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Renormalization of electron self-energies via their interaction with spin excitations:
A first-principles investigation
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Access to magnetic excitation spectra of single atoms deposited on surfaces is nowadays possible by means
of low-temperature inelastic scanning tunneling spectroscopy. We present a first-principles method for the
calculation of inelastic tunneling spectra utilizing the Korringa-Kohn-Rostoker Green function method combined
with time-dependent density functional theory and many-body perturbation theory. The key quantity is the electron
self-energy describing the coupling of the electrons to the spin excitation within the adsorbate. By investigating
Cr, Mn, Fe, and Co adatoms on a Cu(111) substrate, we spin-characterize the spectra and demonstrate that their
shapes are altered by the magnetization of the adatoms, of the tip and the orbital decay into vacuum. Our method
also predicts spectral features more complex than the steps obtained by simpler models for the adsorbate (e.g.,

localized spin models).
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I. INTRODUCTION

The study of magnetic properties of adatoms or clusters of
few atoms deposited on surfaces is of crucial importance for
the development of future magnetoelectronic devices that push
the boundaries of efficiency with respect to both density of
binary information and temporal stability. In nanospintronics,
spin and charge currents can be strongly affected by the
scattering of electrons by collective excitations, such as spin
excitations (SE) [1]. The effect of such scattering can be
described with an electronic self-energy. Besides its impact
in nanotechnologies, the interaction between electrons and SE
(I.—sg) is a fundamental issue. It can have strong impact on
spin fluctuations [2], superconductivity in Fe-pnictides [3,4],
and dynamics of atomic-scale magnets [5].

In angle-resolved photoemission spectroscopy, the I._gsg
shows up as a kink in the band-structure [6-8], while for low-
temperature inelastic scanning tunneling spectroscopy (ISTS)
the signature of the SE is found in the conductance [9-15].
In ISTS of nanostructures deposited on surfaces, the electrons
interact with the substrate during the tunneling process and
exchange energy and possibly spin angular momentum. This
leads to additional tunneling channels usually assumed to
manifest as a steplike increase of the conductance.

The nature of both the adsorbate and substrate is of
primordial importance in ISTS. Indeed, hybridization be-
tween their respective electronic states plays a major role in
defining the main characteristics of the SE spectra [16-19],
such as excitation energies and lifetimes. Recently, it was
shown [12,13,15,18,19] that the imaginary part of the trans-
verse dynamical magnetic susceptibility, x, calculated from
first principles, can be used to reliably extract the density of
SE states that contains and explains the previously mentioned
characteristics, albeit it does not provide theoretical inelastic
spectra. Also, we note that several model calculations based
on a Heisenberg Hamiltonian [10,20-23] or beyond [24,25]
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were proposed to understand the ISTS spectra. However, they
often rely on a fitting procedure of experimental input.

Although a tremendous effort has been made in the
investigation of SE, many questions remain open, for instance
the asymmetry of the inelastic spectra, the nonobservation
of SE while a Heisenberg model will always predict their
presence, the spin-nature of the observed inelastic spectra.
The goal of this article is to answer some of them. We
present a first-principles method, based on the Korringa-Kohn-
Rostoker Green function (KKR-GF) method embedded in a
time-dependent density functional theory (TDDFT) formalism
in combination with many-body perturbation theory (MBPT),
which allows a realistic description of theoretical inelastic
tunneling spectra. The advantage of such a scheme lies in
the direct access to the Green function renormalized by the
presence of I._gg. Thus, we extract the related self-energies
and their impact on the electronic structure. This enables the
calculation of realistic excitation spectra in the vacuum above
the impurity that are comparable to ISTS measurements, in
the spirit of the Tersoff-Hamann approximation [26]. We
explain many of the experimental observations that are not
understood by demonstrating that: (i) the usual asymmetry
in the inelastic spectra is induced by the magnetization of the
adsorbate and of the ISTS tip, (ii) the shape of the SE signature
is not necessarily a step in the conductance, (iii) additional
spectroscopic features induced by the I._gsg are found, and
(iv) the spin character of the excitation signature is revealed.
After a brief discussion of our scheme we analyze results for
single 3d adatoms deposited on a Cu(111) surface and compare
our simulations for Fe to available measurements [12].

II. METHOD

The self-energy of interest, X, describes spin-flip processes
as visualized, for simplicity, in Fig. 1; for example, an electron
with spin-up travels from the tip to the surface where it
excites an electron in the minority band [Fig. 1(a)]. The
hole created in the minority-spin channel and the tfunneling
electron can form an electron-hole (e-h) pair of opposite spins.

©2014 American Physical Society
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FIG. 1. (Color online) Four basic spin-flip processes superim-
posed on schematic spin-resolved DOS for the adatom (a)-(d) and
the tip [only (a)]. Electrons are indicated by filled red circles, holes by
empty white circles. The wiggly lines represent e-h pair interactions.
The probability associated with each process depends on both the sign
and the magnitude of the applied bias voltage V. All four processes
contribute to the Feynman diagram (e), incorporating the infinite
series of interactions [see Eqgs. (1) and (2) and related discussion].

Other processes are obtained by swapping the spin labels
[Fig. 1(b)], the role of particles and holes [Fig. 1(c)], or both
[Fig. 1(d)]. All four processes can be subsumed under the
Feynman diagram as given in Fig. 1(e). The e-h pairs after
renormalization via the mediating interactions (wiggly lines)
lead to correlated spin-flip excitations (magnons in extended
systems). Processes in Figs. 1(a) and 1(c) contribute to X7,
while XV is determined by processes in Figs. 1(b) and 1(d).
Depending on the electronic structure, as exemplified in Fig. 1,
some processes can be dominant. This is related to the density
of states (DOS) for electrons and holes available for the
different processes. In Fig. 1(b), the amplitude of the e-h pair
defined by the unoccupied minority-spin states and occupied
majority-spin states is much larger than the amplitude of the
e-h pair defined by the occupied minority-spin states and
unoccupied majority-spin states shown in Fig. 1(d). Thus,
one expects the self-energy for the majority-spin channel
to be mainly shaped by the process in Fig. 1(c) while the
minority-spin channel would be mainly shaped by the process
in Fig. 1(b), as intuitively proposed in Ref. [27].

The two half circles in Fig. 1(e), connecting the points 2
with 1 as well as 3 with 4, interact via the wiggling lines
and define an object that resembles the transverse dynamical
magnetic susceptibility. We note that the diagram in Fig. 1(e)
is one of the many that, in the T-approximation [28,29],
describe the renormalization of the mediating interaction U to
the scattering T-matrix via ¥ [30]. Naturally, such Feynman
diagrams induced by I._sg were investigated for decades with
simple models (see, e.g., Refs. [31] and [32]). Hertz and
Edwards [33,34], for instance, devised a scheme to avoid
self-consistent calculations with the computed self-energy
(see also Ref. [35]). Recently, realistic models based on the
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evaluation of T using either a tight-binding scheme [36] or
density functional theory in the GW approximation [37-39]
were developed and applied for bulk materials [40].

The Feynman diagram in Fig. 1(e) is translated to the fol-
lowing form considering a local and adiabatic approximation
forU (o = 1,| ando = |,1; Ep is the Fermi energy):

%(ry,r; E)
_ _U)U(ry)

T

o0
X{[ dwIm[G(r,r; 0 + E)x%(r,17; 0)]
0

Er—E B B
—/ dwlm[cg(rl,rz;w+E>]x°”<rz,r1;w>*}. (1)
0

Here, x ™ and x ‘' correspond, respectively, to x ¥~ and x ~+;
see Appendix A. Since we are interested in simulating ISTS-
related experiments we can proceed to the change of variables:
E = Er + V and V corresponding to the applied bias voltage.

x°° is the transverse dynamical magnetic susceptibility that
can be calculated from the Dyson-like equation as given in a
matrix notation:

X7 =%+ x5 7UX°. 2

Within TDDFT, which is the basis of this work, X(‘)’ﬁ is the
response function of the Kohn-Sham system. It is connected
to the full susceptibility via the exchange and correlation
kernel, U, which simplifies in the adiabatic local density
approximation (ALDA) to U(r) = i ZS) (see, e.g., Refs. [18]
and [19]). Equation (2) also occurs in many-body pertur-
bation theory (MBPT), in the random-phase approximation
(RPA) [16,17,41]. There, ¢ is the noninteracting susceptibility
that connects to the full susceptibility via U, the screened
Coulomb interaction. It was already shown that a mapping
between the two schemes is possible by considering U as the
exchange and correlation kernel [18,19]. A similar connection
in the spirit of the Bethe-Salpeter equation was proposed for
the case of charge excitations [42] or for SE [43]. Our strategy
is thus to use TDDFT to extract the susceptibility. Once X
is known, we plug it into the Dyson equation given in a
matrix notation G = Go + GyX G with the Green function
Gy containing the reference electronic structure.

III. RESULTS AND DISCUSSION

In order to mimic the effect of spin-orbit coupling, we apply
an auxiliary external magnetic field with ug By ~ 0.5 meV that
opens a gap in the excitation spectra at the Larmor resonance
frequency, wres = upgBo (g ~ 2 is the Landé factor), which
matches the experimental data for the Fe adatom [12]. For the
sake of comparison, the same auxiliary field is used for all
adatoms.

For the electronic structure, use is made of the KKR-GF
method [44] in the atomic sphere approximation (ASA) with
full charge density in the local spin-density approximation,
as parametrized by Vosko, Wilk, and Nusair [45]. A slab of
22 Cu layers stacked in the (111) direction augmented by two
vacuum regions was used to define the undisturbed Cu(111)
surface, using the experimental lattice constant (a = 3.615 A).
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FIG. 2. (Color online) The energy dependence of the spin-resolved key quantities for Fe adatoms on Cu(111): (a) the response function,
(b) the self-energy, (c) the d-DOS of the adatom, and (d) s-DOS in vacuum, for different magnetic fields. All quantities are plotted for spin-up
(solid lines,1) and spin-down (dashed lines,J ). (¢) A comparison to the derivative of the conductance spectra obtained in experiment (see
Ref. [12]). The agreement improves when instead of a nonpolarized tip (solid red curve) a polarization of P = —50% is assumed (dashed red

curve); see Appendix E for a detailed discussion.

From this surface a real space cluster is cut out surrounding the
position to be occupied by the impurity adatom. A relaxation
of the adatom by 14% toward the surface was considered
(0% corresponds to the ideal interlayer separation in bulk,
a//3 =2.087A).

We analyze the spin excitations of several transition metal
adatoms on a Cu(111) slab with 22 Cu layers. To calculate
x°° we consider the response of the systems to a site- and
frequency-dependent transverse magnetic field where a pro-
jection to a localized basis set is considered (d-wave functions
defined at Eg). For more details see Refs. [18] and [19].
In this scheme, the transverse susceptibility simplifies to a
single number for a single adatom (spherical approximation),
which is reasonable since for most of the adatoms magnetic
moments is carried by d electrons. Imx°° for different
magnetic fields AB = B — By are shown in Fig. 2(a) for the
Fe adatom.

We proceed by discussing the imaginary part of the self-
energy projected on the d basis and integrated within the
atomic sphere surrounding the adatom,

-V
ImX? (Ep+V) = —U2/ don?, (Ep+V + o)
0

xIm[x % (@)*], 3)
where n?(E) = —1/7ImG{(E) is the local DOS obtained
for the initial Green function, x is the spherical part of the
susceptibility, i.e., x = me, Xmm'mm and m, m’ label the d
orbitals. If one considers n(E) to be featureless, an energy
integration of Imx°? is performed in Eq. (3). Naturally, one
expects a steplike function as soon as the integration goes over
a bias voltage V equal to w. The resulting spin-resolved
self-energy is shown in Fig. 2(b), where the traces of X!
and XV are indicated by solid and dashed lines, respectively.
Because of the relation between the step positions and wyes,
the gap between them increases with B. Whereas the heights
of the resonances in x° are equal with respect to the two spin
channels, the step height in the self-energy differs by a factor
of about 100. The reason is that the resonance is weighted

by the DOS of the opposite spin channel, cf. Eq. (3): if there
is only a small number of o-states available, the scattering

is unlikely to happen. In contrast to the extremely small n]le,

the née displays a large resonance; see Appendix B. Since the
step widths are related to the linewidths extracted from the
susceptibility peaks, they increase when the excitation energy
Wres INCTEASES.

The results for the d orbitals of the Fe adatom and for
the s orbitals of the vacuum site are shown in Figs. 2(c)
and 2(d), respectively. Whereas the self-energy shows a height
difference between the two spin channels of about two orders
of magnitude, the resulting DOS magnitudes do not differ
much anymore. Although in the adatom, the d-DOS for the
minority-spin channel is larger than the one for the majority-
spin channel (because of the large minority-spin resonance),
the opposite is found in vacuum for the s-DOS. An analysis of
the orbital contributions to the total adatom-DOS, for instance
the orbitals extending farthest to vacuum, shows that the spin-
asymmetry within the adatom is orbital-dependent. Indeed,
contrary to the d2 and s state, the p, states have majority-spin
DOS larger than the minority-spin DOS, similar to the spin
asymmetry in the vacuum; see Appendix C. Hybridization,
interferences effects, and decays of orbitals shapes the final
form of the vacuum DOS. For example, the peaklike feature
in the minority-spin channel of the d orbital at the Fe adatom
(see dashed lines) can evolve into a steplike feature for the s
states at the vacuum site, which in the presented calculations
is about 6.3 A above the adatom.

In Fig. 2(e), we show a comparison of the experimental
d*1/dV? data for an Fe adatom from Ref. [12] with the
energy derivative of our s-DOS in vacuum, cf. Fig. 2(d). The
experimental spectrum shows two distinct sets of features.
Since the shape of the SE signature is not a perfect step in
the conductance, the first derivative leads to peak and dip
pairs at £1 meV and +3 meV; see Appendix D. The shape
of the SE signatures in the s-DOS is slightly different from
the experimental ones, explaining the absence of the dip at
—3 meV in the corresponding energy derivative. Interestingly,
there is an additional peak in the experimental spectrum at
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FIG. 3. (Color online) DOS renormalized by spin excitations for the four 3d adatoms. Solid lines represent spin-resolved DOS and dashed
lines represent the respective spin average (%l), relevant for a nonpolarized tip, P = 0%; see Appendix E. Top row: DOS for the d orbitals of

the impurity atom. Bottom row: DOS for vacuum ~6.3 A above the adatoms (s orbitals).

45 meV that has no matching dip at —5SmeV in good agree-
ment with our simulations (satellite at +4 meV). The origin of
this extra feature can be traced back to ReX. In the expression
for G, the denominator (1 — GyX) causes a resonance when
Im(GoX) < 1 and Re(GypX) is close to 1. This condition
seems to be satisfied in the majority-spin channel around
Eg. The self-energy thus is acting as an additional potential
on the electrons, which can lead to satellites very similar to
split-off states observed when adatoms interact with surface
states [46,47]. We studied the effect of the spin-polarization
of the tip with a simple model, see Appendix E, choosing
P =0% or P = —50%; the overall shape of the spectrum
can be modified by changing the weight of the spin-resolved
SE signature [cf. solid versus dashed red line in Fig. 2(e)].
This can improve the agreement with the experiment and
indicates that the shape of the inelastic spectra is not only
a function of the adsorbate but also of the polarization of the
tip.

The excitation spectra of Co, Mn, and Cr adatoms are
given in Fig. 3. The top row [Figs. 3(a)-3(d)] shows the
DOS for the spin-resolved adatoms d orbitals and the bottom
row [Figs. 3(e)-3(h)] shows the spin-resolved and the spin-
averaged (dashed lines) vacuum s orbitals above the impurity.
The Co adatom’s spectrum reveals some similarities to those of
the Fe adatom. For the majority spin their shapes, including the
additional satellite, are nearly identical. For the minority-spin
channel, however, the SE feature almost vanishes in vacuum.
In contrast to Fe and Co, the Mn renormalized DOS does not
show additional satellites. However, the excitation signatures
are steplike functions with a peaklike resonance at the edges.

For the Cr adatom, peaklike structures are observed in the
d-DOS, which transform in vacuum into a reversed step for
the majority-spin channel, while in the minority-spin channel
the SE and the satellite overlap at Ef.

‘We note that Co adatoms on Cu(111) is a traditional Kondo
system and that processes leading to Kondo behavior are not
included in our scheme [48]. In contrast to Co, Fe shows no
Kondo signature down to 0.3 K [12]. This is strengthened by
the measurements of magnetic exchange interactions among
Fe adatoms [49]. Cr and Mn adatoms on Cu(111) are expected
to behave as on Au(111) [50], where no Kondo behavior is
observed.

The lifetime of the SE, 7,, is given by the linewidth of Imy,
which is different from the lifetime extracted from the inelastic
spectra, Tpos. Both lifetimes are calculated from t = A/2AE,
where AFE is the full-width half-maximum of the signature
of the spin excitations. Because of the convolution with the
one-electron GFs, more information is encoded in 7pgs, which
is the only quantity reachable experimentally. Contrary to 7,
Tpos 18 spin dependent and the difference between the spin
channels can reach a factor 5. Indeed, 7, = {1.9,2.9,0.6,0.2}
ps for, respectively, {Cr, Mn, Fe, and Co}, while the sequence
changes to {1.1,0.5,0.1,0.3} ps for tgos and {0.4,0.8,0.5,0.1}

ps for 'L’éos. Furthermore, for some systems the additional
satellite contribute to the effective lifetime of the excitation
signature (Cr is the extreme case). The lifetimes of Co and Fe
adatoms are up to one order of magnitude smaller than those of
Mn and Cr adatoms when the resonance of the susceptibility
is used. This is due to the relatively small minority-DOS at Er
for the latter two systems: the excited electron cannot easily
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find an unoccupied state to deexcite to and thus the excitation
lifetime is longer; see Fig. 1.

IV. CONCLUSION

In summary, a first-principles approach to inelastic mag-
netic excitation spectra is developed utilizing the KKR-GF
method combined with TDDFT and MBPT. We illustrate its
capabilities by investigating 3d adatoms on a Cu(111) surface
with a focus on Fe impurities. We relate the asymmetry of
the inelastic spectra (height and lifetime) to the electronic and
magnetic structure of the adatom as well as the magnetization
of the ISTS tip. The spin character of the excitations above
and below Ef is explained. Most importantly, the spectra
can have different shapes, including a steplike form, and
extinction of the signature of the excitations can occur. Also,
nontrivial spectral satellites are obtained, which to our believe
are observable experimentally and could even be mistaken as
being the signature of SE. Further work involves handling
spin-orbit coupling, the effects of self-consistency on the
self-energy, and approximations beyond the ALDA.
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APPENDIX A: THE KOHN-SHAM SUSCEPTIBILITY
AND THE SELF-ENERGY

In the definition of the Kohn-Sham susceptibility used in
Eq. (1) in the main text we follow Lounis et al. [18,19].

The Kohn-Sham (KS) Green function (GF) is the resolvent
of the corresponding Hamiltonian, Ggs(E) = (E — Hys) ™.
In the Korringa-Kohn-Rostoker Green function (KKR-GF)
method, space is partitioned into nonoverlapping regions
surrounding the atoms, labeled i. These regions are taken
as spherical in the atomic sphere approximation (ASA), and
the KS potential is also assumed to be spherical around each
atom, VX5(r), with r = |F| and # = F/r. Then the KS GF
is expressed in terms of energy-dependent scattering solutions
for each atomic potential, R{,(r; E) Y, (7) and H7(r; E) Y (7),
which are products of radlal functions and (real) spherical
harmonics for each spin o = 4, and angular momentum

= (¢,m). R{,(r; E)isregular at the center of the ASA sphere,
and H(r; E) dlverges there. The KKR-GF then takes the form
Gy .7 E) =Y Y.(")[8;VE RS,(r<; E) H(r; E)

L
R E)GY, ;1.(E) R%,(r' E)]YL(7),
(AD)
where r. = min(r,#’) and r.. = max(r,r’), and G?, L (E) is
the structural GF, describing backscattering effects.

As explained in Refs. [18] and [19], near the Fermi
energy (Ep) one may approximate R?(r; E) ~ R7(r; EF).
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Furthermore, given that the states of interest are the d orbitals
of a single magnetic adatom, one may drop the site label i and
keep only £ = 2, projecting on the regular scattering solutions
computed at Eg:

dmm (E) = /dr /dr R (r; Eg) Yo, (F)

xG(r 7' E) RG(r's Ep) Yo (') (A2)

This defines the projection on the d orbitals of the adatom of
the KKR-GF, upon suitable normalization.

The transverse magnetic KS susceptibility is given in terms
of the KS GFs as

Xou(? r'w) = ——/ dE GU_'_'/E~I—w~I—10)

xIqu-(F/,F;E) ~|—ImG§_7j(7,7';E)
xG7(F 7 E — o —i0)]. (A3)
Here, x™ and x ‘' correspond to x*~ and x %, respec-

tively. Introducing the projection on the d orbitals, this leads
to

> R§(r: Ep) Yau,(?) RS (s Ep) Yo, (7))

miymomszmy

XRG(r's Ep) Yo, (F )RS (r; Ep) Yo, (F)

Xod (PP i) =

XX Gk mymamams (@) (A4)
where
1 [Fr ‘
X(()Tdamlmzm;m4(a)) = JT/ dE[ dm|mz(E +w+ 10)
xIm G mam, (E) +1Im
X G iy (E) Gy, (E — 0 —10)].
(AS)

At this stage it is useful to recall the magnetization sum rule,
see Refs. [18] and [19],

m; (r)—Z/dr X0 F'50) Bee ;)

= Z/dr Xoh 7 F0) By (7).

(A6)

Byoi(F) = Vs, (F) —
Vlis, .(7). In the ASA the KS potential is spherical, so it is also
consistent to take a spherical average of the magnetization,

with the exchange-correlation splitting,

m,-(r):/df m;(F)
/er/dr XOU(? ﬁ, O)Bxc](r)
/er/dr Xo i (FF/10) B j (), (AT)
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and introducing the projection the spherical average of the d
magnetization turns out to be

R (r; EF)R (r; ER) Z XOd m1m7mam1(0)

mymy

mg(r) =

x / dr' (')} R}(r'; Ep) R} (r'; Eg) Byo(r)
= R)(r; Ep) R} (r; Er) g, (A8)

using the orthogonality of the spherical harmonics. This
suggests the introduction of the spherical average of the KS

susceptibility,
Z X()d mlmzmzml )

myn;

o7 (@) = (A9)

In time-dependent density functional theory (TDDFT), the
transverse magnetic susceptibility obeys the Dyson equation,

x5 w) = xg 5 w) + Z/d7]/d72 X60.5p(T 5T15 @)
P4

XUXC,pq(?laFZ;w) ng&(;:Z??/; CO), (AIO)

and in the adiabatic local density approximation the transverse
xc kernel is simply given by

;@) = Use,i(7) 8 8(F —7")
xc,i(;:)
m;(F)

Returning to the ASA and the projection on the d orbitals,

—>—>/

Uk, l](r

8ij 8(F —F"). (A11)

Bxc,i(r) Z/df Bxc,i(;:) Z/df ch,i(;:)mi(?)

~ Use.a(r)ma(r)
= Uyea(r) R)(r; Er) Ry (r; Ep) g, (A12)

From the magnetization sum rule we arrive at an effective
one-parameter xc kernel,

Oed = / dr' (7' R\ E) RY: Ex) Usea(r)

X R} ('; Eg) R} (r'; Er)
[X()d 1 ! [X()d (0)]

and the last two equalities must follow for consistency, which
in practice define the kernel once the static KS susceptibility
is known.

The transverse magnetic susceptibility is then represented
as

(A13)

35% (@) = (157 (@) = Use] ™

Let us turn our attention to the Dyson equation for the
GF, including the self-energy describing the coupling to the
magnetic excitations:

G B+ Y [ [ar,
prq

o
XGOlp

(A14)

G375 E) =

713 EYES, (Fr.i: E) Go(Pau s E).
(A15)
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This will lead to the following matrix element, once the
projection on the d orbitals is introduced,

5 (B) = [a7 [a7" RS By Va7 27 7 )
X RS (r'; Eg) Yo (7). (A16)

The self-energy requires matrix elements of the following
form, which simplify after replacing G with its projected
form, Uy, and the susceptibility with their spherical averages:

/d?/d RS (r; Ep) Yo () Use () G§ (7,7 E)
xx°°F 7' EN) U7 RG(r's ER) You (7)

= 3 [dF a7 Ry B Yantd) Usstr) R )

mymy
XY, (F) GG iy (E) RG (' EE) Yo, (')
X R (r; Er) R (r; Ep) %37 (E") R (r'; Ev) R (r'; Er)
x Uxe(r') RG(r'; E) Yo (7')

= Used Gy (E) %77 (E") Uxc a,

which is the form of the matrix elements of the self-energy
quoted in Eq. (1) in the main text.

(A17)

APPENDIX B: DENSITY OF STATES AND
SELF-ENERGIES FOR Cr, Mn, Fe, AND Co
ADATOMS ON Cu(111)

Following Eq. (3) in the main text, characteristic features
regarding the steps of the obtained imaginary parts of the self-
energies, ImX, can already be concluded from a brief analysis
of the spin-resolved density of states (DOS), n'(E) and n'(E)
for spin-up and spin-down, respectively. The step heights of the
imaginary part of the self-energy for a given spin channel are
weighted by the density of states of the opposite spin channel
near the Fermi energy. In Fig. 4 the spin-resolved DOS for Cr,
Mn, Fe, and Co adatoms are shown. The majority-spin states
are almost fully occupied. The minority-spin resonance shifts
down in energy when increasing the d-electron occupation.
Thus, for Fe and Co this resonance is located very close to the
Fermi energy while for Cr and Mn the resonance is located
much further above the Fermi energy. This explains the spin
asymmetry observed in the step height of Im¥ as shown in
Fig. 5, where for the sake of comparison the auxiliary external
magnetic field By was kept the same for all four adatoms.
Contrary to Mn, Fe, and Co adatoms, Cr adatom is the only case
where n'(Eg) > n'(Ep) leading to InX"(Eg) < ImX ¥ (Ep).
Since the spin asymmetry is large for the DOS of Fe and Co
adatoms, the spin-dependent step heights of Im¥ differ by two
orders of magnitude.

APPENDIX C: ORBITAL-RESOLVED ANALYSIS
OF THE DOS FOR Fe ADATOMS

In Fig. 6 the orbital-resolved DOS is shown. Only states
extending farthest into vacuum above the adatom are displayed
(s, p;, and dp2). Contrary to the s- and d,2-resolved DOS,
for the p, states the majority-spin contribution is larger than
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FIG. 4. (Color online) The spin-resolved total density of states (DOS) are shown for the four adatoms (Cr, Mn, Fe, and Co, from left to
right). The step height obtained for the imaginary part of the self-energy for a given spin channel is mainly determined by the local DOS of the

opposite spin channel at the Fermi energy (dashed line).

the minority-spin contribution. This spin asymmetry in the
magnitude of the DOS seems to be maintained in vacuum.
Whereas the d, state is dominant at the adatom it decays fast
into vacuum due to its more localized character than the p,
state. This is even more remarkable since the latter orbitals
only show a difference in the spin-resolved terms by a factor
of 2 and are by more than two orders of magnitude smaller
than those of the d,> orbitals at the adatom. Such an observation
does not necessarily remain true for all systems but shows that
the tip position plays an important role when investigating the
spin asymmetry of the inelastic spectra.

APPENDIX D: WHAT DOES A SIMPLE MODEL
PREDICT FOR d1/dV AND d*1/dV??

The simplest model able to predict steps in d1/dV caused
by inelastic tunneling via a magnetic adatom is that of a quan-
tum spin coupled by exchange to the tunneling electrons (see,
e.g., Refs. [20,22] and [23]). For the Fe adatom on the Cu(111)
surface, the appropriate Hamiltonian is H# = D §2 + B §,,
where S. is the quantum angular momentum operator asso-
ciated with states |S M) such that 8|S M) = S(S + 1)|S M)
and S,|S M) = M|SM). D <0 describes the out-of-plane
anisotropy easy axis found experimentally and theoretically
by DFT calculations, and B is the applied magnetic field in
energy units. S is usually chosen to be close to the computed

spin magnetic moment from DFT; S = 3/2 or § = 2 are the
values bracketing the calculated result (1.85). The eigenvalues
are then simply Ejp = D M? + B M; inelastic transitions
between eigenstates (caused by the tunneling electrons) obey
the M’ = M + 1 selection rules. At very low temperature, the
quantum spin is in its ground state (B = 0), either |S + S) or
|S — S), or a superposition of the two. The allowed transitions
are then |S+S) — |S+S5S—1) and |S—S) > |S—S+1).
The energy difference Eg_; — Eg corresponds to the threshold
bias for inelastic transitions, marking the position of the steps
in d1/dV. The shape and width of the steps can only be
given within this model by temperature broadening, which
is too small (typical experimental temperatures are ~1 K
~0.1 meV). As far as this model goes, other step shapes
or broadening mechanisms are not taken into account. Our
TD-DFT calculations provide an alternative and realistic route
to the step width and shape, via interaction between itinerant
electrons and spin excitations, contained in the self-energy. To
interpret the experimental data in Fig. 2(e) of the main text, we
present two generic step shapes commonly seen in experiment
(and in our calculations; see Fig. 3 in the main text) in Fig. 7
above. Note that the artificial broadening used in generating
these figures is ~1 meV, comparable with the experimental and
ab initio linewidths. The threshold bias is assumed to be given
by £|Es_1—Ejg| in the discussed model. The step shapes are
meant for illustration purposes only. A broadened step would
lead to a peak for V > 0 and a dip for V < 0 (Fig. 7, left).

0.04

-Imx (eV™!)

0.004

0.4

-Im3, (ev!)

FIG. 5. (Color online) The self-energies for the four investigated systems are shown. Whereas for Cr and Mn adatoms the self-energy step
heights for the two spin channels are of the same order; they differ by a factor of 100 for the other two cases.
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FIG. 6. (Color online) The orbital-resolved DOS for Fe adatoms on the Cu(111) surface are shown (s, p., and d_> orbitals) and compared to
the DOS of the vacuum site 6.3 A above the impurity (s orbitals). The solid and dashed lines refer to spin-up and spin-down DOS, respectively.
Only for the p, orbitals of the adatom the DOS for majority spin is larger than the one for the minority spin, which matches the weighting

obtained for the vacuum site.

A broadened step topped with a bump would lead to a peak
and dip pair for V > 0 and a dip and peak pair for V < 0
(Fig. 7, right). This matches the peak and dip, dip and peak
pairs seen in the experimental data. The lone peak around
+5 meV in the experimental data, though, would require a
matching dip around —5 meV, according to this model. This
one-sided behavior in the conductance is readily explained by
a satellite arising from the self-energy, as detailed in the main
text.

APPENDIX E: MAGNETIZED TIP—A SIMPLE APPROACH

The Tersoff-Hamann approximation [26] relates the con-
ductance to the density of states from the tip as well as from
the probed adatom,

with N the total density of states of the tip. This leads to

ar o1 v
ﬁ & [nadatom + nadatom]‘ (E3)
For a magnetic tip one finds a nonvanishing polarization:
t 4
P = tip v tip (E4)
Thus, we have
N
nip = (1+P), (ES)
N
nyy = S =P), (E6)

and depending on the sign of P, one spin channel gives a larger

dl f o L contribution to the spectrum than the other,
ﬁ X [ntipnadatom(EF +V)+ ntipnadatom(EF + V). (ED) dl .
1
ﬁ o [(T+ P)nadatom + (1 - P)nadatom]' (E7)
For a nonmagnetic tip, one has . . .
For the figure shown in the main text, Fig. 2(e), we set
N . P = —50%, meaning that nidamm has three times more weight
Mip = Mip = 5 (E2)  than nzdawm.
S=2,D=0.3 meV, B=0, step width 1.0 meV S=2,D=0.5meV, B=0, step width 1.0 meV
300———7T———71 7T T T T T 200——T——T T T T T

200

— dvav
— d1av’

100

dU/dV or d°I/dV? (arb. units)

100

— dvdv
— d1av’ 1

—Y

dI/dV or d’V/dV* (arb. units)
o

0
-100 B
-1001 -
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FIG. 7. (Color online) Model forms for d1/dV and d*I/dV?. Left: a step in dI/dV leads to a peak for V > 0 and a dip for V < 0.
Multiple steps lead to multiple peaks for V > 0 and multiple dips for V' < 0, but never a dip for V > 0 or a peak for V < 0. Right: a step with
a shoulder or bump leads to a peak and dip pair at V > 0 and a dip and peak pair at V < 0. Features always occur in £V pairs; a peak for

V > 0 must be accompanied by a dip for V < 0, in this picture.
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