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Abstract

A multiscale physical model of Shaker -type KV channels is used to span from atomic-scale interac-
tions to macroscopic experimental measures such as charge/voltage (QV) and conductance/voltage
(GV) relations. The model [1] comprises the experimentally well-characterized voltage sensor (VS)
domains described by four replications of an independent continuum electrostatic model under volt-
age clamp conditions [2, 3] and a hydrophobic gate controlling the flow of ions by a vapor lock mech-
anism [4], connected by a simple coupling principle derived from known experimental results and
trial-and-error. The total Hamiltonian of the system is calculated from the computed configurational
energy for each components as a function of applied voltage, VS positions and gate radius, allowing
us to produce statistical-mechanical expectation values for macroscopic laboratory observables over
the full range of physiological membrane potentials (|V | ≤ 100 mV, in 1 mV steps).

The Shaker QV and GV relations seen in Seoh et al. [5] are predicted by this model. With this
approach, functional energetic relations can be decomposed in terms of physical components, and
thus the effects of modifications in those elements can be quantified. We find that the total work
required to operate the gate is an order of magnitude larger than the work available to the VS, and
that the the experimentally observed bistable gating is due to the VS slide-and-interlock behavior.

The same model was systematically applied to VS charge mutants [5]. The QV and GV relations can
be qualitatively predicted and the associated effects on functional domains determined. Additional
features such as surface charges become significant for the pathological cases. Our engineering
approach clearly elucidates that both normal function and mutant changes are electrostatic in nature.

Voltage sensor of K+ channels
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We solve the discretized form of Maxwell’s equa-
tion using a surface element method (ICC):
Ax = b
A are the interaction coefficients for E and V ,
x are the charges on tiles and fixed points,
and b are the fixed potentials
and mobile charges.

Consequences of surface charge for a single voltage sensor
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Single VS model with discrete surface charge(s)
added in four variations of geometrical posi-
tion. The labels in panel a specify: n, no surface
charge; c, charge in ‘close’ position; f, charge in
‘far’ position. (a) Mean charge–voltage relation;
(b) Translational energy profile

Full system of 4 voltage sensors coupled to a hydrophobically-gated conducting pore
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We combine 4 Hamiltonians to calculate the Boltzmann fac-
tors for every combination of VS position and gate radius.
HG(r ) Potential energy of the gate with radius r [4]

HC,i(zi , r ) Coupling function between one VS and the pore [1]
HB,i(zi) Work against an external force (preliminary

representation of surface charge) [1]
HVS,i(zi ,Vm) Electrostatic potential energy of a z position for one

VS at transmembrane potential Vm [2, 3]

B(z, r ,Vm) = exp

{
−β

[
HG(r ) +

4∑
i=1

(HC,i(zi , r ) +HB,i(zi) +HVS,i(zi ,Vm))

]}

Charge displacement & Hamiltonians
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Description of figures: [1, Fig. 2]
A Charge displacement to physical translation mapping for

wild-type VS
B Gate radius to open probability mapping for

morphometric model of hydrophobic gating. We define
the conductance G(r ) = Pl(r ), unless r < 0.2 nm where
G(r ) = 0

C The Hamiltonian for the conducting pore
D The Hamiltonian for the VS at a given translation and

transmembrane potential for the wild-type VS
E The hypothetical coupling Hamiltonian mapping VS

positions and conducting pore radii to potential energies
F A bias Hamiltonian, representing a simplified external

interaction

For Fig. C, the Grand Canonical energy is [4]
ΩO = −plV + σlA + κlC
Ωc = −plV l +σlAl +κlC l−pgV g +σgAg +κlCg +σlg(A1

lg + A2
lg)

Pl can be calculated from the difference

The general equation to calculate the expectation value of a
measure X at a voltage Vm is

〈X (Vm)〉 =
1

Q(Vm)

Nr∑
l=1

∑
k

n(k)B(zk, rl ,Vm)X (zk, rl ,Vm).

where n(k) is the degeneracy of state k

Work for operating the hydrophobic gate
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The work for operating the hydrophobic gate (dashed line) is small
compared to the electrical work picked up by the four VS domains
(solid line). The gate work is the expectation value 〈HG〉, and the elec-
trical work is computed as −〈Q〉Vm where 〈Q〉 is the expectation value
of the total gating charge displaced per channel [2]. Gate work is here
referenced to that done at 0 mV.

Comparison of the full-channel model with experiment

−150 −100 −50 0 50 100

Voltage / mV

−10

−5

0

5

10

G
at
in
g
C
h
ar
ge

/
e 0

Q Q Q Q Q Q

R R R R R R

T

T

T

T

T

U

U

U

U

U

HHHHHHHHH
HH
HH
HH
H
H
H
H
H
H
H
H
H

H

H

H

H

H

H
H
H
H
HH
HHH
HHH

A

−100 −50 0 50 100

Voltage / mV

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
or
m
al
iz
ed

C
on

d
u
ct
an
ce

Q Q Q Q Q

R R R R R

T

T

T

T

T

T

T

T

T

U

U

U

U

U

U

U

U

U

HHHHHHHHHH
H
H

H

H

H

H

H

H

H

H

H

H
H
H
H
HH
HH
H
H
HH
HH
HHHHH
HHH

B

(A) Gating-charge/voltage (Q/V) relation of the
full-channel model (solid line); symbols: exper-
imental Q/V relation of Shaker (ShB-IR) potas-
sium channels (from Seoh et al. [5, Fig. 2A]);
(B) Conductance/voltage (G/V) relation of the
model (solid line), and the experimental G/V
relation from Seoh et al. [5, Fig. 2A] (symbols).

Open probability and conductance: Hypothetical external charge as linear field
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with Seoh et al. [5, Fig. 2] as filled circles.
Full charge displacement is 12eo.

A “Wild type” Shaker (ShB-IR)
B R362Q (R290): Normalized in

experimental results
C R365Q (R293)
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Conductance {G(V )} is in blue and charge
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