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BiVO4 has been successfully synthesized by solid state method and doped by barium in the sites of bismuth in 3%, 6%, 

9% and 15% to form Bi1-xBaxVO4 (x = 0.03, 0.06, 0.09 & 0.15). The products have been characterized using powder X-ray 
diffraction, diffuse reflectance spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and 
photoluminescence spectroscopy. The band gap of undoped BiVO4 is calculated to be 2.19 eV and the barium doped BiVO4 
compounds exhibit band gaps which are closer to the band gap of undoped compound. The photocatalytic activities of 
undoped and doped catalysts for the degradation of methylene blue have been studied using UV-visible spectroscopy and 
found to be depended largely on the barium content and the particle size of the compounds. 
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Metal oxides exhibit interesting properties which are 

preferable for various applications such as catalysis, 
magnetism, sensors and so on

1
. Metal oxides such as 

BiVO4, Bi2WO6, Bi2MoO6 are well known for their 

potential catalytic activity especially in the 

decomposition of various pollutants in the water 
bodies. These materials can be used for the treatment of 

pollutants in waste water or industrial effluents to 

replace the commercially used TiO2
2-6

. Apart from 
these, carbon based materials, phosphates and 

framework materials are also investigated for their 

potential activity
7-11

. These catalytic materials can be 

utilized for the treatment of pollutants in waste water if 
they are effectively modified

12-14
. This approach can 

give a solution to the severe water pollution caused by 

the industrial effluents especially the textile dyes, as the 
release of colored compounds in water bodies turned to 

be a threat for the environment. It affects the water 

quality and living organisms because of the 
carcinogenic nature of these compounds. Such 

problems demand a proper treatment of the polluted 

water using suitable catalysts. Among many available 

catalysts BiVO4 shows interesting properties to be 
considered as the effective photocatalyst for the  

waste water treatment
15-18

. This material can be 

synthesized using variety of methods such as solid state 
reactions, hydrothermal, sol-gel method and so on

19-21
. 

Different methods can yield different types of 

properties to the material.  
Among these the solid state reactions are preferable 

due to the involvement of less emission of harmful 

by-products and also there are no solvents or toxic 

chemicals used. But the solid state synthesis also has 
certain limitations such as high reaction temperature, 

producing larger particles and low catalytic  

activity
22-24

. If the catalysts can be prepared using the 

environmentally friendly solid state method and their 
activity can be enhanced that would provide a more 

realistic route to degrade pollutants like textile dyes 

for their application in waste water treatment. This 
work focuses on solid state preparation of BiVO4 and 

attempts were made to enhance the catalytic activity 

by doping and modifying reaction conditions.  

Doped BiVO4 compounds were investigated as 
photocatalysts in the presence of visible light/sun light 

for the degradation of methylene blue which was 

taken as a model system. 
 

Materials and Methods 
 

Synthesis 

Starting materials for the preparation of catalyst 

Bi2O3, V2O5 & BaCO3 were purchased from Sigma-

Aldrich. Hydrogen peroxide and methylene blue were 

purchased from S. D. Fine Chem-Limited. All the 
chemicals were procured as analytical grade reagents 

and used without any further purification. 

Stoichiometric amounts of Bi2O3 and V2O5 powders 
were taken in an agate mortar and grinded for  

45 min to mix the starting materials and to make the 

mixture as homogeneous as possible. Then, this 
mixture was heated at 700 ᵒC for 8 h continuously. 

The heating and cooling rates were 5 ᵒC/min and  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NOPR

https://core.ac.uk/display/350199141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:manikanda.cy.mp@msruas.ac.in


INDIAN J CHEM, SEC A, JUNE 2020 
 
 

776 

2 ᵒC/min, respectively. Barium doped samples were 

prepared, by using BaCO3 along with other starting 

materials in the required quantity and following 
similar conditions. 
 

Characterization 

Powder X-ray diffraction patterns were collected at 
room temperature using PANalytical X-ray 

diffractometer which is equipped with Cu-K𝛼 

radiation (λ = 0.1542 nm) at a voltage of 40 kV and a 
current of 30 mA. Raman spectra of all the samples 

were recorded on a Horiba, LabRAMHR(UV) 

instrument. Diffuse reflectance spectra and absorption 

spectra were recorded using Shimadzu UV-260 
spectrophotometer. Scanning electron microscopy and 

energy-dispersive spectroscopy studies were done 

with the help of TESCAN-VEGA3 LMU SEM under 
accelerated electron beam with 30 kV energy. For 

EDS measurements, random spots from the sample 

were chosen for the analysis and the average atomic 

percentage of each element was calculated. 
Photoluminescence studies were carried out using 

Hitachi F-7200 fluorescence spectrophotometer 

ranging from 200 to 600 nm. 
 

Photocatalysis 

Photocatalytic experiments under visible light for 

the degradation of methylene blue dye solutions were 

carried out with 0.5 g of the respective catalysts. 
Concentration of the dye solution was 15 ppm and 

250 ml of the dye was taken for each experiment.  

A specially designed reactor with 250 W high 
pressure mercury lamp (OSRAM MBF-U E-40) with 

magnetic stirrer was used for the photodegradation 

studies. The samples were placed at a distance of  

20 cm from the light source. At the given time 
intervals 10 ml of the sample was taken and 

centrifuged to get a clear supernatant liquid which 

was further analyzed by UV-visible spectroscopy. 
Similarly, photocatalytic experiments were also 

performed in the presence of sunlight with the same 

amount of dye solution and catalyst. 
 

Results and Discussion 
 

Structural analysis 

The powder X-ray diffraction of undoped and 

doped BiVO4 samples were recorded from 10 to 60 
using as prepared samples, which is shown in Fig. 1a. 

Powder X-ray diffraction pattern shows the  

formation of monoclinic phase of BiVO4 as it is 
matching well with the JCPDS file no. 14-688 with 

space group: I2/a. Peaks of tetragonal BiVO4 were not 

observed in the diffraction pattern which supports the 

formation of only the monoclinic phase. Formation of 

monoclinic phase is significant as the tetragonal phase 
exhibits poor catalytic activity. Presence of any fraction 

of tetragonal phase can reduce the overall catalytic 

efficiency. Doped BiVO4 samples were successfully 

synthesized using the solid state reactions where the 
conditions to prepare were same as that of parent 

compound. But, some of the doped samples show the 

presence of small amount of impurity. 3% and 6% 
doped BiVO4 compounds are free from the impurities 

but 9% and 15% doped samples show the presence of 

Bi2O3 as an impurity phase which comes from the 

unreacted starting material. The peaks at 28.2, 31.8 

and 32.3 are the peaks from the Bi2O3 impurity 
whereas the other peaks belong to the monoclinic 

 
 

Fig. 1 — (a) Powder X-ray diffraction pattern of undoped and 
barium doped BiVO4 (* indicates the Bi2O3 impurity) and  
(b) Enlarged view of the most intense peak around 28.9˚.  
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BiVO4. The calculated lattice parameters using XRD 

patterns and the comparison of the as synthesized 

catalyst along with the used catalyst are shown in the 
Supplementary Data (Table S1 and Fig. S1). The doped 

samples are not showing appreciable shifts in powder 

XRD which is shown in Fig. 1b, where the most 

intense peak of monoclinic BiVO4 around 28.9, is not 
showing any such shifts. In this study, powder XRD is 
not sensitive to analyze small changes due to doping. 

To analyze this further, the more sensitive Raman 

spectra was recorded. 
 

Raman studies 

Raman spectra of undoped and barium doped 

compounds, exhibited the characteristic peaks as 

reported in the literature
25-26

 which is shown in  

Fig. 2a. Band corresponding to the symmetric  

V-O stretching mode at 827.7 cm
-1

 and the 
asymmetric V–O stretching mode at 713.1 cm

-1
 are 

observed for the monoclinic BiVO4. Bands 

corresponding to the external modes at 125.3 and 

211.9 cm
-1

 are observed along with the symmetric and 

asymmetric bending modes of vanadate units (𝑉𝑂4
3−) 

around 329.3 and 368.6 cm
-1
, respectively. The 

intensity of the band for symmetric V-O stretching 
mode at 827.7 cm

-1
 decreases as the amount of dopant 

increases. This trend is due to the substitution of  

Bi
3+

 ions by the Ba
2+

 ion which leads to the 
deformation of VO4 tetrahedron. Similar effects are 

reported when the Bi
3+

 sites are doped by Co
2+

 and 

Fe
3+

 ions in monoclinic BiVO4
27-28

. A small shift 

towards lower frequencies is also observed for higher 
concentration of barium (9 and 15%) in the symmetric 

stretching mode which is shown in Fig. 2b. This effect 

is observed because the larger Ba
2+

 ions (1.35 Å) are 
replacing smaller Bi

3+
ions (1.03 Å) which can cause 

deformation and surface defects. Similar trend is 

reported when Bi
3+

 sites are doped by Ni
2+

 ions
29

. 
Hence, it is evident from Raman studies that the 

bismuth sites are partially replaced by barium 

ions.When Ba
2+

 ions replace the sites of Bi
3+

 that can 

lead to an imbalance in the overall charge which can 
be balanced by oxygen vacancies or formation of V

4+
. 

These possibilities are proven in the literature by XPS 

analysis, when metal ions (M
2+

) with similar charge such 
as Co

2+
 or Ni

2+
replaces the Bi

3+
 sites of BiVO4

27 & 29
. 

 

Morphological studies 

Scanning electron microscopic images of all the as 
prepared samples are shown in Fig. 3. BiVO4 particles 

show irregular sphere like and plate like 

morphologies. The doped samples show irregular 
morphologies. The particles of undoped and doped 

BiVO4 are in the order of few micrometers (1 – 5 m) 
except the 15% doped sample which has particles in 

few hundred nanometer scale. Particle size can be 

directly related to the catalytic activity and so the 15% 
barium doped sample is expected to show the highest 

catalytic activity among all due to the availability of 

more surface area. Energy dispersive X-ray 
spectroscopy (Fig. S7 and Table S3, Supplementary 

Data) is also performed for all the prepared samples. 

All the elements were identified including the barium 

atoms which were used for the doping that suggests 
the presence of dopant in all the doped samples. No 

contamination from container (alumina) was observed. 

 
 

Fig. 2 — (a) Raman spectra of doped and undoped compounds, 
(1) undoped BiVO4, (2) 3% doped BiVO4, (3) 6% doped 

BiVO4, (4) 9% doped BiVO4 and (5) 15% doped BiVO4 and  
(b) Symmetric V-O stretching mode of vanadate unit, showing 
the shift for compositions containing higher barium content. 
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Optical studies 

Band gap of all the prepared compounds were 
determined using diffuse reflectance spectroscopy. 

Tauc plots were drawn which were further 

extrapolated to calculate the direct band gaps of the 
catalysts that are shown in Fig. 4. Undoped BiVO4 

shows a band gap of 2.19 eV which is closer to the 

reported value
30-32

 and the band gaps of other doped 

catalyst are not showing much deviation from this. 
Though, usually doping changes the band gaps by 

modifying the band structure, in few cases the effect 

of dopant becomes insignificant as the changes are 
trivial. In copper and nickel doped BiVO4, the change 

in band gap is too small that can be correlated to the 

observation in barium doped compounds
26,29

. This 
indicates doping is not significantly affecting the band 

structure or band gap when Ba
2+

 ions replace some of 

the Bi
3+

 sites. All these compounds can act as visible 

light catalysts. Table 1 shows the band gaps of each of 
the prepared compounds. Photoluminescence spectra 

of all the samples were recorded in the range of  

380  ̶ 650 nm. It was observed that BiVO4 shows 
strong emissions which are centered at 500, 549 and 

608 nm. The behavior of BiVO4 is similar to the 

already reported studies
33

. Effective separation of 

electrons and hole is the key factor to achieve high 

photocatalytic activity and this is observed by the 

drastic fall in the emission intensities of doped 
samples of BiVO4 that indicates the possibility of 

possessing potential photocatalytic activity
34

. Fig. 5 

shows the photoluminescence spectra of all the 

prepared catalysts.  
 

Photocatalytic studies 

Photocatalytic activities of BiVO4 and barium 
doped BiVO4 were investigated for the photocatalytic 

degradation of methylene blue in aqueous solution 

where the concentration of the dye solution was  
15 ppm for all the experiments. Prior to the 

photocatalytic experiments, adsorption effect was 

studied by stirring the dye solution with catalyst for 
12 h in dark which is not showing any significant 

reduction in the concentration of the dye solution 

(Supplementary Data, Fig S2). Apart from that, before 

starting every experiment, the catalyst was stirred 
along with the dye solution for atleast 30 min in the 

dark, to obtain adsorption-desorption equilibrium and 

the concentration of the dye solution was observed to 
be same afterwards. This observation ensures that the 

adsorption of dye on the surface of catalyst is 

insignificant in terms changing concentration. The 
photocatalytic degradation of methylene blue by 

BiVO4 and barium doped BiVO4 were carried out in 

the reactor (using 250 W, high pressure mercury 

lamp) and sunlight which are shown in Fig. 6 and 7, 
respectively. Catalyst loading was also varied to find 

the optimum weight of catalyst to be used. When the 

weight was more than 0.5 g, no appreciable increase 
in photocatalytic efficiency was observed and when 

the weight was less than 0.5 g there was reduction in 

efficiency. Thus, usage of 0.5 g of catalyst was fixed 

for all the experiments. Photocatalytic degradation of 
methylene blue by as prepared BiVO4 was 8 % in 120 

min and in case of doped samples, 15% doped BiVO4 

exhibit the highest degradation efficiency of 15% in 
120 min. 3%, 6% and 9% doped compounds exhibit 

11%, 10% and 13%, respectively efficiency to 

degrade the 15 ppm dye solution in 120 min. 
Photocatalytic activity of BiVO4 and barium doped 

BiVO4 were comparatively lower in the reactor. The 

effect of temperature was also studied from 40 to  

70 ᵒC and it was observed that the increase in 
temperature has no significant effect on catalysis. 

Similarly, the effect of pH was also studied where the 

acidic and alkaline pH levels (from 4 to 8)  
were maintained and the catalytic efficiency could not be 

 
 

Fig. 3 — Scanning electron microscopy images of (a) undoped 
BiVO4, (b) 3% doped BiVO4, (c) 6% doped BiVO4, (d) 9% doped 
BiVO4 and (e) 15% doped BiVO4. 
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improved. Then similar experiments were conducted 

(without changing the pH) in the presence of sunlight 
and found to show better activity. Efficiency of 

undoped BiVO4, 3%, 6%, 9% and 15% doped BiVO4 

were increased up to 43%, 46%, 48 %, 57 % and  

62 %, respectively in 300 min. In sunlight, all the 
catalysts were showing higher activity towards the 

degradation of the dye. 

 
 

Fig. 4 — Band gap of undoped and doped BiVO4 compounds calculated using diffuse reflectance spectroscopy and extrapolation method. 
 

Table 1 — Band gap of undoped and doped BiVO4 samples 

calculated using diffuse reflectance spectra 

Compounds Band gap (eV) 

Undoped BiVO4 2.19 
3% doped BiVO4 2.10 
6% doped BiVO4 2.24 
9% doped BiVO4 2.29 
15% dopedBiVO4 2.19 
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The mechanism of photodecomposition of dye is 

reported in previous literature
35-37

 where the formation 
of hydroxyl radicals plays a key role in the degradation 

of dyes. Addition of hydroxyl radical generators or 

electron acceptors like hydrogen peroxide was studied 

in few reports,
38-40 

and it is observed that this can 
enhance the catalytic efficiency. The enhancement of 

photodegradation rate by the addition of hydrogen 

peroxide is attributed to two factors, (i) hydrogen 
peroxide acts as an electron acceptor to reduce the 

recombination rate of the photogenerated electron hole 

pairs (ii) enhancement of rate of hydroxyl radical 
generation. Hence, in this study, the effect of addition 

of H2O2 to the reaction mixture was investigated. 2 ml 

of H2O2 was added to the 15 ppm of methylene blue 

aqueous solution and the catalyst load was 0.5 g. Fig. 8 
and 9 show the photocatalytic degradation of 

methylene blue by BiVO4 and doped BiVO4 along with 

2 ml of H2O2, in the reactor and in the presence of 

sunlight, respectively. In the presence of H2O2 
photocatalytic efficiency of methylene blue by BiVO4 

in reactor is comparatively lower than in sunlight. The 

efficiency of BiVO4 is 43% when the same experiment 
is conducted in sunlight. Almost complete 

decolorisation of methylene blue occurs in 300 min, 

when 15% barium doped BiVO4 was used as a catalyst. 

 
 

Fig. 5 — Photoluminescence spectra of doped and undoped BiVO4. 
 

 
 
Fig. 6 — Photocatalytic degradation of methylene blue by undoped 
and doped BiVO4 (3%, 6%, 9% and 15% Ba doped BiVO4) in the 
reactor. 

 

 
 

Fig. 7 — Photocatalytic degradation of methylene blue by 
undoped and doped BiVO4 (3%, 6%, 9% and 15% Ba doped 
BiVO4) in the presence of sunlight. 

 

 
 
Fig. 8 — Photocatalytic degradation of methylene blue by 
undoped and doped BiVO4 (3%, 6%, 9% and 15% Ba doped 
BiVO4) in the reactor along with H2O2. 
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Table 2 shows the photocatalytic efficiencies of all the 

prepared compounds towards the degradation of 

methylene blue in different conditions. Fig. 10 explains 

that H2O2 alone cannot show any photocatalytic 

activity towards the degradation of methylene blue. 
Only when H2O2 is combined along with the catalyst 

shows better photocatalytic activity. Experiments were 

also carried out in the presence of visible light in the 
reactor, without the usage of catalyst and it is observed 

that the dye solution cannot be decomposed by the light 

without the photocatalyst. This rules out the possibility 
of photolysis of the dye solution. Similarly the catalyst 

in dark cannot degrade the dye solution. Thus, the 

combination of light and catalyst is required for the 

degradation of methylene blue. This investigation also 
shows the importance of hydrogen peroxide in small 

amounts, which can enhance the catalytic activity. 

Almost, complete degradation is achieved using the 
15% barium doped catalyst. The catalysts were 

separated by filtering after the treatment, further dried 

at room temperature. These were found to be stable 

during the photocatalytic treatment by powder XRD 
analysis (Supplementary Data, Fig. S1). The rate 

constants were calculated assuming pseudo-first order 

kinetics and details can be found in Supplementary 
Data (Table S2, Fig. S3-S6). 
 

Conclusions 
BiVO4 was successfully synthesized as a single 

phase using solid state reactions. Bismuth sites were 

doped with barium and doped compounds were also 
prepared using the same method. Band gap of the 

parent compound was 2.19 eV and all the doped 

compounds exhibit band gaps which are closer to 

each other that indicate the insignificant  
effect of doping on band structure. Methylene blue 

was photodegraded by all the samples and their 

respective efficiencies were also estimated. 15% 
barium doped compound shows the highest activity 

among all, due to the smaller particle size. Reactions 

in sunlight show higher efficiencies and the addition 
of H2O2 plays a significant role in the 

photodegradation process. Complete decomposition 

of methylene blue is achieved by 15% barium doped 

BiVO4 in the presence of sunlight along with small 

 
 

Fig. 9 — Photocatalytic degradation of methylene blue by 
undoped and doped BiVO4 (3%, 6%, 9% and 15% Ba doped 
BiVO4) in the presence of sunlight along with H2O2. 
 

 
 

Fig. 10 — Degradation of methylene blue in other conditions,(1) 
photolysis of MB without using the catalyst or H2O2 (2) 
photodegradation of MB by H2O2without using the catalyst and 

(3) Degradation of MB by the catalyst in the absence of light. 
 

Table 2 — Photocatalytic efficiencies of all the prepared samples at different conditions 

Compounds In reactor  
(120 min) 

In reactor+ H2O2  

(120 min) 
In sunlight  
(300 min) 

In sunlight H2O2  

(300 min) 

BiVO4 08 % 02 % 43% 43% 

3% doped BiVO4 11 % 06% 46% 46% 

6% doped BiVO4 10 % 07 % 48 % 48 % 

9% doped BiVO4 13% 08 % 57 % 66% 

15% doped BiVO4 15% 72 % 62 % 100 % 
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quantity of H2O2 which proves that the prepared 

catalyst is an effective one and further improvement 

of the catalyst can provide a promising material for 
the treatment of textile dyes. 
 

Supplementary Data 
Supplementary data associated with this article are 

available in the electronic form at http://www.niscair. 

res.in/jinfo/ijca/IJCA_59A(06)775-782_SpplData.pdf. 
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