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One improved boundary process method for synthetic aperture radar (SAR) internal wave signal detection, which tries to 
reduce the errors during the extending process for empirical mode decomposition (EMD), has been introduced in this paper. 
This method is based on EMD and the criterion created by the theory that the max normalized deflection stands for the 
largest energy. The method was first applied both on several time series decompositions and on SAR nonlinear internal 
wave temporal series decompositions. The comparison of results showed that this method was more feasible and precise 
indicating that the method can detect the internal wave signals successfully from SAR image even with a lot noise. 
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Introduction 
Internal waves are major dynamic features,  

which travel within the interior of the ocean1,2. 
Internal wave fields are measured by instruments 
deployed in the ocean, like temperature and salinity 
sensors or current meters, or by acoustic instruments 
like sonar. However, information on internal wave 
fields could also be extracted from their sea surface 
manifestations3. 

Recently, synthetic aperture radar (SAR) has 
demonstrated the potential to obtain high-resolution 
ocean surface images from which internal wave 
features could be identified4-6. Such as the distribution 
and the wavelength of internal wave could be directly 
extracted from SAR images7,8, and also the internal 
wave parameters, such as pycnocline depth and the 
amplitude could also be retrieved from SAR image3,9. 
Therefore, it is adequate for quantitative estimates of 
internal wave parameters from SAR images, and the 
ability to retrieve accurate internal wave parameters 
from SAR image is especially significant in SAR 
technique for ocean internal wave research. 

However, SAR technique for ocean internal wave 
parameters retrieval is based on the internal wave 
signals detection quantitative, but it is hard for us to 
detect internal wave signals for SAR images with a lot 
noise. In this paper, one improved boundary process 

method for nonlinear data analysis is being 
introduced. This method is based both on empirical 
mode decomposition (EMD), which was firstly 
proposed by Huang et al. in 1998(ref. 10) and improved 
in 1999(ref. 11), and on the criterion created by the 
theory that the max normalized deflection stands for 
the largest energy. 

EMD can break down both the signals to a series of 
zero-mean intrinsic mode functions (IMFs) that 
satisfy two conditions: (1) in the whole data set, the 
number of extrema and the number of zero crossings 
must either be equal or differ at most by one; and (2) 
at any point, the mean value of the envelope defined 
by the local maxima and the envelope defined by the 
local minima approach is zero. These two 
characteristics are also the criteria for sifting 
processes and for EMD to stop. Each sifting process 
has two steps: (1) construct upper and lower 
envelopes by connecting all maxima and all minima 
with cubic splines; (2) subtract the mean of the upper 
and lower envelopes from the original signal to get a 
component. The sifting process should usually be 
applied several times because the component created 
by only one sifting process hardly satisfies all the 
requirements of an IMF. Once an IMF is created, the 
same procedure is then applied on the residual of the 
signal to obtain the next IMF; the later IMF has the 



FAN et al.: AN IMPROVED TECHNIQUE FOR SAR INTERNAL WAVE SIGNAL DETECTION 
 
 

635

lower frequency. The decomposition will stop when 
no more IMFs could be created or the residual is less 
than a predetermined small value. The results for the 
decomposition of data could be written as: 
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    … (1) 

 

The IMFs yield instantaneous frequencies as a 
function of time with the Hilbert transform. The 
whole procedure, EMD and Hilbert transform, 
composes a new signal process technology called the 
“Hilbert-Huang transform” (HHT). The HHT proves 
to be remarkably effective. Many people have applied 
this method to the analysis of time series data and 
EMD development12-27. 

After the time series and temporal series 
decomposed by EMD, the signal is divided into n 
IMFs. Then we have to pick up one signal from these 
IMFs. According to the Wave Energy theory: the 
more the deflection, the more energy the signal 
contains28. As we know, the internal wave signal 
contains the largest energy. Therefore, the IMF that 
contains the largest deflection is just the internal wave 
signal. We calculate the normalized deflection of each 
IMF based on the following equation: 
 

m
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Where is is the standard deviation of the ith 
component IMFi. Based on the IMF component 
picked up, which has the largest deflection, the peaks 
and troughs locations of the IMF component could be 
estimated, and then the wavelengths of the internal 
waves and other internal wave parameters could be 
retrieved. 

However, during the sifting process, the ends of the 
series cannot be both maximum and minimum. There 
is a serious problem of spline fitting at the end, where 
cubic splines can have wide wings if left free. Some 
extending methods have been proposed recently. Two 
representational methods are called the mirror 
periodic extending method (MPM) and the extrema 
extending method (EEM)29. If the time series has a 
strong asymmetric waveform, the MPM cannot work 
and it is hard to decide the characteristic period too. 
Therefore, it is complicated to apply the EEM for a 
complex series with a lot of noise22. Moreover, the 
worse thing is that wrongly extending the 
characteristic period leads to a wrong data source for 
the next sifting process.  

In this paper, we present one improved boundary 
process method, which tries to reduce the errors 
during the extending process for empirical mode 
decomposition (EMD). This method is based on EMD 
proposed by Huang et al.10 and the criterion created 
by the theory that the max normalized deflection 
stands for the largest energy, and the method  
is applied to time series decompositions and  
SAR nonlinear internal wave temporal series 
decompositions. 
 
Materials and Methods 

One improved fixing the end method (FEM) that 
fix the end characteristic wave rather than extend the 
characteristic period during the spline fitting process 
is introduced in this paper. Its main process is as 
follows:  
 

1 2[ , , , ]nt t t t    … (3) 
 

1 2( ) [ , , , ]nX t x x x    … (4) 
 

Presume time series ( )X t  contains p maxima and 
q  minima, their values and indices are designated as  

 

( ,PV QV ) and ( ,PI QI ): 

1 2[ , , , ]pPI PI PI PI   … (5) 
 

1 2[ , , , ]qQI QI QI QI   … (6) 
 

1 2 1 2[ ( ), ( ), , ( )] [ , , , ]p pX X X PV PI PI PI PV PV PV    
 … (7)  
 

1 2 1 2[ ( ), ( ), , ( )] [ , , , ]q qX X X QV QI QI QI QV QV QV    
 … (8) 
 

Let the values and indices of extending maxima 
and minima be written as: 

' '
1 1 2[ , , , , , ]p nt tPI PI PI PI   … (9) 

 
' '

1 1 2[ , , , , , ]q nt tQI QI QI QI   … (10) 
 

0 1 2 1[ , , , , , ]p pPV PV PV PV PV PV   … (11) 
 

0 1 2 1[ , , , , , ]q qQV QV QV QV QV QV   … (12) 
 

The end point values are: 
 

0 1 1max( , )xPV PV   … (13) 
 

1 max( , )p n px PV PV   …  (14) 
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0 1 1min( , )xQV QV   …  (15) 
 

1 min( , )q n qx QV QV   …  (16) 
 

The generation determination of '
1t can be showed 

in Figure 1(a). Let L1 = abs ( 11 -QIPI ), L2 = min (abs  
( 11 - tPI ), abs ( 11 - tQI )). Then we get '

1 1t t  (L1-
L2). However, some exception situations as show in 
Figures 1(b - c) should be treated exception when the 
end point value at t  is considered as maxima or 
minima (Fig. 1b) and L2 is larger than L1 (Fig. 1c). In 
the case of Figure 1(b), we have '

1 1t t . In the case of 
Figure 1(c), a mirror like extending method is used 
(not a real mirror), let '

1 1t t L2, then equations 
(13) and (15) is ）（ 110 max QVPV  x and

)-(min 110 PVQV x , respectively. After the first 
characteristic wave extending, the same method can 
be applied for the next characteristic wave extending 
as shown in Figure 1. The right-hand side extending 
method is quite similar to the left-hand side 
extending. In addition, we have limited the scale and 
amplitude of extending the nearest characteristic wave 
at the end of the real signal. This is especially helpful 
to analyze the signal with a lot noise in which case it 
is hard to decide the real extending characteristic 
wave. It is also efficient to analysis the SAR internal 
wave signal with strong asymmetric waveform. 

Results 
 
Time series decomposition 

The paper examined the same time series as that of 
Huang and Zhao29, which were superposed to have 
three harmonics, 
 

( ) HF+MF+LF
0.5cos(3 ) 0.5cos( ) sin( / 4)

X t
t t t  


   

  … (17) 

 
Where 1  Hz, t=0~10s. The time series 
decomposition results by EMD with extending 
method are shown in Figure 2. The dotted lines of 
Figures 2(a - c) stand for IMF1-IMF3, while the solid 
lines stand for HF, MF and LF. The three harmonics 
are well decomposed from original signal X(t). The 
frequency becomes lower and lower from IMF1 to 
IMF3. In Figure 2(d), the reconstruction using the 
IMFs is shown in a dotted line, while the original data 
is shown in a solid line. The two lines are nearly the 
same with relative error of 1 %, which means the 
decomposition of data is perfect.  

In order to compare the method with Huang and 
Zhao’s, the results of FEM are compared with that 
of EEM (cf. Fig. 7)29 at two values of t, that is t = 0, 
and 10. The two values of the IMF2 approach 0.5, 
which are the results of the MF’s, while the  
two values in the EEM method approach 0.2.  
As for the results of the IMF3, the two values 
approach 0, which are the results of LF’s, while the 
values in the EEM method approach 0.2. Above 
comparision suggest that the FEM is better than  
the EEM. 

The paper investigates another classical nonlinear 
example with the Rossler equations: 

 
 

Fig. 1 — Methods for extending points 

 
 
Fig. 2 — IMF1 (dotted line) and HF (solid line) (a), IMF2
(dotted line) and MF (solid line) (b), IMF3 (dotted line) and LF
(solid line) (c), the reconstruction of the signal (solid line) and the
data (dotted line) (d) 
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The parameters are taken as the same as those of 
Huang and Shen11, i.e. 0.2, 0.2, 3.5     , and 
the initial conditions { (0); (0); (0)} { 2;3;0}X Y Z   . 
The calculated numerical value of X is given in  
Figure 3(a), and the solution in three-dimensional 
space is shown in Figure 3(b). Figures 3(a & b) 
indicate that the signal needs to be rotated at twice the 
simple frequency to complete a full period, i.e. it 
contains two time scales. The decomposed IMFs and 
their residues are shown in Figure 4. We do get the 
expected two time scales. Compared with Huang and 
Shen (cf. Fig. 10)11, Huang and Zhao (cf. Fig. 6)29, the 
IMFs obtained with FEM are identical to that of 
Huang and Shen and EEM, and better than MPM. 
Because the waveform of the signal is far from 
symmetrical at any extrema, IMFs obtained with 
MPM have unavoidable end effects and have some 
oscillatory surges at the end points. 

Finally, the method is also examined by the Lorenz 
equations: 
 

dX X Y
dt
dY rX Y XZ
dt
dZ bZ XY
dt

    

   

   

  … (19) 

 

The parameters are taken the same as those of 
Huang and Shen10, i.e. 10, 3, 20b r    , and the 
initial conditions { (0); (0); (0)} {10;0;0}X Y Z  . The 
numerical solution depicts a spiral motion converging 
to one of the point attractors at ( 57, 57,19  ) as 
shown in Figure 5(a). The x-component is shown in 
Figure 5(b). Huang and Shen10 have analyzed the x-
component’s Fourier spectrum which shows a sharp 
peak at 1.4 Hz and its harmonics at 2.8 Hz. However, 
the two IMF components given by them do not show 
this relation correctly, and IMF1’s frequency is about 
1.4 times IMF2’s frequency. The IMFs with FEM are 
shown in Figure 6. In Figure 6, IMF1’s frequency is 
twice that of IMF2 indicating a perfect result. 
Therefore, FEM gives a better result than that of 
Huang and Shen10. 
 

 
 

Fig. 3 — X-component (a) and phase diagram (b) for the Rossler
equations 
 

 
 

Fig. 4 — IMF1 (a), IMF2(b) and residue (c) for the Rossler
equations 

 
 
Fig. 5 — Phase diagram (a) and x-component (b) for the Lorenz 
equations 
 

 
 

Fig. 6 — IMF1 (a) and IMF2 (b) for x-component 
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Internal wave temporal series decomposition 
EMD is also used to study oceanic waves20,21,30.  

In this paper we use EMD with the proposed FEM 
method to extract nonlinear internal wave from SAR 
imagery. The SAR image used in this study is from 
ERS1 (see Fig. 7) and the studied data is the profile 
line AB, which the internal wave propagating from A 
to B. It was acquired at 10:29 on July 16, 1998. The 
center of the image is located at 20.01° N, 120.17° E, 
which covers the Luzon Strait in the southern part of 
the East China Sea. The size of the image is about  
100 km x 100 km, and the pixel size corresponds to  
12.5 m. Clearly, we can see an internal wave is 
propagating southwestward. 

We took a data line AB from Figure 7, and 
decomposed the signal into 10 IMFs. We calculated 
the normalized deflection of each IMF based on the 
equation (2). The normalized deflection results from 
IMF1 to IMF10 are 0.0834, 0.0446, 0.0589, 0.0288, 
0.0181, 0.0053, 0.0305, 0.7269, 0.0031 and 0.0004, 
respectively. We can see that IMF8’s deflection is 
maximum, which means IMF8 contains the largest 
energy and stands for internal wave component28. 

We present IMF8 together with the original data in 
Figure 8. The original data contains lots of noise. 
However, with the FEM method proposed in this 
paper, the internal wave signal can be extracted and 
are clearly shown in Figure 8b. We also find that the 
wave packet consists of at least 14 solitons.  
The fastest soliton with largest amplitude will move 
in front of the wave packet when lots of solitons 

travel together4, which means the amplitude of wave 
gets larger and larger, the speed of soliton becomes 
faster and faster when the internal wave propagate 
from A to B. Therefore, this decomposition gives us a 
meaningful and physical result. This result is 
agreement with the previous result given by wavelet 
method and holds the better waveform especially at 
the end of the signal31. It also proves that EMD with 
FEM can break down a series with a lot of noise  
into IMFs successfully. What we shall emphasize here 
is that the using of FEM for long signals with  
much maxima or minima decomposition can get 
better results. 

We have also applied the EMD with FEM for other 
internal wave temporal series decomposition and 
found that this method is a power tool for internal 
wave signals detection. Figures 9 & 10 give us 
another two examples. Figure 9 contains some dark 
slicks and only one soliton, which looks like a white 
band in the left-top side of the image. The original 
intensity values across AB are shown in Figure 9(b) 
and the 4th component IMF4 with EMD is show  
in Figure 9(c). Figure 10 is a little different from 
Figure 8 and Figure 9, because Figure 10(a) is a 
calibrated image. We can see the normalized radar 

 
 
Fig. 7 — SAR imagery of Luzou Strait and the studied data line AB 

 
 

Fig. 8 — Original intensity values ORG across AB and the 8th 
component IMF8 
 

 
 

Fig. 9 — The SAR image (a), original intensity values ORG
across AB (b) and the 4th component IMF4 (c) 
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cross section (NRCS) of internal wave signal in Figure 
10(b). We applied the EMD with FEM for this internal 
wave signal decomposition and found that the 8th IMF8 
stands for internal wave component, which is shown in 
Figure 10(c). Then we can see that this method can 
detect internal wave signal in a convenient way. 
 
Conclusion 

One improved method based on EMD with FEM 
and a criterion based on the theory that the max-
normalized deflection stands for the largest energy is 
introduced for internal wave signal detection in this 
paper. The method could handle the end effects of 
EMD. The comparison shows that for symmetrical 
series’ decomposition, the method is more feasible 
and more precise. This is very helpful for us to 
analyze the nonlinear data and detect the internal 
wave signals in the SAR images.  
 
Acknowledgements 

This work is supported by the Natural Science 
Foundation (Grant No. 41606107), We would like to 
thank Remote Sensing Ground Station of China, 
Chinese Academy of Sciences (CAS) for providing 
the SAR images. We also would like to thank the 
anonymous reviewers’ comments to improve the 
original manuscript. 

References 
1 Fan Z S, Research Fundamentals of Ocean Interior Mixing, 

(China Ocean Press, Beijing), 2002. 
2 Cai S Q, Long X M & Gan Z J, A method to estimate the 

forces exerted by internal solitons on cylindrical piles,  
Ocean Engg, 30 (2003) 673–689. 

3 Zhao Z X, A study of nonlinear internal wave in the 
northeastern South China Sea, Ph.D. Thesis, University of 
Delaware, America, 2005. 

4 Alpers W, Theory of radar imaging of internal waves, 
Nature, 314 (1985) 245–247. 

5 Li X F, Clemente-Colon P & Friedman K S, Estimating 
oceanic mixed layer depth from internal wave evolution 
observed from Radarsat-1 SAR. J Hopkins Apl Tech D, 2l (1) 
(2000) l30–135. 

6 Fan K G, Huang W G, Gan X L & Fu B, Retrieving internal 
wave surface currents from SAR image, J Remote Sens, 14 
(1) (2010) 122-130. 

7 Alpers W, He M X, Zeng K, Guo L F & Li X M,  
The distribution of internal waves in the East China Sea and 
the Yellow Sea studied by multi-sensor satellite images. 
Proc. 2005 IEEE International Geoscience and Remote 
Sensing Symposium, (Seoul), 2005, pp. 4784-4787. 

8 Zheng Q A, Susanto R D, Ho C R, Song Y T & Xu Q, 
Statistical and dynamical analysis of generation mechanisms 
of solitary internal wave in the northern South China Sea.  
J Geophys Res, 112 (C3) (2007), pp. C03021, doi: 10. 
1029/2006JC003551 

9 Le Caillec Jean Marc, Study of the SAR signature of internal 
waves by nonlinear parametric autoregressive Models, IEEE 
T Geosci Remote, 44 (1) (2006) 148-158. 

10 Huang N E, Zheng S, Steven R L, Manli C W, Hsing H S, et 
al., The empirical mode decomposition and the Hilbert 
spectrum for nonlinear and non-stationary time series 
analysis, Proc R Soc Lond A, 454 (1998) 903-995. 

11 Huang N E, Zheng S & Steven R L, A new view of nonlinear 
water waves: the Hilbert spectrum, Annu Rev Fluid Mech,  
31 (1999) 417-457. 

12 Chen Y & Feng M Q, A technique to improve the empirical 
mode decomposition in the Hilbert-Huang transform, Earthq 
Eng & Eng Vib, 2 (1) (2003) 75–85.  

13 Huang N E & Wu Z, A review on Hilbert-Huang transform: 
Method and its applications to geophysical studies.  
Rev Geophys 46 (2) (2008) 3043-3061. 

14 Ditommaso R, Mucciarelli M, Parolai S & Picozzi M, 
Monitoring the Structural Dynamic Response of a Masonry 
Tower: Comparing Classical and Time-Frequency Analyses, 
B Earthq Eng, 10 (4) (2012) 1221–1235.  

15 Barnhart B L & Eichinger W E, Analysis of Sunspot 
Variability Using the Hilbert-Huang Transform, Sol Phys, 
269 (2) (2011) 439–449. 

16 Nakariakov V M, Inglis A R, Zimovets I V, Foullon C, 
Verwichte E, et al., Oscillatory processes in solar flares. 
Plasma Phys ControlFusion, 52 (12) (2010) 124009. 

17 Boudraa A O & Cexus J C, EMD-Based Signal Filtering, 
IEEE T Instrum Meas, 56 (6) (2007) 2196–2202.  

18 Huang N E & Shen S S P, Hilbert-Huang Transform and its 
Applications, (World Scientific, London), 2005. 

19 Flandrin P, Rilling G & Gonçalves P, Empirical Mode 
Decomposition as a Filterbank, IEEE Signal Proc Let, 11 (2) 
(2003) 112–114.  

 
 

Fig. 10 — The calibrated SAR image (a), the NRCS of internal
wave signal across AB (b) and its 8th component IMF8 with
EMD (c) 
 



INDIAN J GEO-MAR SCI, VOL 49, NO 04, APRIL 2020 
 
 

640

20 Huang N E, Long S R & Shen Z, The Mechanism for 
Frequency Downshift in Nonlinear Wave Evolution,  
Adv Appl Mech, 32 (1996) 59–111.  

21 Huang N E, Shen Z & Long R S, A New View of Nonlinear 
Water Waves-The Hilbert Spectrum, Annu Rev Fluid Mech, 
31 (1999) 417–457.  

22 Wu Z & Huang N E, A Study of the Characteristics of White 
Noise Using the Empirical Mode Decomposition Method, 
Proc Math Phys Eng Sci, 460 (2046) (2004) 1597–1611. 

23 Hariharan H, Gribok A, Abidi M A & Koschan A,  
Image Fusion and Enhancement via Empirical Mode 
Decomposition, J Pattern Recogn Res, 1 (1) (2006) 16–31. 

24 Chang J C, Huang M Y, Lee J C, Chang C P & Tu T M, Iris 
Recognition with an Improved Empirical Mode 
Decomposition Method, Opt Eng, 48 (4) (2009). 
doi:10.1117/1.3122322. 

25 Parey A & Pachori R B, Variable cosine windowing of 
intrinsic mode functions: Application to gear fault diagnosis, 
Measurement, 45 (3) (2012) 415–426. 

26 Pigorini A, Casali A G, Casarotto S, Ferrarelli F,  
Baselli G, et al., Time-frequency spectral analysis of TMS-
evoked EEG oscillations by means of Hilbert-Huang 
transform, J Neurosci Methods, 198 (2) (2011) 236–245.  

27 Pachori R B, Discrimination between ictal and seizure-free 
EEG signals using empirical mode decomposition, Res Lett 
Signal Process, (2008) doi:10.1155/2008/293056. 

28 Yang J, Zhou C & Huang W, Study on Extracting Internal 
Wave Parameter of SAR Images, Remote sens techno appl, 
15 (1) (2000) 6-9. 

29 Huang D, Zhao J & Su J, Practial implementation of  
Hilbert-Huang Transform algorithm, Acta Oceanol Sin, 22 
(1) (2003) 1-14. 

30 Remoissenet M, Waves called sollitons: concepts and 
experiment, 2nd revised and enlarged edn, (Springer-Verlag 
Berlin Heidelberg, New York) 1996, pp.107-116. 

31 Fan K G, Zhou X Z, Xu Q, Fu B, Han L, et al., Study on 
Synthetic Aperture Radar internal wave, (China Ocean Press, 
Beijing) 2016. 

 


