
M
it
gl
ie
d
de
r
H
el
m
ho
lt
z-
G
em

ei
ns
ch
af
t

The NEST software development infrastructure

Jochen Martin Eppler1, Bernd Wiebelt1, Yury V. Zaytsev2, Markus Diesmann1,3,4

1 Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Forschungszentrum Jülich
2 Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg
3 RIKEN Brain Science Institute, Wako-Shi, Japan
4 Medical Faculty, RWTH Aachen University

Contact: j.eppler@fz-juelich.de

Introduction

Software development in the Computational Sciences has
reached a critical level of complexity in the recent years. This
“complexity bottleneck” shows not only for the programming
languages and technologies that are used during development,
but also for the infrastructure, which must provide a backbone
for sustainable development of large-scale software projects
and manageability of the code base [1].

As the development shifts from specialized and solution-
tailored in-house code (often developed by a single person or
only a few developers) towards more general software pack-
ages written by larger teams of programmers, it becomes in-
evitable to use professional software engineering tools also in
the realm of scientific software development. In addition the
move to collaboration-based large-scale projects (e.g. Brain-
ScaleS) also means a larger user base, which depends and
relies on the quality and correctness of the code.

In this contribution, we present the techniques that helped to
support the sustainability of NEST development.

NEST

NEST is a simulator for large het-
erogeneous networks of point neu-
ron models or neurons with few elec-
trical compartments [2].

It is suited for a broad range of neuronal network modeling
approaches and computer architectures from standard desktop
computers to computer clusters or large HPC facilities such
as IBM’s Blue Gene.

A neural network model simulation in NEST basically imitates
an electrophysiological experiment: the user builds a neural
system from a set of pre-defined neuron and synapse types that
can be connected in an arbitrary fashion and instrumented by
devices for stimulation and measurement.

A LiveCD to try NEST without installation and the current
release of the source code are available on the website of the
NEST Initiative (http://www.nest-initative.org), as
is extensive documentation and a list of neuroscientific publi-
cations that use NEST.

Collaborative development

NEST is developed by the NEST Initiative, a non-profit orga-
nization distributed over different labs in Europe.

The time line shows that often different versions of NEST were
developed concurrently. Branching was necessary in order to
address different neuroscientific questions on the one side, but
also to explore new algorithms and data structures or new
computing platforms on the other side.

Regular video conferences between the different members of
the NEST Initiative allow to coordinate the development pro-
cess, while each lab is still able to pursue its own direction of
research.

Currently, we are again in the phase of merging different
branches in order to obtain one canonical release of NEST.

Handling the growing complexity

To handle the growing complexity of the code base of NEST (exemplified by the number of lines

1996 1998 2000 2002 2004 2006 2008 2010 2012
SVN revision date

0

20

40

60

80

100

co
de

 li
ne

s 
/ 1

00
0

NEST 2.0

NEST code lines
help
Python
SLI
C++

of code in the figure to the right), we constantly need to
explore new software engineering tools and techniques and in-
tegrate them into our work-flow.

Important steps in this respect were

� the use of version control to ease collaborative development

� the use of high-level languages for the model specification

� the use of unit tests to ensure correctness of the code

� the use of a system that constantly monitors code quality

The figure below shows the different techniques that were introduced to the NEST development
process since its early days.

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

te
ch

no
lo

gy
 to

 c
on

tro
l c

om
pl

ex
ity

C++98
 standardization

C++, SLI

Version control

Help system

Test suite

Bug tracker

PyNEST

Continuous integration

Metaprogramming?

Domain-specific language?
Only recently, we introduced modern Web 2.0 techniques
such as blogs, wikis and WebDAV based storage systems
to the development process.

In the future, we plan to increase our use of meta pro-
gramming and domain-specific languages above our use
of C++ templates to handle model generation in a more
generic and efficient manner.

Revision Control

Revision control is a powerful concept that can be applied to any collection of files and directories.
It is not limited to program development, but can also be used for preparing scientific manuscripts.

1

2

3

4

5

6

7

8

10

9

T1

T2

Trunk

Branches

Merges

Tags

Discontinued
development

branch

Compared to the traditional ”shared folder” paradigm, the advantages of
revision controlled repositories are numerous.

� Built-in unlimited backup/restore: recover any previous version of a file,
directory or the whole repository.

� Independence: work on your private (”checked out”) local copy of the
repository.

� Synchronization: incorporate changes from other collaborators (”up-
date”) or share changes made by you (”commit”).

� History: find out what was changed in the repository, at what time and
by whom.

� Annotation: give a description of your changes on each commit.

� Conflict resolution: merge changes somebody else made to a file you are
working on.

� Nonlinear development: branch off another line of development (e.g. ”ver-
sion 2.0”, ”experimental”, ”legacy”).

� Cherry picking: merge back interesting changes from other branches.

Internet based collaboration services

Internet based services have become ubiquitous in
daily life: ”Amazon knows what we have, Google
knows what we want and Facebook knows who we
are.”

It is the ease of use that makes these services so
popular. Consequently, the NEST infrastructure of-
fers Internet web based services to improve scientific
collaboration.

� Public website: news, general information, docu-
mentation, download.

� Mailing lists: public and private mailing lists to
keep users and developers up-to-date.

� Internal wiki: information for developers.

� Blogs: real-time information on various sub projects.

� Bibliography database: manage references in scientific publications.

� Repositories: projects (source code, manuscripts) under revision control.

� Issue tracking: report bugs and document the process of fixing them.

Continuous integration

CI is a practice where QA is applied con-
tinuously as opposed to the traditional pro-
cedure of applying QA during an integration
phase after completing all development. It de-
creases the risks associated with the integra-
tion by spreading required efforts over time,
which helps to improve software quality and
to reduce the time taken to deliver it.

Stringent QA is particularly important for
NEST, a simulator with the emphasis on
correctness, reproducibility and performance.
However, given limited resources, it is waste-
ful to make the developers to re-run the test
suite for all target platforms upon every single
change to the code base.

Jenkins-based CI infrastructure for NEST was
created during GSoC 2011 and helps with au-

tomated regular testing of new patches and
timely reporting of identified problems (failed tests and broken builds). This way, issues are dis-
covered within minutes and can be fixed immediately with much lower effort.

References
[1] Gregory Wilson (2006) American Scientist.doi:10.1511/2006.1.5. [2] Gewaltig & Diesmann (2007) NEST Neural Simulation Tool. Scholarpedia 2(4), 1430.

Acknowledgments: This work was partly supported by the Helmholtz Alliance on Systems Biology, the Next-Generation Supercomputer Project of MEXT, EU Grant 269921 (BrainScaleS), and Google’s Summer Of Code. We thank the members of the NEST Initiative for valuable discussions and input.

mindzoo.de/conf/inm2012.html

1


