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Direct production of the charmonium-like state X(3872) in e+e− collisions is considered in the 
framework of the vector meson dominance model. An order-of-magnitude estimate for the width Γ (X →
e+e−) is found to be �0.03 eV. The same approach applied to the χc1 charmonium decay predicts the 
corresponding width of the order 0.1 eV in agreement with earlier estimates. Experimental perspectives 
for the direct production of the 1++ charmonia in e+e− collisions are briefly discussed.
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1. Introduction

In 2003 the Belle Collaboration reported the first evidence for 
the existence of a charmonium-like state X(3872) [1], to be de-
noted by X for brevity, which possessed properties inconsistent 
with a plain quark–antiquark meson interpretation. Later this state 
was confirmed independently by many other experimental col-
laborations, see Ref. [2] for a recent review article. The quantum 
numbers of the X were recently determined by the LHCb Collabo-
ration to be J PC = 1++ [3].

The aim of the present research is to estimate the produc-
tion rate of the X directly in e+e− collisions, e+e− → X . This 
transition is of course forbidden in e+e− annihilation via a sin-
gle virtual photon, but can occur via two-photon processes of the 
kind e+e− → γ ∗γ ∗ → X . While in the past such a production of 
a non-vector state was considered as impossible due to the low 
production cross section, with the advent of high-luminosity ac-
celerators such as BEPC-II, operating in the charmonium energy 
region, a detection might become realistic.

Notice that, while the Landau–Yang theorem forbids the cou-
pling of an axial-vector state to two real photons, there is no 
such ban for the coupling to two virtual photons. To arrive at 
the desired rate estimate, in this work we parametrise the ver-
tex X → γ ∗γ ∗ in the framework of the vector meson dominance 
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(VMD) model, where either one of the virtual photons or both are 
replaced by vector mesons (for details we refer to Section 3). In 
addition, for consistency a short-ranged transition amplitude needs 
to be added. Thus in our model, the decay amplitude is given 
by the sum of the diagrams depicted in Fig. 1, with the vector 
pairs {V 1, V 2} being {ρ, J/ψ}, {ω, J/ψ}, {γ ∗, J/ψ}, and {γ ∗, ψ ′}. 
Decays of the X into all of these four channels were already ob-
served and therefore almost all parameters of the model can be 
constrained from data. We stress that for this calculation no spe-
cific assumptions need to be involved for the nature of the X – 
the structure information is encoded in the effective coupling con-
stants. To interpret their values in terms of different models is a 
separate issue that goes beyond the purpose of this work.

2. Useful experimental information

The mass of the X is [4]

M X = (3871.68 ± 0.17) MeV. (1)

There exist only upper bounds on its total width [4],

ΓX < 1.2 MeV, (2)

and on its total production branching fraction in weak B-meson 
decays [5],

Br(B → K X) < 3.2 × 10−4. (3)
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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Fig. 1. Different contributions to the amplitude for the decay X → e+e−: the first diagram accounts for the short-ranged contributions while the other two describe the 
transitions X → V 1 V 2 → e+e− with {V 1, V 2} being {ρ, J/ψ}, {ω, J/ψ}, {γ ∗, J/ψ}, and {γ ∗, ψ ′}.
The quantum numbers of the X were determined to be J PC =
1++ [3].

The main observation modes for the X are the D0 D̄0π0 [6–8], 
π+π− J/ψ (ρ J/ψ ) [3,9,10] and π+π−π0 J/ψ (ω J/ψ ) [11], re-
spectively. In addition, radiative decays X → γ J/ψ and X → γψ ′
(here and in what follows the shorthand notation ψ ′ is used for 
the ψ(2S)) were also measured. In particular, the BaBar Collabora-
tion reports [12]

Br
(

B± → K ± X
)
Br(X → γ J/ψ) = (2.8 ± 0.8 ± 0.2) × 10−6,

Br
(

B± → K ± X
)
Br

(
X → γ ψ ′) = (9.5 ± 2.9 ± 0.6) × 10−6, (4)

while the Belle Collaboration gives [13]

Br
(

B± → K ± X
)
Br(X → γ J/ψ) = (

1.78+0.48
−0.44 ± 0.12

) × 10−6,

Br
(

B± → K ± X
)
Br

(
X → γ ψ ′) < 3.45 × 10−6. (5)

The two results are consistent within errors for the γ J/ψ mode, 
however, inconsistent for the γψ ′ mode. Very recently, the LHCb 
Collaboration confirmed that the latter mode has a sizable branch-
ing fraction [14],

Rγ ψ = Br(X → γ ψ ′)
Br(X → γ J/ψ)

= 2.46 ± 0.64(stat) ± 0.29(syst). (6)

In order to proceed, we take the averaged value 2.1 × 10−6 for the 
product Br(B± → K ± X)Br(X → γ J/ψ) quoted by the Particle Data 
Group [4] and then use the inequality (3) and the LHCb ratio (6)
to arrive at the following lower bounds

Br(X → γ J/ψ) > 0.7%, Br
(

X → γ ψ ′) > 1.7%. (7)

Finally, for our estimates we shall use for the width of the X

ΓX = 1.0 MeV, (8)

compatible with the upper bound (2). We also use the following 
values [4] for the masses:

mπ0 = 135.0 MeV, mπ± = 139.6 MeV,

mρ = 775.5 MeV, mω = 782.7 MeV,

m J/ψ = 3096.9 MeV, mψ ′ = 3686.1 MeV,

M X = 3871.7 MeV, (9)

for the total widths:

Γρ = 146.2 MeV, Γω = 8.5 MeV, (10)

for the partial leptonic widths:

Γ
(
ρ → e+e−) = 7.0 keV, Γ

(
ω → e+e−) = 0.6 keV, (11)

Γ
(

J/ψ → e+e−) = 5.6 keV, Γ
(
ψ ′ → e+e−) = 2.4 keV,

(12)
and for the branching fractions:

Br(X → ρ J/ψ) > 2.6%, Br(X → ω J/ψ) > 1.9%. (13)

3. The X-vertex

According to the diagrams depicted in Fig. 1, the X-vertex that 
feeds the loops couples an axial-vector state X to two vectors V 1
and V 2. Since the X resides very close to the thresholds of the 
ρ J/ψ and ω J/ψ , the corresponding X-vertex can be written in a 
nonrelativistic form,

vijk(X → V J/ψ) = λV εi jk, V = ρ,ω, (14)

where i, j, and k are contracted with the X , V , and J/ψ polarisa-
tion vectors, respectively.

Meanwhile, if one of the vectors is the photon, the nonrela-
tivistic approach does not apply.1 The relativistic gauge-invariant 
X-vertex takes the form

vναβ(X → γ ψ) = λψεμναβkμ, ψ = J/ψ,ψ ′, (15)

with the Lorentz indices ν , α, and β being contracted with the 
photon, the X , and the ψ , respectively, and with kμ denoting the 
photon 4-momentum.

The coupling constants λV and λψ can be related to the cor-
responding measured partial decay widths of the X . In particular, 
a straightforward calculation gives

Γ (X → γ ψ) = ΓX Br(X → γ ψ) = λ2
ψω3

6π M2
X

,

ω = M2
X − m2

ψ

2M X
, (16)

where the experimental branching fractions Br(X → γ J/ψ) and 
Br(X → γψ ′) are quoted in Eq. (7) and the estimate (8) is used for 
the total X width.

The situation with the ρ J/ψ and ω J/ψ modes is somewhat 
more subtle, since what is actually measured are the branching 
fractions of the processes X → π+π− J/ψ and X → π+π−π0 J/ψ . 
We therefore use the vertex (14) to write the amplitude for the 
process X → V J/ψ → nπ J/ψ (n = 2, 3) in the form

T (X → nπ J/ψ) = λV εi jkεi(X)ε j( J/ψ)G V (m)vk(V → nπ), (17)

where v(V → nπ) is the V → nπ vertex, whose explicit form is 
not needed, and

G V (m) = 1

m2 − m2
V + imV ΓV

.

1 For a real photon the temporal component of the polarisation vector can be set 
to zero by choosing a suitable gauge. Then the X-vertex again can be taken in the 
nonrelativistic form of Eq. (14).
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For the width, one has

Γ (X → nπ J/ψ) = 1

3

∫ ∑
polarisations

∣∣T (X → nπ J/ψ)
∣∣2

dτ , (18)

where for the X at rest as well as for the nonrelativistic ρ or ω
sums over polarisations give 3-dimensional Kronecker deltas. The 
differential phase space for the final state can be written as

dτ = dτnπdτ J/ψ
dm2

2π
, dτ J/ψ = p(m)

4π2M X
,

p(m) = 1

2M X
λ1/2(M2

X ,m2,m2
J/ψ

)
, (19)

with dτnπ being the phase space for the pions, and λ(M2, m2
1, m

2
2)

is the standard triangle function.
Finally, taking into account that

Γ (V → nπ) = 1

3

∫ ∑
polarisations

∣∣v(V → nπ)
∣∣2

dτnπ (20)

and defining a dimensionless integral over the mass distribution of 
the pions

I V ≡
mX −m J/ψ∫

nmπ

Γ (V → nπ)p(m)
∣∣G V (m)

∣∣2
m dm, (21)

one arrives at the relation

Γ (X → nπ J/ψ) = ΓX Br(X → nπ J/ψ) = λ2
V I V

2π3M X
, (22)

which can be used to extract the couplings λρ and λω with the 
help of the experimental branching fractions Br(X → 2π J/ψ) ≈
Br(X → ρ J/ψ) and Br(X → 3π J/ψ) ≈ Br(X → ω J/ψ) quoted in 
Eq. (13).

In Ref. [15] a theoretical analysis was performed of the exper-
imental mass distributions for the two-pion and three-pion final 
states reported in Refs. [10,11]. The results of Ref. [15] allow one 
to calculate straightforwardly that

Iρ ≈ 0.2, Iω ≈ 0.02, (23)

where the one order of magnitude difference in the two values 
comes from the relatively small width of the ω together with the 
fact that the nominal ω J/ψ threshold lies slightly outside of the 
range of integration in Iω .

The last missing ingredient is the effective vertex V → e+e−
with V = ρ, ω, J/ψ, and ψ ′ , for which we employ the VMD 
model. The vector meson–photon vertex respecting gauge symme-
try can be written as (a detailed discussion of various formulations 
for the vector mesons can be found in Ref. [16])

LV γ = gV
(
∂μV ν − ∂ν V μ

)
Fμν, (24)

where Fμν denotes the usual field strength tensor for the pho-
ton. This leads to a photon–vector meson coupling proportional to 
the photon 4-momentum squared, k2. It is this factor that can-
cels the photon propagator in the transition amplitude V → γ ∗ →
e+e− . Therefore the effective V → e+e− coupling constant is 2egV , 
where gV can be determined from the corresponding leptonic 
width Γ (V → e+e−) quoted in Eq. (11) with the help of the ex-
pression

Γ
(

V → e+e−) = 4

3
αg2

V mV , (25)

derived straightforwardly from the Lagrangian (24).
4. Transition amplitude for X → e+e−

In our VMD approach, the total amplitude of the process X →
e+e− can be written as

T
(

X → e+e−) = ū(p−)Vμ(p+, p−)u(−p+)εμ(X), (26)

where εμ(X) is the X polarisation vector and the full X-vertex is 
given by the sum

Vμ(p+, p−) = vreg
μ + vμ

(
X → γ ∗ J/ψ

) + vμ

(
X → γ ∗ψ ′), (27)

with vreg
μ being the regularised contact vertex, and the other 

two terms are given by the one-loop amplitudes with {V 1, V 2} =
{γ ∗, J/ψ}, {γ ∗, ψ ′}. The full transition amplitude is therefore the 
sum of the diagrams depicted in Fig. 1. Dimensional analysis re-
veals that the loop integrals in the amplitudes vμ(X → γ ∗ J/ψ)

and vμ(X → γ ∗ψ ′) diverge because of the photon momentum 
entering the X-vertex to preserve gauge invariance, see Eq. (15). 
We employ dimensional regularisation with the MS subtraction 
scheme at the scale μ = M X and absorb the divergence into the 
contact vertex vreg

μ . In order to provide a prediction for the rate 
X → e+e− we need information on the size of this contact term. 
We here employ two different approaches: on one hand, we vary 
the scale μ in a wide range chosen to be from M X/2 to 2M X , 
which leads to a variation of the divergent integral of the order 
of its central value. On the other hand, in order to exclude that 
the contact term is enhanced due to contributions from higher 
resonances, we explicitly calculate the transition amplitudes X →
ρ J/ψ → e+e− and X → ω J/ψ → e+e− , which contain finite loop 
integrals only.

5. Transition X → V J/ψ → e+e−

For a given vector meson V (V = ρ, ω), the two one-loop con-
tributions to the amplitude X → V J/ψ → e+e− are shown dia-
grammatically in Fig. 1. The amplitudes read

T (1)
V = 2egV g J/ψλV εi(X)εi jk

∫
d4q

(2π)4
ū(p−)γ j/qγku(−p+)

× G0(q)G V (p− − q)G J/ψ(p+ + q)

= 2egV g J/ψλV εi(X)εi jkū(p−)

× γ jγμγku(−p+)I1μ(p+, p−), (28)

T (2)
V = 2egV g J/ψλV εi(X)εi jk

∫
d4q

(2π)4
ū(p−)γk/qγ ju(−p+)

× G0(q)G V (p+ + q)G J/ψ(p+ − q)

= −2egV g J/ψλV εi(X)εi jkū(p−)

× γ jγμγku(−p+)I2μ(p+, p−), (29)

with (the tiny J/ψ width and the electron mass are neglected)

G0(p) = 1

p2 + iε
, G J/ψ(p) = 1

p2 − m2
J/ψ + iε

,

G V (p) = 1

p2 − m2
V + imV ΓV

, (30)

and

I1μ(p+, p−) = 1

i

∫
d4q

(2π)4
qμG0(q)G V (p− − q)G J/ψ(p+ + q)

= 1

M2
(AV kμ + B V Pμ),
X
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I2μ(p+, p−) = 1

i

∫
d4q

(2π)4
qμG0(q)G V (p+ + q)G J/ψ(p− − q)

= 1

M2
X

(AV kμ − B V Pμ), (31)

where P = p+ + p− , k = p+ − p− and the relation I2μ(p+, p−) =
−I1μ(p−, p+) was used. Then the full amplitude reads

T V = T (1)
V + T (2)

V

= 4B V

M2
X

egV g J/ψλV εi(X)εi jkū(p−)γ j(/p+ + /p−)γku(−p+)

= 16B V

M2
X

egV g J/ψλV εi(X)εi jk pkū(p−)γ ju(−p+),

where the Dirac equation with the electron mass neglected, 
ū(p−)/p− = /p+u(−p+) = 0, was used. Finally, the width Γ (X →
V J/ψ → e+e−) can be evaluated as

Γ
(

X → V J/ψ → e+e−) = 16|B V |2
3π M X

αg2
V g2

J/ψλ2
V , (32)

where the dimensionless coefficient B V is given by the loop inte-
gral,

B V = 1

i

∫
d4q

(2π)4
(qP )G0(q)G V (p− − q)G J/ψ(p+ + q)

= − 1

32π2

1∫
0

dx

1−x∫
0

(x − y)dy

a2
V x + b2 y − xy

, (33)

with

a2
V = m2

V − imV ΓV

M2
X

, b = m2
J/ψ

M2
X

− iε. (34)

We find from a numerical evaluation

Γ
(

X → ρ J/ψ → e+e−) � Γ
(

X → ω J/ψ → e+e−)
� 10−7 eV. (35)

The result of Eq. (35) turns out to be negligible compared to the 
rate found in the next section. We therefore regard estimating the 
contribution of the contact term by varying the integration scale 
over a large range as safe.

6. Transition X → γ ∗ψ → e+e−

Similarly to the transition amplitude T V (X → V J/ψ → e+e−)

studied in the previous section, for a given vector meson ψ (ψ =
J/ψ, ψ ′), the two contributions to the amplitude Tψ (X → γ ∗ψ →
e+e−) read

T (1)
ψ = λψegψεα(X)εμναβ

∫
d4q

(2π)4
ū(p−)γν/qγβ

× u(−p+)(p− − q)μG0(q)G0(p− − q)Gψ(p+ + q)

= λψegψεα(X)εμναβ ū(p−)γνγλγβ

× u(−p+)I1μλ(p+, p−), (36)

T (2)
ψ = λψegψεα(X)εμναβ

∫
d4q

(2π)4
ū(p−)γβ/qγν

× u(−p+)(p+ + q)μG0(q)G0(p+ + q)Gψ(p− − q)

= λψegψεα(X)εμναβ ū(p−)γνγλγβ

× u(−p+)I2μλ(p+, p−), (37)
where

G0(p) = 1

p2 + iε
, Gψ(p) = 1

p2 − M2
Xa2

ψ + iε
,

a2
ψ = m2

ψ

M2
X

, (38)

and

I1μλ(p+, p−) = 1

i

∫
d4q

(2π)4
qλ(p− − q)μG0(q)

× G0(p− − q)Gψ(p+ + q),

I2μλ(p+, p−) = I1μλ(p−, p+).

After some algebra one finds that

Tψ = T (1)
ψ + T (2)

ψ

= λψegψεαεμναβ ū(p−)γν

×
[

I1γμγβ + I2
p−μp+β

M2
X

]
u(−p+), (39)

where the dimensionless integrals I1 and I2 are (D = 4 − 2ε)

I1 = 4i

D

1∫
0

dx

1−x∫
0

dy

∫
dDq

(2π)D

q2

[q2 − M2
X x(a2

ψ − y)]3
, (40)

I2 = 8iM2
X

1∫
0

xdx

1−x∫
0

(1 − 2y)dy

×
∫

d4q

(2π)4

1

[q2 − M2
X x(a2

ψ − y)]3
. (41)

A straightforward calculation gives:

Ireg
1 = 1

32π2

[
ln

M2
X

μ2
− 3 + a2

ψ + ln a2
ψ

+ (
1 − a2

ψ

)2(
ln

(
a−2
ψ − 1

) − iπ
)]

(42)

and

I2 = 1

4π2

(
1 − a2

ψ

)[
2 + (

2a2
ψ − 1

)(
ln

(
a−2
ψ − 1

) − iπ
)]

, (43)

where, as was explained above, the integral I1 is calculated using 
the MS scheme. The scale μ is set equal to M X for the central 
value and then varied in the range from M X /2 to 2M X to estimate 
the uncertainty.

Finally, the width Γ (X → γ ∗ψ → e+e−) takes the form

Γ
(

X → γ ∗ψ → e+e−)

= 36πα Iψ

mψ(1 − m2
ψ/M2

X )3
Γ (X → γ ψ)Γ

(
ψ → e+e−)

, (44)

where

Iψ = 48

[∣∣Ireg
1

∣∣2 + 1

144
|I2|2 + 1

6
Re

(
Ireg
1 I∗2

)]
,

I J/ψ ≈ 3.0 × 10−3, Iψ ′ ≈ 2.4 × 10−3. (45)

Numerical estimates made with the help of Eq. (44) give the 
following lower bounds:
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Γ
(

X → γ ∗ J/ψ → e+e−)
� 10−3 eV, (46)

Γ
(

X → γ ∗ψ ′ → e+e−)
� 0.03 eV. (47)

Both rates can only be presented as lower bounds, since for the 
branching fractions given in Eq. (7) only the lower bounds exist. 
Thus, once better data become available, the results of Eqs. (46)
and (47) may be improved. As discussed before, the contribution 
of the contact term vreg

μ is estimated by varying the scale μ in a 
range as wide as from M X/2 to 2M X . This leads to a rather con-
servative estimate for the intrinsic uncertainty of the rates to be of 
the order of their central values.

In our approach all parameters are determined from experi-
mental rates. This procedure does not allow us to extract the signs 
of the couplings and especially the interference pattern between 
the amplitude with the γ J/ψ and the amplitude with the γψ ′ in-
termediate state remains undetermined. We therefore use Eq. (47)
as the central result and include the possible interference with the 
γ J/ψ intermediate state as a part of the uncertainty.

It should be stressed that in addition to the uncertainties that 
arise within the formalism used, as discussed above, there is also 
the uncertainty of the model itself. Unlike effective field theories 
which have a controlled uncertainty due to a separation of en-
ergy scales and the presence of a power counting, our results in 
Eqs. (46) and (47) should be regarded as an order-of-magnitude 
estimate, since we are not able to quantify the intrinsic model de-
pendence.

7. Discussion

In this paper we employed a VMD model to estimate the prob-
ability of the direct production of the charmonium state X(3872)

in e+e− collisions, and we arrived at

Γ
(

X → e+e−)
� 0.03 eV (48)

which turned out to be dominated by the γ ∗ψ ′ intermediate state. 
Within our approach the uncertainty of this value can be estimated 
to be of the order of 100%. This uncertainty contains the one from 
our ignorance of a possible short-ranged contribution as well as 
a possible additional contribution from the γ ∗ J/ψ intermediate 
state. Since it is difficult if not impossible to determine the uncer-
tainty of the model used, we regard the result of Eq. (48) as no 
more than a proper order-of-magnitude estimate.

To cross-check the approach used, one can apply it to the 
production of an ordinary charmonium resonance with the same 
quantum numbers as the X , namely the χc1. Within our ap-
proach the process χc1 → e+e− proceeds predominantly through 
the γ ∗ J/ψ intermediate state, and its width can be estimated with 
the help of an equation similar to Eq. (44) with the X replaced by 
the χc1. Using the following χc1 data [4]:

mχc1 = 3511 MeV, Γχc1 = 0.86 MeV,

Br(χc1 → γ J/ψ) ≈ 34.8%, (49)

our estimate gives 0.1 eV, and appears to be in a qualitative 
agreement with Γ (χc1 → e+e−) � 0.46 eV found in Refs. [17,18],2

and higher than the lower bound provided by the unitarity limit: 
0.044 eV found in Ref. [17].

Experimentally, a production of the χc1 state in e+e− colli-
sions seems very promising not only due to the high value of 

2 Different approaches were used in Ref. [17] to calculate the electronic width of 
the χc1, and the results vary from 0.1 to 0.5 eV. The value 0.46 eV comes from a 
VMD model.
Γ (χc1 → e+e−), but also due to the large branching fraction of 
χc1 into γ J/ψ , which happens to be a clean experimental signa-
ture. Especially, if the J/ψ decay into l+l− (l = e, μ) is considered, 
detailed studies with the BESIII experiment have shown that the 
only significant background to the χc1 signal is given by the initial 
state radiation (ISR) production of l+l− pairs. Neglecting interfer-
ence effects between the χc1 and the ISR amplitudes, the signal 
to background ratio becomes approximately 10% if the value of 
0.46 eV is assumed for the electronic width. A discovery of the 
reaction e+e− → χc1 could hence be achieved in an energy scan 
corresponding to few days of data taking.

It is instructive to consider in addition the ratio

Γ
(

X → e+e−) : Γ (
χc1 → e+e−)

� 1 : 3, (50)

which may cancel some of the uncertainty of the method and 
thus provides a more reliable prediction. It turns out that the 
most severe suppression factor in the X production as compared 
to the χc1 production comes from the fact that, experimentally, 
Br(X → γψ) � Br(χc1 → γ J/ψ) (see Eqs. (7) and (49)), while 
ΓX ≈ Γχc1 . It should be stressed, however, that the result (50) is 
based on the upper bound (3) on the total X production in the 
weak B-meson decays, so that decreasing this branching would 
enhance the width (48) and, accordingly, the ratio (50). Thus we 
conclude that the probability of the direct X production in e+e−
collisions might appear in the same ballpark as the probability of 
the χc1 production.
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