42 pu is obtained for the fundamental sine-wave, 

while harmonic content amplitude is under 0.5 pu 

for each one of the analyzed orders (three, five  

and seven). 

 

Results and Discussion 

The outcome of the analysis for the real  

power signal agrees with the assumptions made. It 

can be seen in Fig. 2 as the fitting signal  

adjusts itself reducing its amplitude in the range 

between 0.1 and 0.5 seconds. Moreover, the sag 

effect in the amplitude of the fundamental  

sine wave in this range is estimated to be  

over 81%. 

The observed results clearly demonstrate the 

validity of the proposed methodology for real power 

signals added to the theoretical results shown two 

sections before. The key principal advantages of the 

proposed methodology are its reliability, taking into 

account that no filters are used for isolating 

frequencies, and its simplicity at implementation, 

where there exists only HHO and DWT as the main 

algorithms and no other computational demanding 

classic techniques, as FFT or Wavelet decomposition, 

are used. 
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Conclusions 

To sum up, it has been shown that the proposed 

methodology is able to characterize and classify 

steady and transient PQD that are present in  

power signals. Moreover, it accomplishes the 

characterization task with the help of a state-of-the-art 

meta-heuristic optimization algorithm (HHO). 

Nevertheless, there are hyper-parameters in the 

optimization algorithm that need to be refined in order 

to achieve a more efficient implementation for this 

research area. Added to this, it must be said that in 

this case there was no need on implementing any 

intelligent algorithm for the binary classification, as 

the signal smoothed zero-crossings turned out to be a 

valuable feature. Future research will aim to obtain an 

intelligent method that allows a full characterization 

of the signal in an on-line process. 
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