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depth of water using second-order perturbation equation 
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The present paper studies the nonlinearity effect of an ocean wave on a thin rectangular plate under two geometrical 
configurations in the intermediate water. The perturbation approximation method was derived analytically up to the second-
order. Analytical results was validated by the numerical method of Simpson's 1/3 rule. Results showed that the horizontal force 
of the wave on a plate recorded at the water surface (z/d = 0) was significantly high for ε = 0.175 and d/L = 0.24 as compared to 
the low value of relative depth. The results also showed that the wave forces are gradually converging to each other under two 
types of geometrical configurations with the decrease of relative depth. Nonlinear effect of the wave forces on the plate in the 
form of double peaks was found in the graph at a low value of d/L = 0.10 and wave steepness ε (= 0.070). This study revealed 
that due to the effect of nonlinearity, greater wave force occurred at a depth d = 3 m and T = 3 s and d/L = 0.24 on a thin plate 
and also implied that this force does not occur at the stage of double peaks form.  

[Keywords:  Analytical result, Numerical result, Rectangular thin plate, Second-order perturbation equation, Wave force, Wave profile]  

Introduction  
Ocean wave is a source of renewable energy with 

very high energy density (energy per unit length) of the 
waves. The conversion of wave energy into mechanical 
or electrical power is a crucial factor, which can be 
developed by different types of wave energy converter 
(WEC). A thin plate which submerges vertically in the 
ocean water and moves by the force of ocean waves in 
the x-direction and absorbs energy from the ocean 
wave is considered. The objective of the paper is to 
analyze the effect of the nonlinearity of the second-
order perturbation equation to determine the force on a 
plate under two different geometrical conditions. This 
analysis of the rectangular thin plate in the intermediate 
water forms the basis of preliminary investigation in 
this study.  

There are many studies about the wave body 
interaction carried out at a different time by different 
authors. Hanssen & Torum1 experimentally 
investigated Morison’s equation to determine the 
breaking wave forces and moments on a tripod 
concrete structure.  

Meylan2 investigated the wave force on the floating 
thin plate using free surface Green’s function and the 
variational equation to solve the problem. The 
variational equation is a simple polynomial-based 
function. Maiti & Sen3 numerically studied the solitary 
waves in the shallow water which interact with an 

inclined wall using MEL method. The authors analyzed 
time-simulation algorithm of the waves to determine 
the pressures and forces on the wall. Sundaravadivelu 
et al.4 used Linear Diffraction Theory to study the 
wave force and moments on the well due to regular 
wave.  

Tsai and Jeng5 investigated the effect of oblique 
incident wave forces on vertical walls using Fourier 
Series technique. Prabhakar & Sundar6 numerically 
calculated pressure variation of a short crested wave on 
the walls using Fourier Series approximation method 
and validated their results with the experimental results 
obtained by Nagai7 that showed good agreement. 
Fenton8 determined the wave force on the vertical wall. 
Mallayachari & Sundar9 investigated the effects of 
regular and random wave pressure on vertical walls, 
using Fourier Series approach.  

There are various investigations carried out by 
different authors to determine the effect of breaking 
wave forces exerted on a submerged cylinder10-12. 
Neelamani et al.13 experimentally studied the effect of 
the regular and random wave force on a perforated 
square caisson.  

Deb Roy & Ghosh14 investigated the effect of linear 
wave force on the vertically submerged circular thin 
plate in shallow water using Morison’s equation. 
Authors mainly investigated the horizontal wave force 
and overturning moments on a plate. Deb Roy & 
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Ghosh15 also investigated the effect of oblique incident 
wave force in shallow water on a thin plate. Deb Roy 
& Ranjan16 theoretically investigated the effect of 
linear wave theory to determine the wave force on a 
vertically submerged rectangular thin plate in shallow 
water using a Fourier series approximation method.  

Teo17 theoretically studied the effect of short-
crested wave pressure on a vertical wall using a fifth-
order Stokes wave approximation method. Jeng18 
theoretically studied the effect of partial reflection of 
short-crested wave kinematics from a vertical wall at 
various angles using third-order stokes wave 
approximation method. 

The past literature shows that different analytical 
methods were used to solve the higher-order problem 
and the results were validated experimentally. It was 
also observed that most of the researchers ignore the 
nonlinearity effect of higher-order approximation 
equation on a submerged thin rectangular plate in the 
intermediate water. However, in the present study, a 
second-order perturbation approximation theory has 
been used to solve the wave force on a submerged 
rectangular thin plate in the intermediate water under 
two different geometrical configurations, as shown in 
Figure 1. The accuracy of the presented analytical 
data was verified by comparing the numerical data. 
MATLAB code was used to obtain both analytical 
and numerical data.  
 

● Type I - a surface-piercing rectangular thin plate b; 
and 
● Type II - a bottom-standing rectangular thin plate b. 
 
Mathematical Formulation 

Consider b, a thin plate of rectangular size with 
dimensions l1, l2 and l3 vertically submerged in the 
intermediate water under two geometrical 
configurations (Fig. 1). Here, l1, l2 and l3 are the 
thickness, length and height of the plate in the x, y and 
z-direction, respectively. The length in the y-direction 
considered unity as the system is 2-dimensional and 
the incoming wave travels in the x-direction. Second-
order perturbation equation was solved by MATLAB 
coding and the analytical results validated with the 
numerical results by Simpson's 1/3 rule. Here, the 
domain region of fluid is -d  z  0, and -∞  x  +∞ 
except the plate. Following two positions of the plate 
in the domain is shown in Figure 1:  
 

● Type I: x = 0, -z2  z  0. 
● Type II: x = 0, -z2  z  -z1 

Consider the flow parameters as inviscid, 
incompressible, and irrotational flow. Assume 
atmospheric pressure, Pa = 0 and the Cartesian 
coordinates of the system incorporated in a 2D plane 
x–z. The plane is assumed to be vertical from the 
water surface. The measure of the x-axis is the 
direction of waves propagation and the measure of the 
z-axis is positive upward from SWL. Assume free 
surface of the fluid plane is x–y, under equilibrium 
condition. The geometry of the configuration is 
explained in Figure 1.  
 

Governing equation 
Following are the non-dimensional parameters 

considered:  

 
 

Fig. 1 — Definition sketch of two types of plate positions 
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Where, k=2π/L (L = wave length) and ω = 2π/T  
(T = time period), respectively. The symbol star (*) 
denoted the dimensionless quantities. This symbol 
omitted for the simplicity in sections 2 and 3.  

Let, the governing equation is the Laplace equation 
for irrotational flow and velocity potential denoted by, 
 

),( tx .  
 

  0,2  tx , … (2) 
 

Boundary conditions are:  
Sets of boundary conditions required for solving 

the Eq. (2). The boundary conditions are:  
 

(a) Bottom boundary condition (BBC):  
 

0z , on z = -d … (3) 
 

(b) Free surface dynamic boundary condition (DFSBC):  
 

  0
2

1 22  zxt   on z = 0 … (4) 

 

(c) Free surface kinetic boundary condition (KFSBC):  
 

xxtz    on z = 0 … (5) 

(d) Combined free surface boundary condition 
(CFSBC):  
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z = 0 … (6) 
 
Where, η is the free surface wave elevation, t time and 
d water depth.  
 
Method of Solutions 
 

Perturbation approximation 
The nonlinear ordinary differential equation (ODE) 

solved stepwise. The first step is to convert nonlinear 
ODE into individual linear ODE and then solve each 
successively.  

The velocity potential function (), and the free 
surface wave elevation (η) for a second-order 
perturbation approximation expressed in a power of 
wave steepness (ε):  
 

...2
2
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Where,  ka is a non-dimensional perturbation 
parameter, a is the amplitude of the waves. Subscript 
1 & 2 denote quantities corresponding to the 1st order 
& the 2nd order perturbation solution. Substituting 
Eqs. (7) & (8) into the governing differential 
equation-2 and the boundary conditions defined by 
the Eqs (3) – (6), then expand through Taylor series 
expansion (i.e., Eq. (9)) at z = 0.  
 

   

...|
!3

1
|

!2

1
|;0,;,

03

3
3

02

2

2
0



















zz

z

z

f

z

f

z

f
txftzxf




 … (9) 

 

The first-order approximation equation 
The first-order problem is expressed as below:  

 

01
2   , … (10) 

 

011  t , on z = 0 … (11) 
 

tz 11   , on z = 0 … (12) 
 

01
2

1  ttz  , on z = 0 … (13) 
 

01 z , on z = -d … (14) 
 

The first-order wave equation derived by applying 
the method of separate as given below: 
 

 
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d

dz

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 tx cos1 , … (16) 
 

dtanh2  , … (17) 
 

The second-order approximation equation  
The second-order problem is expressed as below:  
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on z = 0 … (21) 
 

02 z , on z = -d … (22) 
 

Second-order velocity potential ( 2 ) obtained by 
substituting Eqs. (15), (16) and (17) into the right part of 
the Eq. (21) as below: 
 

   txdzA  2sin2cosh12 , … (23) 
 

Second-order wave profile (η2) obtained by 
introducing Eqs. (15) - (16) and (23) into Eq. (19) as 
below: 
 

 txB  2cos12 , … (24) 
 

In Eqs. (23) and (24), the A1 and B1 coefficients are 
given as:  
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Pressure and force on the vertical plate  
Bernoulli’s equation used to determine the pressure 

on the plate induced by the water wave:  
 

 22

2

1
zxtzP   , … (27) 

 

The integration of the above expression between 
the limit –z1 to –z2 gives the horizontal force Fx.  

dsPnF
b
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 , … (28) 

 

Here, ρ signified density of water. Let nx is the 

normal unit vector n  on b and nx = 1 for the 
submerged vertical plate. Second-order difference 
rules used to determine the time derivative t  and 

velocities x .  

The projected area of the plate along the z-axis is 
minimal and consider zero because the plate is in 
water vertically and is very thin. Again, the vertical 
velocity of the wave at the bottom is zero (according 
to BBC), and this vertical velocity increases gradually 
towards the free surface of the water. This velocity on 
the free surface is also minimal and may neglect. 
Hence, the vertical force is negligible on a thin plate.  

Problem definition expressed, the waves propagate 
along the x-direction and no pressure variation in the 
y-direction. Consider wave pressure exerted on a plate 
in the x-direction at a location x = 0 (Fig. 1).  
 

Result and Discussion  
The main objective of this study is to investigate 

the analysis of propagating wave force of ocean on a 
thin plate, using the second-order Stokes wave 
approximation theory under two different geometrical 
configurations. Estimated results are considered as the 
maximum of six decimal places to achieve accuracy 
in the intermediate water (0.05  d/L  0.5).  

Sets of numerical results and analytical results of 
horizontal wave force (Fx) for the two geometry of the 
plate in the intermediate water ranges between 0.1  
d/L  0.44 shown in Tables 1-4. Tables 1-4 shows that 

Table 1 — Comparative results of analytical values (Fx) and numerical values (Fn) at d = 3 m, l1 = 1 mm, l3 = 0.5 m for T = 3 s & 4 s 

a/d 
T = 3 s,  d/L = 0.24  T = 4 s,  d/L = 0.16 

Fx10-10  

Analytical 
Fn10-10  

Numerical 
Error (%) 

 
 

Fx10-10 

Analytical 
Fn10-10 

Numerical 
Error (%) 

Type I (z/d=0) 

0.033 12.86661 12.44418 3.2831 6.398245 6.191826 3.2262 
0.050 19.71234 19.08092 3.2032 10.07943 9.767498 3.0947 
0.067 26.81946 25.98968 3.0940 14.06272 13.65182 2.9219 
0.083 34.17780 33.16714 2.9571 18.33347 17.83619 2.7124 
0.100 41.77717 40.60995 2.7939 22.87685 22.31183 2.4698 
0.116 49.60735 48.31478 2.6056 27.67782 27.06981 2.1968 

Type II (z/d=-1) 

0.033 5.853973 5.657958 3.3484 4.135963 3.997834 3.3397 
0.050 8.744160 8.451394 3.3481 6.296391 6.086169 3.3388 
0.067 11.60705 11.21850 3.3475 8.508750 8.224799 3.3372 
0.083 14.44055 13.95728 3.3466 10.76555 10.40652 3.3349 
0.100 17.24255 16.66574 3.3453 13.05912 12.62397 3.3322 
0.116 20.01095 19.34185 3.3437 15.38161 14.86959 3.3288 
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analytical results and the numerical results are in good 
agreement, and the percentage of errors is very less in 
each case. Table 1 and 2, shows wave forces (Fx) act on 
the plate is more significant for relative water depth 
(d/L = 0.24) concerning the lower relative water depth 
(d/L = 0.16, 0.12 and 0.10). Table 1 also shows that the 
agreement of analytical results is less than equal to 
2.9571 % with the numerical results for type I (z/d = 0) 
at a condition a/d ( = 0.083, 0.100, 0.116) and d/L ( = 
0.24). It is also observed that the Fx on the plate shown 
in Tables 3 and 4 are less comparable to the wave 
forces in Table 1 and 2. This analysis concludes the 
fact that the effect of wave force in the surge direction 
on the plate at d = 3m, T = 3s and d/L = 0.24 is 
important in engineering sciences for the future study.  

Figure 2 shows the horizontal force (Fx) versus 
wave amplitude (a/d = 0.033 to 0.116) curve under 
the conditions: d/L = 0.24, 0.16, 0.12, 0.10. The 
horizontal force increases with the amplitude. It 
shows that the horizontal force (Fx) act on the plate is 
more significant at d/L = 0.24 compared to  
(d/L = 0.16, 0.12 and 0.10). It also shows that wave 
forces decrease from the free surface of the water to 
the bottom of the water for a particular value of (a/d) 
ratio. It is observed from Figure 2 that horizontal 
force for the type-I and type-II converge to each other 
with the decreasing value of d/L, and when d/L = 
0.10, it appears nearer to each other. Observation 
shows that analytical and numerical results are 
validated to each other and are in good agreement. 

 

Table 2 — Comparative results of analytical values (Fx) and numerical values (Fn) at d = 3 m, l1 = 1 mm, l3 = 0.5 m for T = 5 s & 6 s 

a/d 
T = 5 s,  d/L = 0.12 T = 6 s,  d/L = 0.10 

Fx10-10 
Analytical 

Fn10-10 
Numerical 

Error (%) Fx10-10  
Analytical 

Fn10-10 

Numerical 
Error (%) 

Type I (z/d=0) 

0.033 4.060804 3.930789 3.2017 2.922622 2.829267 3.1942 
0.050 6.573622 6.372898 3.0535 4.855248 4.707311 3.0469 
0.067 9.384743 9.115869 2.8650 7.075390 6.872682 2.8650 
0.083 12.47596 12.14628 2.6425 9.561516 9.307712 2.6544 
0.100 15.82846 15.45015 2.3901 12.29089 11.99357 2.4191 
0.116 19.42288 19.01292 2.1107 15.23957 14.91024 2.1610 

Type II (z/d=-1) 

0.033 3.009344 2.908930 3.3368 2.323393 2.245898 3.3354 
0.050 4.706918 4.549917 3.3355 3.740919 3.616190 3.3342 
0.067 6.517044 6.299790 3.3336 5.307773 5.130904 3.3323 
0.083 8.426956 8.146247 3.3311 7.006536 6.773231 3.3298 
0.100 10.42330 10.07641 3.3280 8.818580 8.525189 3.3270 
0.116 12.49214 12.07686 3.3244 10.72407 10.36764 3.3237 

 

Table 3 — Comparative results of analytical values (Fx) and numerical values (Fn) at d = 6 m, l1 = 1 mm, l3 = 0.5 m for T = 3 s & 4 s 

a/d 
T = 3 s,  d/L = 0.44 T = 4 s,  d/L = 0.26 

Fx10-10 
Analytical 

Fn10-10 
Numerical 

Error (%) Fx10-10 
Analytical 

Fn10-10 

Numerical 
Error (%) 

Type I (z/d=0) 

0.016 2.565854 2.480109 3.3418 0.989763 0.956883 3.3220 
0.025 3.854889 3.726257 3.3369 1.498977 1.449474 3.3024 
0.033 5.147882 4.976459 3.3300 2.017522 1.951442 3.2753 
0.041 6.444746 6.230708 3.3211 2.545233 2.462745 3.2409 
0.050 7.745395 7.488999 3.3103 3.081941 2.983340 3.1993 
0.058 9.049744 8.751325 3.2975 3.627480 3.513187 3.1508 

Type II (z/d=-1) 

0.016 0.369517 0.357154 3.3457 0.382598 0.369829 3.3376 
0.025 0.552721 0.534228 3.3459 0.572223 0.553123 3.3378 
0.033 0.734887 0.710299 3.3457 0.760698 0.735309 3.3375 
0.041 0.916015 0.885368 3.3458 0.948013 0.916368 3.3380 
0.050 1.096107 1.059432 3.3459 1.134134 1.096280 3.3377 
0.058 1.275175 1.232494 3.3458 1.319051 1.275022 3.3379 
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Horizontal force (Fx) versus wave amplitude  
(a/d = 0.016 to 0.058) curves are shown in Figure 3 
under the various consideration of d/L = 0.44, 0.26, 
0.19, 0.15. Observation shows that the effect of 
horizontal force (Fx) on a plate is significantly higher 
for d/L = 0.44 as compared to (d/L = 0.26, 0.19, 0.15). 

It shows that wave forces decrease from the free 
surface of the water to the bottom of the water for a 
particular value of (a/d) ratio. It is observed from 
Figure 3, horizontal force for the type-I and type-II 
are converging to each other with the decreasing 
value of d/L, and when d/L = 0.15, it appears very 

Table 4 — Comparative results of analytical values (Fx) and numerical values (Fn) at d = 6 m, l1 = 1 mm, l3 = 0.5 m for T = 5 s & 6 s. 

a/d 
T = 5 s,  d/L = 0.19 T = 6 s,  d/L = 0.15 

Fx10-10 
Analytical 

Fn10-10 

Numerical 
Error (%) Fx10-10 

Analytical 
Fn10-10 

Numerical 
Error (%) 

Type I (z/d=0) 

0.016 0.531158 0.513587 3.3082 0.341462 0.330196 3.2994 
0.025 0.813518 0.786876 3.2750 0.529226 0.511986 3.2575 
0.033 1.106781 1.071035 3.2297 0.728017 0.704709 3.2015 
0.041 1.410731 1.365965 3.1732 0.937584 0.908214 3.1325 
0.050 1.725152 1.671570 3.1059 1.157679 1.122351 3.0516 
0.058 2.049830 1.987752 3.0285 1.388046 1.346966 2.9596 

Type II (z/d=-1) 

0.016 0.301616 0.291556 3.3354 0.231877 0.224143 3.3352 
0.025 0.453525 0.438400 3.3350 0.351841 0.340106 3.3354 
0.033 0.606078 0.585861 3.3356 0.474318 0.458498 3.3353 
0.041 0.759193 0.733869 3.3357 0.599171 0.579193 3.3343 
0.050 0.912797 0.882351 3.3355 0.726279 0.702063 3.3343 
0.058 1.066818 1.031237 3.3352 0.855502 0.826978 3.3342 

 

 
 

Fig. 2 — Comparison of analytical and numerical wave force (Fx) at d = 3 m, l1 = 1 mm and l3 = 0.5 m for the type I & type II 
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close. Here, both the analytical results and numerical 
results are validated to each other and showing good 
agreement.  
 

Figures 2 and 3 show that surging force for the 
type-I and type-II close to each other at a minimal 
relative water depth. At a value, d/L = 0.064, the 
forces of the two types is almost the same (Deb Roy 
et al.14) indicating that the forces of the two types are 
nearly same. Figures 2 and 3 also show that at a depth 
d = 3 m and d/L = 0.24, the horizontal force acting on 
a plate at z/d = 0 is significantly high when compared 
to the value at d = 6 m and (d/L = 0.44). This 
explanation concludes that the effect of wave body 
interaction at a value d/L = 0.24 takes an essential role 
for further study in engineering sciences.  
 

Time histories of horizontal forces (Fx) plotted 
under the different value of wave steepness (ε) at a 
depth d = 3 m is shown in Figure 4. Hear, relative 
depths consider d/L= 0.24, 0.16, 0.12, 0.10. Here, 
explaining the effects of propagating wave force on a 
plate at z/d = 0 using the second-order Stokes wave 
equation is an important study of the nonlinearity. 
Nonlinearity effect in the form of a double peak is 

evident in the time history of the wave forces and its 
effect at d/L = 0.10 on the plate shown in Figure 4 is 
high. Observation from figures tells that double peak 
found for the wave steepness ε (= 0.070) and at  
d/L = 0.10 between the time ranges 0.33  t/T  0.65 
implies maximum force on the plate does not always 
occur in this range. This research concludes to a 
useful guide to the design of thin vertical plate in the 
intermediate water depth.  

Time histories of horizontal forces (Fx) plotted at 
the bottom position of the plate (z/d = -1) at d = 3 m 
shown in Figure 5 under the same conditions as the 
previous figures. Here, the double peak found 
between the time ranges 0.35  t/T  0.63, which 
shows that the high nonlinearity effect extends to the 
bottom also.  

The observation of Figure 6 shows the time 
histories graph of horizontal forces (Fx) on a plate at d 
= 6 m. Here, the position of the plate at the surface of 
water (z/d = 0), and d/L = 0.44, 0.26, 0.19, 0.15 under 
various wave steepness (ε) conditions. Here, the 
nonlinearity effects on the plate are not evident at all 
the values of d/L.  

 
 

Fig. 3 — Comparison of analytical and numerical wave force (Fx) at d = 6m, l1 = 1mm and l3 = 0.5m for the type I & type II. 
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Fig. 4 — Time history of horizontal force (Fx) at d = 3 m for the type I 
 

 
 

Fig. 5 — Time history of horizontal force (Fx) at d = 3 m for the type II 
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Figures 7 and 8 illustrate the distribution of wave 
profiles (η) in the x-direction under the various wave 

steepness (ε) conditions and various values of relative 
depth (d/L). The results presented in figures 

 
 

Fig. 6 — Time history of horizontal force (Fx) at d = 6 m for the type I 
 

 
 

Fig. 7 — Wave profiles (η) versus (x/L) for different values of (ε) and (d/L) at d = 3 m 
 



DEB ROY: WAVE FORCE ON THIN PLATE: SECOND-ORDER WAVE EQUATION 
 
 

1339

calculated from the second-order approximation 
method. It is observed from Figure 7 that steeper crest 
found at d/L = 0.24 and wave steepness (ε = 0.175). 
The value of the steeper crest gradually decreases 
with the decrease of relative depth. The observation of 
Figure 7 shows that the flatter trough with a double 
peak found at d/L = 0.10 and wave steepness  
(ε = 0.070). This observation implies that the 
nonlinearity effect is more potent than in a small wave 
steepness (ε = 0.020) under the same condition of  
d/L = 0.10. This indication is an important 
observation that the higher-order solution is essential. 
It also observed from Figure 8 that small flatter trough 
found at d/L = 0.15 and wave steepness (ε = 0.053).  
 

Conclusion  
In this analysis, the second-order Stokes wave 

approximation equation was used to determine the 
horizontal wave force on a thin rectangular plate under 
the condition at the surface piercing position and 
bottom standing position. The analysis completed at 
the intermediate range (0.1  d/L  0.44). The above 
approximation equation demonstrates the effect of the 
nonlinearity of the higher-order components of the 
wave forces and wave profiles on a plate. Nonlinearity 
effect of wave force on a plate found in the form of 
double peaks is the critical study. Observation of 

figures tells that double peak found at the wave 
steepness ε (= 0.070) and at d/L = 0.10 between the 
time ranges 0.33  t/T  0.65, which implies maximum 
force on the plate does not always occur in this range. 
Hence, it is concluded that at a low relative depth, 
nonlinearity effect of the wave can be taken into 
consideration for further study. Observation also shows 
that at the mean water level (z/d = 0), the effect of 
wave force on the plate significantly high for  
d/L = 0.24 and at ε = 0.175 as compared to the low 
value of d/L. This analysis of the research helps the 
guidance to the designer who makes the design of 
WEC and tries to extract the energy from the ocean 
wave with the help of thin vertical plate in the 
intermediate water in the surge direction. 
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