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In the present study, a systematic methodology has been presented to determine optimal injection molding conditions for 

minimizing warpage and shrinkage in a thin wall relay part using modified particle swarm algorithm (MPSO). Polybutylene 

terephthalate (PBT) and polyethylene terephthalate (PET) have been injected in thin wall relay component under different 

processing parameters: melt temperature, packing pressure and packing time. Further, Taguchi’s L9 (3
2) orthogonal array has

been used for conducting simulation analysis to consider the interaction effects of the above parameters. A predictive 

mathematical model for shrinkage and warpage has been developed in terms of the above process parameters using regression 

model. ANOVA analysis has been performed to establish statistical significance among the injection molding parameters and 

the developed model. The developed model has been further optimized using a newly developed modified particle swarm 

optimization (MPSO) algorithm and the process parameters values have been obtained for minimized shrinkage and warpage. 

Furthermore, the predicted values of the shrinkage and warpage using MPSO algorithm have been reduced by approximately 

30% as compared to the initial simulation values making more adequate parts. 
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1 Introduction 

The plastic injection molding (PIM) process is 

widely used for producing intricate shaped plastic 

parts with distinctive geometric features and also has 

short production cycles. Basically, PIM process is a 

cyclic one which consists of filling and packing, 

cooling and ejection1. Injection molding helps in 

producing products of computer, communication, and 

consumer electronic (3C) such as portable computers 

and cell phones. The 3C products are generally thin, 

light, short and small2-3. However, with the increasing 

demand of more complex products having less wall 

thickness, the PIM process is prone to face more 

challenging tasks4. Consequently, the quality of the 

parts produced using PIM process is highly affected 

by the appropriate selection of the various process 

parameters and the mold design5-6. In contrast, the 

inappropriate process parameter values can lead to 

produce part defects, result in long lead times and 

high cost7. 

Warpage and shrinkage are among the most 

important defects that are used to measure the quality of 

any injection molded components. Tang et al.
8
 applied 

Taguchi method for minimizing the warpage in the 

design of improved plastic injection mold. Similarly, 

Taguchi and ANOVA are used in a study for obtaining 

optimal shrinkage injection molding conditions9. The 

results suggest that optimized parameters reduce 

shrinkage by 1.244 % and 0.937 % for Polypropylene 

(PP) and polystyrene (PS), respectively.  

Similarly, Park and Dang10 in their study suggests 

that runner and cooling channel geometry can 

improve the final quality of products. One specific 

study was found for minimizing the warpage in thin 

shell plastic parts by employing the response surface 

methodology and genetic algorithm. Liao et al.11 in 

their study provided optimum conditions for 

minimizing shrinkage and warpage problems. The 

cyclone scanner and Polyworks software was used for 

determining the shrinkage and warpage problem. The 

packing pressure was found to be the most 

influencing factors. Moreover, several studies found 

have used response surface methodology (RSM) 

individually or integrating with genetic algorithm 

(GA) for determining the interaction and relationship 

among factors and process parameters12-14. Similar 

studies have been found that uses neural model and 

modified complex method15, grey-fuzzy logic for thin 

shell feature16 for optimization of warpage in different 

thermoplastic parts. 
—————— 
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Generally, the warpage problem of thin-wall 

injection molded plastic parts has been reported in 

many literature. As the thickness of part decreases, 

the shrinkage defect becomes more complex and 

causes significant warpage of the plastic component. 

However, few of them had shown the effective 

processing variables and their optimization for the 

dimensional shrinkage and warpage minimization 

under high-speed injection molding process. The past 

literature has used only GA for the determination of 

optimal injection molding conditions. The current 

study takes into consideration a newly developed 

modified particle swarm optimization (MPSO) 

algorithm for optimal injection molding process 

parameter determination.  

In this study, a systematic methodology is presented 

using regression analysis and determining the optimum 

process parameters using a newly developed  

MPSO algorithm17. Particle swarm optimization 

(PSO)algorithm has been found to be widely used as a 

powerful tool for solving optimization problems due to 

the simplicity of the concept with fewer parametric 

settings as compared to other population-based 

optimization algorithms18-19. However, classical PSO 

still has some disadvantages, such as weak local search 

that may lead to entrapment in local minima affecting 

the convergence performance that results in 

uncertainties in the outcomes obtained.  
Due to this reason several modified variants of 

PSO have been proposed till date by researchers. 
Chen and Zhao presents a simplified PSO based on 
stochastic inertia weight. This variant removes the 
velocity parameter and obtains the inertia weight by 
random distribution to enhance the global and local 
search abilities of PSO algorithm20. Alfi et al. 
proposed an improved fuzzy particle swarm 
optimization (IFPSO) that utilizes fuzzy inertia 
weight to balance the global and local exploitation 
abilities21.Verma et al. presents an opposition based 
modified algorithm that generates the initial particles 
using opposition based learning and a novel 
dimension based learning approach is used for  
finding global optimal solution22.Tian introduced a 
Gaussian mutation operator to induce particle  
search diversity23.A similar work by Ruan et al.24 
exploited population density to estimate the particle's 
distribution in the search space by introducing  
the swarm size, the size of the solution space  
and a saturated population density respectively. A 
constriction factor particle swarm optimization 
(CFPSO) is presented by Pathak and Singh, addition 

of constriction factor helps in accelerating the 
convergence property of PSO algorithm25. To 
improve the exploitation capability of PSO, a 
modified particle swarm optimization (MPSO) is 
proposed by Pathak et al.17 based on the generation of 
new improved particle position using the difference in 
the global and local best position. An efficient greedy 
selection procedure has been employed for obtaining 
better position between the newly generated and the 
current candidate solution based on the fitness value.  

Furthermore, a real life case study of an electronics 

component relay is considered for injection molding 

process. The PBT/PET molten material is used to 

inject into the mold to produce the required 

constituent. A systematic methodology is proposed to 

analyze the volumetric shrinkage and warpage in an 

injection-molded part with a thin shell feature during 

the injection molding process. Initially, the effects of 

the injection process parameters on shrinkage and 

warpage for various wall thicknesses were examined 

using Taguchi method. The shrinkage and warpage 

values were found by moldflow insight software. The 

results of conducting confirmation experiments and 

analysis of variance (ANOVA) assure that the 

quadratic models of the shrinkage and warpage are 

well fitted with the simulated values at the optimum 

value. The shrinkage and warpage have been analyzed 

and predicted by the obtained mathematical models 

for the individual effects of all parameters. 
 

2 Simulation Details 

An electronic relay part, with an overall 

dimensions of 72 mm× 34 mm × 48.5 mm was 

designed in CREO-3.0 software and was used as a 

model, using a 3D mesh type. The analytical model 

consists of 29, 812 elements. The analysis were 

performed using three thickness values of 0.8, 0.9 and 

1.0 mm. Figure 1 shows the mesh file of relay 

component with the cooling channels. 

 
 

Fig. 1 — Electronic relay mesh file with cooling channel. 
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The default values were determined using an 

injection molding machine (maximum machine 

injection rate, 6000 m3/s) and acrylonitrile  

butadiene styrene (ABS) mold material (mold density, 

1.5 g/cm3; mold specific heat, 1300 J/kg °C). The 

injection molded electronic relay was either made of 

PBT or PET material, due to wide application of these 

materials in academic and industries. The physical 

properties of these materials are summarized in  

Table 1, which was obtained from mold flow insight 

library. The outline of the adopted methodology for 

investigating optimum shrinkage and warpage 

prediction is shown in Fig. 2. 

The parameters considered for shrinkage and 

warpage analyses are melt temperature (A), packing 

pressure (B) and packing time (C). The values of 

these parameters are provided in Table 2. The 

injection time was fixed at 3s for all experiments. An 

L9 (33) orthogonal array was selected for the 

experimental design for each of the three factors.  

The three levels for the three factors were  

identified during the 9 experiments (see Table 3).  

The signal-to-noise ratios (S/N) for every trials  

were determined using: 

𝑆

𝑁
= −10𝑙𝑜𝑔  

1

𝑛
 𝑦𝑖

2𝑛
𝑖=1    … (1) 

where, 𝑛 is the number of shrinkage and warpage data 

sets (equal to 9) and 𝑦𝑖  is the shrinkage and warpage 

value for the ith data sets. The ANOVA analysis is 

performed using the Minitab software. 
 

3 Results and Discussion 

The Taguchi method was applied to predict the 

effect of injection molding process parameters on the 

shrinkage and warpage. The measured values of 

shrinkage and warpage and the signal-to-noise ratios 

are measured and reported in Table 4. The signal-to-

noise ratio is an important quality indicator that 

researchers used to determine the influence of varying 

a particular parameter on the performance. For the 

current study, smaller the better characteristic was 

 
 

Fig. 2 — Adopted methodology for warpage and shrinkage 

optimization. 

Table 1 — Physical properties of PBT/ PET material. 

Property PBT PET 

Melt density (g/cm3) 1.31 0.72 - 0.76 

Solid density (g/cm3) - 0.86 - 0.96 

Mold temperature (°C) 40 – 60 80 – 120 

Melt temperature (°C) 220 – 280 265 - 280 

Poisson ratio 0.3902 035 – 0.45 

Material structure Semi-crystalline Amorphous 

Table 2 — Process Parameters and their levels. 

Factors Description Coded 

Symbol 

Unit PBT Levels PET Levels 

   1 2 3 1 2 3 

A Melt Temperature, tm X1 °C 254 266 278 252 264 276 

B Packing Pressure, pp X2 MPa 25 30 35 22 28 34 

C Packing Time, pt X3 S 10 15 20 12 18 24 
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selected when calculating the S/N ratio, which is 

based on Eq.(1), as shown in Table 4. It was found 

that the best process parameter value can be 

determined by selecting the level with the best values 

at each factor. Figure 3 illustrates the variation  

of the S/N ratio of warpage and shrinkage for 

different PBT and PET material. Based on shrinkage 

results in Table 4 and Fig. 3 (a), it was found that PET 

material had higher S/N ratio (-6.02) value than the 

PBT material, because it exhibits least shrinkage as 

compared to PBT. Similarly, the warpage result 

shows that PET also has least warpage in comparison 

to PBT warpage values. It was clearly seen from the 

results that PET material is better for producing relay 

component in comparison to PBT material due to its 

least shrinkage and warpage.  

For further analyzing the obtained results and 

determining the significance of each parameter, 

regression analysis and ANOVA test was performed. 

These analyses were performed on Minitab V14 

software. Due to change in response statistics 

drastically with the control parameters, it is very 

challenging to develop an analytical model. The 

regression analysis may be the solution to this 

problem which is useful in searching the effect of 

factors to an event while examining that event. There 

may be factors which are either direct or indirect. The 

regression analysis is worthwhile when the focus is on 

determining the relationship between dependent and 

one or more independent variables. While using 

multiple regression analysis, the Eq. (2) of the form 

given below is used to explain the relationship 

between the independent variables X1, X2 and X3 and 

the response variable Y. 

𝑌 = 𝛽 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽11𝑋1
2 + 𝛽22𝑋2

2 

+𝛽33𝑋3
2 + 𝛽12𝑋1𝑋2 + 𝛽13𝑋1𝑋3 + 𝛽23𝑋2𝑋3  … (2) 

Based on the above generalized regression model, 

the following analytical model was obtained for 

shrinkage of PBT and PET in the form of coded unit 

that can be expressed as in Eq. (3-4): 

Shrinkage (S1) = 0.326440 + 0.201507𝑋1 – 

0.034872𝑋2 +0.065912𝑋3 – 0.003173𝑋1
2 – 

0.029771𝑋2
2 – 0.004712𝑋3

2 + 0.033242𝑋1𝑋2 + 

0.023560𝑋1𝑋3 + 0.048322𝑋2𝑋3             … (3) 

Shrinkage (S2) = 0.462270 + 0.305915𝑋1 – 

0.048202𝑋2 + 0.079210𝑋3 – 0.002320𝑋1
2 – 

0.041725𝑋2
2 – 0.003712𝑋3

2 + 0.045902𝑋1𝑋2 + 

0.043450𝑋1𝑋3 + 0.054721𝑋2𝑋3             … (4) 

Table 4 — Shrinkage and warpage values of PBT and PET material. 

Exp. No. PBT PET PBT PET 

 Shrinkage % S/N ratio Shrinkage % S/N ratio Warpage (mm) S/N ratio Warpage (mm) S/N ratio 

1 2.1982 -7.1293 2.0409 -6.2237 0.2432 12.2841 0.1682 15.3867 

2 2.1392 -2.3451 1.972 -6.0301 0.2164 13.2956 0.1608 15.8743 

3 2.0932 -6.8343 1.9145 -5.5843 0.2813 11.0166 0.1619 15.815 

4 2.1523 -7.0749 1.8832 -5.4029 0.1341 17.4521 0.2521 11.9685 

5 2.0123 -6.1452 1.9923 -6.0940 0.1931 14.2844 0.2912 10.7161 

6 1.9450 -5.7231 1.9639 -5.927 0.1857 14.6237 0.1972 14.1018 

7 1.9197 -5.5938 2.021 -6.1512 0.2076 13.6554 0.2102 13.5473 

8 1.9921 -6.0927 1.9715 -6.0211 0.1596 15.9397 0.1821 14.6143 

9 1.9772 -6.0312 1.9218 -5.7439 0.1801 14.8897 0.1717 15.305 

Table 3 — The layout of L9 orthogonal array. 

Exp. No. A B C 

1 1 1 3 

2 1 2 2 

3 1 3 1 

4 2 1 2 

5 2 2 1 

6 2 3 3 

7 3 1 1 

8 3 2 3 

9 3 3 2 

 
 

Fig. 3 — Variation of the S/N ratio of (a) Shrinkage and  

(b) Warpage. 
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In addition, the model significance is further 

validated using ANOVA analysis. The ANOVA 

results for PBT and PET material are shown in  

Table 5 and Table 6, respectively. The model was 

built for 95% confidence level. The correlation 

coefficient (𝑟2) of the developed analytical models for 

PBT and PET was found to be 0.973 and 0.962 

(nearer to the ideal value of 1). The adequate value of 

regression coefficient indicates that the model is 

significant and further analysis and predictions can be 

performed. All the linear, square and interaction terms 

have significant effect on the response output. It was 

clearly seen from Table 5 and 6 that the F-value is 

significantly higher for both the ANOVA table, 

indicating that the model is significant. There is only 

0.05% chance that such a high model F-value may 

have occurred due to noise. 

Furthermore, the performance of the developed 

model of warpage for both material was tested using 

ten randomly selected experiments other than the used 

in Table 4. The random values chosen from ten 

experiments and compared with the values obtained 

developed analytical model. The results of percentage 

deviation in prediction of shrinkage for the PBT and 

PET material is shown in Fig. 4. It was clearly seen 

from Fig. 4, the percentage deviation in shrinkage 

prediction for PBT and PET are 3.56 and 5.55 

respectively. However, the percentage deviation for 

shrinkage for PBT is less as compared to PET 

material. Similarly, the following analytical model for 

warpage was developed using non-linear regression 

model for both the material i.e. PBT and PET as 

shown in Eq. (5) and (6). 

Warpage (W1) = 1.23966 + 0.772017𝑋1 + 

0.005873𝑋2 - 0.347592𝑋3 - 0.027631𝑋1
2 – 

0.000987𝑋2
2 – 0.012283𝑋3

2 + 0.000533𝑋1𝑋2 + 

0.010937𝑋1𝑋3 + 0.000272𝑋2𝑋3             … (5) 

Warpage (W2) = 1.78218 + 0.817812𝑋1 + 

0.007291𝑋2 + 0.192205𝑋3 - 0.051140𝑋1
2 – 

0.001723𝑋2
2 – 0.027831𝑋3

2 + 0.000612𝑋1𝑋2 - 

0.033147𝑋1𝑋3 + 0.000721𝑋2𝑋3             … (6) 

The developed regression model significance is 

further tested using ANOVA analysis. The ANOVA 

results for PBT and PET material are shown in  

Table 7 and Table 8 respectively. The model was built 

for 95% confidence level. The correlation coefficient 

(𝑟2) of the developed analytical models for PBT and 

PET was found to be 0.941 and 0.924 (nearer to the 

Table 5 — ANOVA result for PBT shrinkage model. 

Source DF Sum of squares (SS) Mean square (MS) F-Value P-value  

Regression 9 1.52827 0.16980 253.43 0.000 Significant 

Linear 3 1.37281 0.45760 682.98 0.000  

Square 3 0.01430 0.00477 7.12 0.001  

Interaction 3 0.13092 0.04031 60.16 0.000  

Residual error  41 0.02744 0.00067    

Lack of fit 5 0.02205 0.00441 6.58 0.000  

Pure error 36 0.00438 0.00012    

Total 50 1.5572     
 

Table 6 — ANOVA result for PET shrinkage model. 

Source DF Sum of squares (SS) Mean square (MS) F-Value P-value  

Regression 9 2.72891 0.30321 133.57 0.000 Significant 

Linear 3 2.43011 0.81003 356.84 0.000  

Square 3 0.08260 0.02753 12.13 0.000  

Interaction 3 0.25109 0.08370 36.87 0.000  

Residual error  41 0.09344 0.00227    

Lack of fit 5 0.08704 0.01741 7.67 0.000  

Pure error 36 0.00812 0.00012    

Total 50 2.92391 0.00025    

 
 

Fig. 4 — Percentage deviation in prediction of shrinkage. 
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ideal value of 1). The adequate value of regression 

coefficient indicates that the model is significant and 

further analysis and predictions can be performed. 

Moreover, all the linear, square and interaction terms 

have significant effect on the response output. It was 

clearly seen from Table 7 and 8 that the F-value is 

significantly higher for both the ANOVA table, 

indicating that the model is significant. There is only 

0.05% chance that such a high model F-value may 

have occurred due to noise. Furthermore, the 

performance of the developed model of warpage for 

both material was tested using ten randomly selected 

experiments other than the used in Table 4. The 

random values chosen from ten experiments and 

compared with the values obtained developed 

analytical model. The results of percentage deviation 

in prediction of warpage for the PBT and PET 

material is shown in Fig. 5. It was clearly seen from 

Fig. 5, the percentage deviation in warpage prediction 

for PBT and PET are 3.22 and 4.23 respectively. 

However, the percentage deviation for warpage for 

PBT is less as compared to PET material. 

 

4 Modified Particle Swarm Optimization Algorithm 

This section proposes the modified variant of 

classical particle swarm optimization algorithm to 

optimize developed analytical model. Since the 

exploitation ability directly influences the quality of 

results. The modified variant will help in overcoming 

the classical PSO drawback of low convergence due 

to lack in exploitation abilities.  

 
 

Fig. 5 — Percentage deviation in prediction of warpage. 

 

4.1 Standard Particle Swarm Optimization Algorithm 

The basic particle swarm optimization is a 

population-based method suggested by Kennedy and 

Eberhart in 1995. PSO is modeled after the simulation 

of social behavior of birds in a flock26-27. PSO is 

initialized by distributing each particle randomly in 

D-dimensional search space. The performance of each 

particle is measured using a fitness function which 

depends on the optimization problem. Each particle 𝑖 
represented by following information: 

𝑥𝑖 , the current position of the particle 𝑖 
𝑣𝑖 , current velocity of the particle 𝑖 
𝑝𝑖 , personal best position of the particle 𝑖 

The personal best position is the best position that 

particle𝑖 has been so far. The fitness function is 

highest for that position of 𝑖𝑡  particle. Here, velocity 

acts like a vector which helps in guiding the particle 

from one position to another with updated velocity at 

Table 7 — ANOVA analysis for warpage PBT model. 

Source DF Sum of squares (SS) Mean square (MS) F-Value P-value  

Regression 9 202.317 22.48 40.43 0.000 Significant 

Linear 3 112.34 37.45 67.36 0.000  

Square 3 43.22 14.41 25.92 0.000  

Interaction 3 29.23 9.74 17.52 0.000  

Residual error 41 22.78 0.556    

Lack of fit 5 16.26 3.252 5.56 0.000  

Pure error 36 6.52 0.181    

Total 50 225.097     
 

Table 8 — ANOVA Analysis for warpage PET model. 

Source DF Sum of squares (SS) Mean square (MS) F-Value P-value  

Regression 9 195.794 21.755 49.55 0.000 Significant 

Linear 3 106.91 35.64 81.48 0.001  

Square 3 35.18 11.73 26.72 0.000  

Interaction 3 25.76 8.59 19.55 0.000  

Residual error  41 18.02 0.439    

Lack of fit 5 12.54 2.508 5.72 0.000  

Pure error 36 5.48 0.152    

Total 50 213.814     
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every iteration. The personal best position of 𝑖𝑡  

particle with dependence on time step t as expressed 

in Eq. (7): 

𝑃𝑖 𝑡 = 𝑝𝑖 𝑡          𝑖𝑓 𝑓 𝑥𝑖 𝑡  ≥ 𝑓 𝑝𝑖 𝑡   

𝑥𝑖 𝑡          𝑖𝑓 𝑓(𝑥𝑖 𝑡 ) < 𝑓(𝑝𝑖 𝑡 )   … (7) 

New position and velocity for 𝑖𝑡  particle is 

updated at every iteration and expressed as Eq. (8-9): 

𝑣𝑖 𝑡 + 1 = 𝑣𝑖 𝑡 + 𝑐1

∗ 𝑟1 𝑝𝑖 𝑡 − 𝑥𝑖 𝑡  

+ 𝑐2 ∗ 𝑟2(𝑔𝑖 𝑡 
− 𝑥𝑖 𝑡 ) 

… (8) 

𝑥𝑖 𝑡 + 1 = 𝑥𝑖 𝑡 + 𝑣𝑖(𝑡 + 1) … (9) 
 

𝑟1and 𝑟2 are two independent uniformly distributed 

random numbers within given interval [0,1]. 𝑐1and 𝑐2 

are two accelerating coefficients whose value are 

generally 2 each for almost all applications, 𝑝(𝑡) is 

the best position parameter of an individual particle 

and 𝑔(𝑡) is global best position parameter of entire 

swarms. Shi and Eberhart introduced an inertia weight 

𝑤 into the velocity updating of the PSO that helps in 

controlling the scope of the search. Often, 𝑤 

decreases linearly from 0.9 to 0.4 over the whole 

iteration. High value of inertia weight helps in 

exploration whereas low value favors exploitation. 

The velocity update with inertia weight is shown in 

Eq. (10).  

𝑣𝑖 𝑡 + 1 = 𝑤 𝑡 ∗ 𝑣𝑖 𝑡 + 𝑐1

∗ 𝑟1 𝑝𝑖 𝑡 − 𝑥𝑖 𝑡  + 𝑐2

∗ 𝑟2(𝑔𝑖 𝑡 − 𝑥𝑖 𝑡 ) 

… (10) 

 

4.2 Modified Particle Swarm Optimization (MPSO) 

Algorithm 

A new variant of PSO proposed in this paper for 

optimizing the shrinkage and warpage in injection 

molded components. The exploration and exploitation 

capabilities are two important factors that are 

considered during design of an optimization 

algorithm. Exploitation refers to the use of existing 

information whereas the exploration means generation 

of new solution in the search space. In PSO, new 

solution is replaced by the old one without really 

comparing which one is better. This shows the lack in 

exploitation capability of PSO and has only 

exploration tendency which makes it hard to find the 

best possible solutions.  

Because of the lack in exploitation strategy, 

classical PSO still have some disadvantages, such as 

weak local search ability and may lead to entrapment 

in local minimum solutions. To overcome all these 

problems, the modified variant of PSO algorithm 

generates new swarm position and fitness solution 

based on the new search Eq. (11) and (12): 

𝑣𝑛𝑒𝑤 = 𝑝𝑏𝑒𝑠𝑡 + 𝑟(𝑔𝑖(t) − 𝑝𝑖(t)) … (11) 

𝑥𝑛𝑒𝑤 = 𝑝𝑖(t) + 𝑣𝑛𝑒𝑤  … (12) 

where, 𝑝(𝑡)is the particle best position, 𝑔(𝑡)is the 

particle global best position. Parameter 𝑟 denotes 

random number between 0 and 1 that controls the rate 

at which the population evolves. The best solutions in 

the current population are very useful sources that can 

be used to improve the convergence performance. 

Also, Eq. (11) can drive the new candidate solution 

only around the best solution of the previous iteration. 

Therefore, the proposed search and update 

equations described by Eq. (11) and (12) can increase 

the exploitation capability of the classical PSO. Any 

selection strategy in the algorithm is usually 

considered as exploitation, as the fitness solution of 

the individual is used to determine whether or not an 

individual should be exploited. Therefore, the MPSO 

particle swarms employ greedy selection procedure 

among two parallel fitness functions to update the 

best candidate solution which also helps in improving 

the exploitation ability of the algorithm. The 

flowchart of proposed modified PSO algorithm is 

shown in Fig. 6. 
 

4.3 Benchmark Testing 

In order to prove the effectiveness of the proposed 

MPSO algorithm and testify its applicability in 

evaluating the optimal injection process parameters, 

five benchmark test functions are selected. These 

benchmark functions aim for a global minimum value 

and the commonly used to test any newly proposed 

algorithm or variant of an existing one. The test 

functions to be minimized include unimodal functions, 

multimodal functions having many local optima and 

multimodal function having local optima in the pre-

defined search space. Results obtained using the MPSO 

algorithm are compared with the results of other 

modified variant of PSO proposed in literature. The 

five test functions are defined as follows: 

a. Benchmark Function 1 

The sphere function, 𝑓1 is defined as follows in  

Eq. (13): 

𝑓1 =  𝑥𝑖
2𝐷

𝑖=1   … (13) 

The function has a unique global minimum value 

of 0, and the search space is −100 < 𝑥𝑖 < 100. 



INDIAN J ENG MATER SCI, JUNE 2020 

 

 

610 

  

 
 

Fig. 6 — Flowchart of modified particle swarm optimization (MPSO) algorithm. 
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where 𝑥𝑖  is the design variable (For 𝑖 = 1,2 … . 𝐷 

dimensions) 

b. Benchmark Function 2 

The Rosenbrock parabolic valley function, 𝑓2 is 

defined as follows in Eq. (14): 

𝑓2 =  100 𝑥𝑖
2 − 𝑥𝑖+1 

2
+  1 − 𝑥𝑖 

2𝐷−1
𝑖=1   … (14) 

The function has a unique global minimum value 

of 0, and the search space is −2 < 𝑥𝑖 < 2. 

where 𝑥𝑖  is the design variable (For 𝑖 = 1,2 … . 𝐷 

dimensions) 

c. Benchmark Function 3 

The Powell Quartic function was proposed by MJD 

Powell in 1962. It is a unimodal test function which is 

used to test the convergence performance and 

optimization effectiveness of the new optimization 

algorithms for several variables. The Powell Quartic 

function, 𝑓3 is defined as follows in Eq. (15): 

𝑓3 =  𝑥1 + 10𝑥2 
2 + 5 𝑥3 − 𝑥4 

2 

+ 𝑥2 − 2𝑥3 
4 + 10 𝑥1 − 𝑥4 

4  … (15) 

The function has a unique global minimum value 

of 0 and the search space is −4 < 𝑥𝑖 < 5. 

where, 𝑥𝑖  (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4) is the design variable (For 

𝑖 = 1,2,3,4 dimensions) 

d. Benchmark Function 4 

It is a generic sample of non-linear multi-modal 

function. It was proposed by Rastrigin. Analytically, 

it represents very hard problem due to its large  

search space and it large number of local minima.  

The Rastrigin function, 𝑓4 is defined as follows in  

Eq. (16): 

𝑓4 =   𝑥𝑖
2 − 10 cos 2𝜋𝑥𝑖 + 10 𝐷

𝑖=1   … (16) 

The function has many local minima and a unique 

global minimum value of 0. The search space is 

−5.12 < 𝑥𝑖 < 5.12 within which the 𝑥𝑖  variable will 

search the optimum solution. This function can be 

used for testing the ability of new optimization 

algorithms in searching and escaping from the local 

extreme points. 

where 𝑥𝑖  is the design variable (For 𝑖 = 1,2 … . 𝐷 

dimensions) 

e. Benchmark Function 5 

The two-dimensional Goldstein-Price function, 𝑓5 

is defined as follows in Eq. (17): 

𝑓5 =  1 +  𝑥1 + 𝑥2 + 1 2 19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 +

6𝑥1𝑥2+3𝑥22⋅30+2𝑥1−3𝑥2218−32𝑥1+12𝑥12+4
8𝑥2−36𝑥1𝑥2+27𝑥22  … (17) 

The global minimum value of the function is 3 and 

the search space is −2 < 𝑥𝑖 < 2 where (𝑖 = 1, 2). 

where 𝑥𝑖  (𝑥1 , 𝑥2) is the design variable (For 𝑖 = 1, 2 

dimensions) 

The optimization results for all the SPSO [27], 

IFPSO [28], OPSO [29], CFPSO [32] and MPSO 

algorithms are shown in Table 9. The mean and 

standard deviation for evaluations on all the test 

functions is shown in Table 9 which also exhibit the 

effectiveness and precision of the proposed algorithm. 

The average number of function evaluations reflects 

the convergence rate of the algorithm. For benchmark 

function 4 and 5, the proposed MPSO takes less 

number of function evaluations to find the global 

optimum without trapping in local minima. 

𝑓1 , 𝑓2 and 𝑓3 are unimodal functions primarily used to 

test the optimization accuracy and performance of the 

algorithm. For multimodal functions 𝑓4 and 𝑓5 with 

more local minima points, it was found that the MPSO 

algorithm shows capability of escaping from local 

minima to provide global optimization. As clearly seen 

from the results in Table 9 MPSO outperforms all the 

selected variant of PSO in optimization accuracy, 

function evaluations and convergence. Therefore, 

proposed MPSO can be applied for effective evaluation 

and optimization of process parameters in plastic 

injection molding. Since the results of IFPSO is closest 

to the presented MPSO approach, the convergence of 

MPSO along with IFPSO is shown for the benchmark 

functions (see Fig. 7). 

 

5 Optimization Problem Formulation 

In the present study, a mathematical model of the 

shrinkage and warpage is minimized to achieve 

optimum values of melt temperature, packing pressure 

and packing time. The optimal parameters values are 

required to have improved injection molding process. 
 

5.1 Identification of Design Variables 

The developed regression models for shrinkage and 

warpage is composed of three important parameters 

i.e. melt temperature, packing pressure and packing 

time. These three parameters are taken as the design 

variables. 
 

5.2 Objective Function and Constraints 

For improving the final accuracy of injection 

molded components, the shrinkage and warpage in S1, 

S2 and W1 and W2 needs to be minimized. Now the 

optimization problem is formulated and is given as 

Eq. (18): 
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Minimize f (tm, pp, pt) = S1 

f (tm, pp, pt) = S1 

f (tm, pp, pt) = W1  … (18) 

f (tm, pp, pt) = W1 

For solving the optimization problem, a computer 

code developed in Matlab R2014a for the objective 

functions and modified PSO implemented as the 

solver. The MPSO program employed different 

settings of PSO parameters to predict the values of the 

injection molded parameters and obtain minimized 

values of shrinkage and warpage for final 

components. For proving the effectiveness of the 

proposed MPSO algorithm, its results are compared 

with those obtained from the standard PSO algorithm. 

The parameters for both the algorithms are set as: c1, 

c2 = 2.05,number of population size = 10. 

The results predicted for minimized shrinkage and 

warpage using PSO and proposed MPSO for 

optimized values of melt temperature, packing 

pressure and packing time are shown in Table 10. It 

can be seen from Table 10 that the predicted values of 

injection molded relay component by MPSO 

algorithm shows significant improvement over PSO 

results as well as the simulation results by 36.47 % for 

PBT shrinkage and 19.31 % for PBT warpage 

respectively. Similar results are found for PET 

material having shrinkage reduction of 30.73%and 

warpage reduction of 28.79%. The convergence graph 

of MPSO algorithm in comparison to standard PSO 

for PBT material is shown in Fig. 8. It is observed 

from Fig. 8 that MPSO algorithm requires only 20 

iterations to converge to the optimum solution as 

compared to the basic PSO which needs about 60 

iterations for optimum solution. The low values of 

shrinkage and warpage confirms that the proposed 

MPSO algorithm provides improved results. This will 

enhance the final accuracy and quality of the injection 

molded component and hence the result of injection 

molding process will be improved. 

 

6 Confirmation Simulation 

In order to test the adequacy of the developed 

mathematical model and justify the use of newly 

developed MPSO algorithm, four simulation runs 

were performed for shrinkage (S1, S2) and warpage 

(W1, W2). The shrinkage and warpage results for 

PBT material is shown in Fig. 9 and 10, respectively 

for the chosen parameter values. The data from the 

confirmation trials and their comparison with the 

predicted values of shrinkage and warpage using 

MPSO algorithm is shown in Table 11. From Table 11,  

Table 9 — Comparison of simulation results for benchmark functions. 

Benchmark Function Algorithm Best Mean Std. Deviation Avg Number Func Eval 

1 SPSO 3.1442E-19 2.1565E-18 7.2340E-17 50000 

 IFPSO 6.4135E-22 9.237E-21 6.862E-21 50000 

 OPSO 2.76836E-10 2.198E-08 4.598E-08 50000 

 CFPSO 4.4912E-12 5.3321E-14 4.8890E-13 50000 

 MPSO 1.1276E-32 1.007E-30 5.997E-30 50000 

2 SPSO 1.92E-07 3.22E-06 0.001115 50000 

 IFPSO 1.53E-10 2.79E-9 3.95E-9 50000 

 OPSO 0.010742 25.33753 5.51725 50000 

 CFPSO 2.2956E-6 1.7853E-3 3.9812E-5 50000 

 MPSO 3.915E-27 1.582E-26 4.442E-26 50000 

3 SPSO 4.28389E-07 0.002459 0.0067926 25000 

 IFPSO 1.93E-9 3.79E-07 4.11E-07 25000 

 OPSO 6.17E-05 7.91E-05 7.98E-05 25000 

 CFPSO 7.932E-05 3.84E-04 5.433E-04 25000 

 MPSO 3.77E-14 1.09E-11 8.287E-11 25000 

4 SPSO 5.6318E-4 0.596975 0.9806 25000 

 IFPSO 1.581E-8 6.818433 6.3046 25000 

 OPSO 4.14E-4 2.87E-2 2.932E-1 25000 

 CFPSO 8.653E-1 0.45391 0.8532 25000 

 MPSO 0 0 0 6450 

5 SPSO 3.0000 5.3875 8.4599 5000 

 IFPSO 3.0074 3.3621 0.3974 1250 

 OPSO 3.0123 3.5721 0.4576 1250 

 CFPSO 3.0023 3.3921 0.3369 1250 

 MPSO 3.0000 3.0000 2.26E-9 1000 
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Fig. 7 — Convergence for benchmark function using IFPSO and MPSO. 
 

Table 10 — Optimum parameters prediction using PSO and MPSO. 

Parameters Melt temperature (Tm) Packing pressure (Pp) Packing time (Pt) S1 (%) S2 (%) W1 (mm) W2 (mm) 

 PBT PET PBT PET PBT PET PBT PET PBT PET 

Initial value 278 252 25 34 10 12 1.9197 1.9145   

266 252 25 28 15 18   0.1341 0.1608 

PSO 279.32 254.02 27.12 29.65 10.87 12.07 1.4203 1.5182   

 269.72 253.91 26.79 29.01 14.67 17.89   0.1221 0.1365 

MPSO 281.09 254.15 28.54 35.17 10.34 12.53 1.2196 1.3298   

 268.26 253.12 27.91 28.34 15.91 18.22   0.1082 0.1145 
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Fig. 9 — Shrinkage analysis using optimized parameter. 

it is clearly seen that the predicted values of shrinkage 

and warpage are more accurate for the predicted 

model in comparison to the default simulation 

parameters. 

 

7 Conclusions 

This paper presents an integrated methodology for 

developing mathematical models and predicting the 

values of shrinkage and warpage by correlating them 

with process parameters of plastic injection molding 

process for making the electronic relay component of 

PBT and PET material. The parameters considered for 

the prediction of shrinkage and warpage are Melt 

temperature, Packing temperature and Packing time. 

To find the optimum value of process parameters, the 

analytical model using regression analysis was 

developed. To further improve the optimum values a 

recently developed modified particle swarm 

optimization algorithm was used. The conclusions of 

the research are as follows: 

(i) The results of ANOVA analysis conducting 

confirmation experiments show that the 

analytical models of the shrinkage and warpage 

are fairly well fitted with the simulation values. 

The influences of all the process parameters on 

the performances of shrinkage and warpage 

have been analyzed by the obtained 

mathematical models. 

 
 

Fig. 8 — Convergence plot of (a) Shrinkage and (b) Warpage of PBT material. 
 

Table 11 — Confirmation simulation trials. 

S. No. Parameters Shrinkage (%) Warpage (mm) 

A B C Simulation Predicted Simulation Predicted 

1 278 34 8 2.2289 2.2003 0.2922 0.2812 

2 280 36 10 1.8722 1.7621 0.3681 0.3603 

3 282 38 12 2.8021 2.745 0.2690 0.2231 

4 281.09 35.17 10.34 2.321 2.1098 0.2901 0.2521 
 

 
 

Fig. 10 — Warpage analysis using optimized parameter. 
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(ii) The predicted response of injection molding 

process also shows an improvement, using a 

newly developed MPSO algorithm. The MPSO 

algorithm overcomes the lack of classical PSO 

in exploitation 

(iii) Behavior through introduction of an improved 

search equation based on the best solution of 

the previous iteration. Additionally, a greedy 

selection procedure is added to improve the 

exploitation ability of the classical PSO. The 

improvement in shrinkage and warpage is 

around 30% as compared to the initial values 

of shrinkage and warpage.  
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