-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Juelich Shared Electronic Resources

FORSCHUNGSZENTRUM JULICH GmbH
Zentralinstitut fir Angewandte Mathematik
D-52425 Jilich, Tel. (02461) 61-6402

Interner Bericht

PCL - The Performance Counter Library:

A Common Interface to Access Hardware

Performance Counters on Microprocessors
(Version 1.2)

Rudolf Berrendorf, Heinz Ziegler

FZJ-ZAM-1B-9816

Oktober 1998
(letzte Anderung: 19.08.99)

https://core.ac.uk/display/35011954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PCL - The Performance Counter Library:
A Common Interface to Access Hardware Performance
Counters on Microprocessors
(Version 1.2)

Rudolf Berrendorf, Heinz Ziegler
Central Institute for Applied Mathematics
Research Centre Juelich GmbH
D-52425 Juelich, Germany
r.oberrendorf@fz-juelich.de

Abstract

A performance counter is that part of a microprocessor tredasures and gathers performance-relevant
events on the microprocessor. The number and type of al@#abnts differ significantly between existing
microprocessors, because there is no commonly accepteificgi@on, and because each manufacturer has
different priorities on analyzing the performance of atetiures and programs. Looking at the supported
events on the different microprocessors, it can be obsehmagdhe functionality of these events differs from
the requirements of an expert application programmer orfapaance tool writer.

PCL, the Performance Counter Library, establishes a conptatform for performance measurements
on a wide range of computer systems. With a common interfacaisystems and a set of application-
oriented events defined, the application programmer istabi® program optimization in a portable way
and the performance tool writer is able to rely on a commoerfate on different systems.

PCL has functions to query the functionality, to start andtap counters, and to read the values of
counters. Performance counter values are returned as 6#dgers on all systems. PCL supports nested
calls to PCL functions thus allowing hierarchical performameasurements. Counting may be done either
in system or in user mode. All interface functions are cddlat C, C++, Fortran, and Java.

Contents

1 Introduction

2 Requirements of Application Programmers
2.1 MemoryHierarchy e
2.2 Instructions e
2.3 Status of Functional Units
24 Ratesand Ratios e

3 PCL - The Performance Counter Library
3.1 Countable Events e e e
3.2 Interface Functions e

3.2.1 PCLQUEIY o e
3.2.2 PCLstart e
3.23 PCLread e
3.24 PCLSIOP . . . o e

3.3 Programming ASPECtS e e
3.4 Supported SYStems L e
3.5 Exampleso e
3.5.1 Simple Example
3.5.2 ExamplewithNestedCalls uu....
353 ExampleinJava

4 Related Projects
5 Summary
6 Acknowledgments

A Performance Counters on Microprocessors

Al DECAIpha e e
A.1.1 DECAIpha?21164
A.1.2 DECAIpha?21264 e e

A.2 MIPS R10000/R12000 o e e e

A.3 SUNULTRASparcl/ll e e e e e e

A4 IBMPowerPC604e e e

A5 IntelPentiumFamily e
A5.1 IntelPentium e
A.5.2 Intel PentiumPro/Pentium ll/Pentium Il

Vi

Chapter 1

Introduction

This report describes performance counters on 5 micropsacdamilies and introduces a common inter-
face to access these counters. With performance coungfsymance critical events can be counted. This
includes all aspects concerning the memory hierarchy glsaores, misses/hits, different cache levels, etc.),
functional units or pipelines (operation counts, staisyes), duration of requests, etc.

As will be shown, the number of, type of, and access to evsffersl significantly between the pro-
cessors and the type of supported events might be not vepjuh&b the application programmer or tool
builder who might have different demands of countable eszent

To overcome this lack of common platform, we developed PG& Rerformance Counter Library. We
first defined a set of events useful to the application progranand tool builder, and second, established
a set of access functions to control and access the perfesraunters on different platforms. PCL is
implemented on many of todays machines ranging from a PCimgritinux to a SGI/CRAY T3E with
hundreds of Gigaflops and it is callable from applicationgpaons as well as from tools.

The Performance Counter Library PCL is available at

http://www.fz-juelich.de/zam/PCL/.

Chapter 2

Requirements of Application
Programmers

People from different areas of computer science and etetteingineering may see different events as
most useful for their optimization purposes. Most of thergsalescribed so far in the description of the
microprocessors are likely most useful to the computeritact) hardware engineer, or low-level device
driver writer.

Application programmers optimizing their programs or pemiance tool writers wish to get perfor-
mance relevant information related to their programs rattigen counting signal switches on certain pins
of a chip module. Therefore, those parts of the microprareshich have appropriate counterparts in a
program are most likely to be used by the application prognamto optimize programs. The memory
hierarchy in a computer system corresponds directly tonamg/ariables and the functional units execute
the operations specified in a program. Therefore, we coratendn those aspects of a computer system.

Our impression is, that taking the union of all availablerggef all microprocessors is not the right way
to define an application interface for an application pragreer or tool writer. Our approach is to define
a set of eventselevantto the user. If microprocessor architecture or programmieghodology precedes
in a different direction (we don't see that for the near fetlrthe set of events might then be extended or
changed.

Although hardware counters give numbers for a processdipeance numbers should be related to a
process (representing the program). Therefore, eithentbeuting process should be bound to a processor,
or migrating a process to another processor should be @magsipto the process (related to performance
counting). Using the second approach needs support of gratipg system.

We have categorized the useful events into categories amshdhe following sections.

2.1 Memory Hierarchy

Currently, most computer systems support four levels imtieenory hierarchy: registers, 1st level cache,
2nd level cache, main memory. Registers are directly cietrby a compiler, so for example, the informa-

tion how many registers keep live values could be better geehéay a compiler. Although main memory

statistics could be quite useful in performance analysi (gank conflicts), performance counters in mi-
croprocessors mostly see the main memory as a black boxefbiheywe concentrate on 1st and 2nd level
caches.

Accesses to caches can be distinguished by read or writsses;einstruction loads and instruction
stores (fetches from a higher level in the hierarchy), oadi@&d/stores. An important performance aspect
is the hit and miss rate, which can be calculated from thé mtmber of accesses and either the number
of misses or hits. Most microprocessors use (small) tréinsldook-aside buffers (TLB) to speed up the
translation of virtual to physical addresses. As missekénliLB are time consuming, this number (and its
relation to the number of hits or the total number of addreskups) is a relevant number for performance
optimization.

We distinguish between instruction and data caches on eaeh For unified caches (i.e. instruction and
data are buffered in the same cache), it is often possiblestimguish instruction and data loads. Therefore
on those cache®,CL LxXICACHExxxandPCL LxDCACHEXxxxrefer to events concerning instruction and
data accesses, respectively.

The available events concerning memory hierarchy are giveable 2.1.

Due to the definition, the sum of cache reads and cache whtegadbe equal to cache read/writes and
the the sum of cache hits and cache misses should be equah® id/writes, too. Additionally, if two

cache

PCL.LxCACHE_READ number of level-x cache reads
PCLLXCACHE_WRITE number of level-x cache writes
PCLLxCACHE_READWRITE number of level-x cache reads or writes
PCLLXCACHE_HIT number of level-x cache hits
PCL.LXxCACHE_MISS number of level-x cache misses

data cache

PCL.LxDCACHE_READ number of level-x data cache reads
PCLLXxDCACHE_WRITE number of level-x data cache writes
PCLLxDCACHE_READWRITE | number of level-x data cache reads or writes
PCL.LXxDCACHE_HIT number of level-x data cache hits
PCL.LxDCACHE_MISS number of level-x data cache misses
instruction cache

PCL_LxICACHE_READ number of level-x instruction cache reads
PCL.LXICACHE_WRITE number of level-x instruction cache writes
PCL.LXICACHE_READWRITE | number of level-x instruction cache reads or writes
PCL.LXICACHE_HIT number of level-x instruction cache hits
PCL.LXICACHE_MISS number of level-x instruction cache misses
TLB

PCLTLB_HIT number of hits in TLB

PCL.TLB_MISS number of misses in TLB

Instruction TLB

PCLITLB_HIT number of hits in instruction TLB
PCLITLB_MISS number of misses in instruction TLB

Data TLB

PCLDTLB_HIT number of hits in data TLB
PCLDTLB_MISS number of misses in data TLB

Table 2.1: Events concerning memory hierarchy (x=1 or 2 ot 2nd level cache)

first level caches exist (instruction and data), the sumsifirction cache reads and data cache reads should
be equal to cache reads (and so on).

2.2 Instructions

Instructions correspond to operations and flow controlifipeldn a program. There are several categories
of operations (e.g. integer, logical, floating point) whinight be executed by different functional units in
the microprocessor. Another aspect (in multiprocessdegys) is atomic operations (e.g. a primitive for a
test-and-set-operations) which can be executed suctébsfuock could be set) or unsuccessful (the lock
could not be acquired as it was already set). We distinguasivden the instruction categories as shown in
table 2.2.

Additionally, we have included a cycle count which gives tluenber of cycles spent in this process or
on behalf of the process/thread (when counting in usersystem mode). For clarification, it should be
noted that the cycle count should not be used to count the euafilelapsed cycles as on multiprogramming
systems other processes might be scheduled to the samegwocEp count the number of elapsed cycles,
an additional event can be usd)GL ELAPSEDCYCLES.

On some systems, the number of issued instructions mighiftezesht to the number of completed
instructions due to some error conditions. We have chosemplaied instructions, as they correspond more
closely to the operations the programmer specified in hignara.

Getting the number of operations out of the number of insibas is difficult. For example, on some
systems a floating-point add and a floating-point multiplp b initiated by a single add-and-multiply
instruction. Therefore, 1 floating point instruction is ated but 2 floating point operations are executed.
With PCL (and most of all hardware performance counter imgetations) it is not possible to count the
number of floating pointperationsand related number.

2.3 Status of Functional Units

Functional units might be stalled due to blocked resouméssing operands etc. Table 2.3 gives the events
defined for stalls. Measuring such an event results (diffiieeall other events) not in the number of stalls

3

PCLCYCLES spent cycles in process/thread (and eventually in systds) ca
PCLELAPSEDCYCLES elapsed cycles

PCLINTEGERINSTR number of completed integer (or logical) instructions
PCLFP.INSTR number of completed floating point instructions
PCLLOAD_INSTR number of completed load instructions
PCLSTOREINSTR number of completed store instructions
PCLLOADSTOREINSTR number of completed load or store instructions
PCLINSTR sum of all completed instructions
PCLJUMP_SUCCESS number of correctly predicted branches
PCLJUMP.UNSUCCESS number of mispredicted branches

PCLJUMP sum of all branches

PCLATOMIC_SUCCESS number of successful atomic instructions
PCLATOMIC_UNSUCCESS| number of unsuccessful atomic instructions
PCLATOMIC sum of all instructions concerning atomic operations

Table 2.2: Events concerning instruction categories

PCLSTALL_INTEGER | number of cycles the integer/logical unit is stalled
PCL STALL_FP number of cycles the floating point unit is stalled
PCLSTALL _JUMP number of cycles the branch unit is stalled
PCL.STALL_LOAD number of cycles the load unit is stalled
PCLSTALL_STORE number of cycles the store unit is stalled (write buffer)
PCLSTALL sum of all cycles a unit is stalled

Table 2.3: Events concerning functional unit stalls (nurmalggven in cycles)

but in the number of cycles all stalls of this event type hakeh.

2.4 Rates and Ratios

Often, it is useful to get a ratio or rate rather than an atissilumber. Good examples are cache miss rates
or floating point operations per second. Table 2.4 givestkats defined for such rates and ratios.

Measuring these events will mostly be done by deriving tHaesfrom other performance numbers
(see [1]). The definitions are as follows:

.PCL_FP_INSTR
o PCLLMFLOPS ““PCLCYCLES x M H zrate

. PCL_INSTR
o PCLIPC: per5vcirs

o PCLLIDCACHE MISSRATE : 5EZLLIDCACHE IS

- PCL_ CACHE_MISS
PCLL2DCACHE MISSRATE : £¢L=-L2BCACHEMISS

. PCL_LOADSTORE_INS
e PCLMEM FP.RATIO : PCL-LOADSTORE_INSTR

PCLMFLOPS number of million floating point instructions per secopd
PCLIPC number of completed instructions per cycle
PCL L1DCACHE MISSRATE | miss rate of L1 data cache
PCLL2DCACHE_MISSRATE | miss rate for L2 data cache
PCLMEM_FP_RATIO ratio of memory references to floating point operations

Table 2.4: Events concerning rates and rations (hnumbefkateng point values)

Chapter 3

PCL — The Performance Counter
Library

The Performance Counter Library has a programming interfacaccess a set of performance counters
with a defined set of countable events. In section 3.1, weifypehbich of the events defined in chapter 2
are available on what systems and in section 3.2 we defina tigggmming interface.

3.1 Countable Events

In the following tables we compare the events defined in thieskaction in tables 2.1 to 2.3 with the available
events on the microprocessors currently supported by PCL.

The tables are given in the following scheme. The first colgmas the event family, followed by the
precise event, one in each row. Each additional column aonentries for one microprocessor (family).
The entry names correspond to the event names in the désergftthe microprocessors (see chapter A.
Empty entries signal that such an event is not available anrtficroprocessor. Entries marked with a star
are indirect events as a combination of several other edénetstly countable by a (hardware) performance
counter. The combinations for these indirect events arudi&ed below. Counters used for indirect events
can not be used at the same time to measure their own events.

Table 3.1 shows events relevant to the 1st level cache (oi8in, data, instruction and data), table
3.2 shows events relevant to the 2nd level cache (instmuctlata, instruction and data). If there is a
unified cache for data and instructions (as it is on most systeevents defined for 2nd level instruction
cache refer to cache references done by instruction fetelnelsfor the data cache accordingly. Table 3.3
shows events for the translation look-aside buffers (it$ion, data, instruction and data). Table 3.4 shows
events relevant to instructions and functional units. &b shows events concerning units which are
blocked/stalled. Instead of counting the number of evahis,number in this table gives the number of
cycles for the event type. Table 3.6 shows the events coimgerates and ratios. Indirect events are given
in italics.

1|t seems, that on CRAY T3E'’s the additional logic built arduhe L2-cache (E-registers, back-map, stream buffers)lezai/to
wrong L2-cache numbers.

2read Processor Cycle Counter

Sread Processor Cycle Counter

4read Tick Counter

Sread Time Stamp Counter

6read Time Stamp Counter

"Floating point operations instead of instructions are ¢edn

8See comments oREOPE130.

91ssued instructions are counted instead of completeduictiins.

10nteger multiplication and division increments the courig two

Lonly on Pentium MMX

3yoed |aAd|1ST (T'E 3|gel

category event event name DEC Alpha MIPS SUN IBM Intel
21164 21264 | R10000 ULTRA PPC604e Pentium-MMX | PPro/PII/PIII

1stlevel read PCLL1CACHE.READ
cache write PCLL1CACHEWRITE

read or write | PCLL1CACHE.READWRITE

hit PCLL1CACHEHIT

miss PCLL1CACHEMISS MI11.9 4+ M10.9 IB05+ 1B1.6
1stlevel read PCLL1DCACHE.READ SuUQ5 PEOPE10
cache (data) write PCLL1DCACHEWRITE SuUQ6 PEOPE11

read or write | PCLLIDCACHE.READWRITE || AL1.14

hit PCLL1DCACHEHIT AL1.14 — AL2.5

miss PCLL1DCACHEMISS AL2.5 MI1.9 SuQ.11 IB1-6 PEOPE137 PPOPP1L
1stlevel read PCLL1ICACHE.READ PEOPE112 PPOPP15
cache (instruction) write PCLL1ICACHE.WRITE

read or write | PCL.L1ICACHE_.READWRITE AL1.13 suo4

hit PCLL1ICACHE_HIT AL1.13 — AL2.3 sSu14

miss PCLL1ICACHE_MISS AL2_3 MI0_9 SU0.4 — SU1.4 | I1BOS PEOPE114 PPOPP16

3yded-¢-|anaT (Z'¢ alqel

category event event name DEC Alpha MIPS SUN IBM Intel
21164 21264 | R10000 ULTRA | PPC604e| Pentium-MMX | PPro/PII/PIlI
2nd level read PCLL2CACHE_.READ AL1_16
cache write PCLL2CACHEWRITE AL1.17
read or write | PCLLL2CACHE_READWRITE AL1_15 suas PPOPP117
hit PCLL2CACHEHIT AL1.15 — AL2.14 SuU1s
miss PCLL2CACHEMISS AL2_14 MI1.10+ MI10.10 | SUL9 PPOPP113
2nd level read PCLL2DCACHE.READ PPOPP111
cache (data) write PCLL2DCACHEWRITE PPOPP112

read or write
hit

PCLL2DCACHE.READWRITE
PCLL2DCACHEHIT

PPOPP1.11 + PPOPP1.12

miss PCLL2DCACHE.MISS MI1_10
2nd level read PCLL2ICACHE_-READ
cache (instruction) write PCLL2ICACHE.WRITE

read/write PCLL2ICACHE_.READWRITE

hit PCLL2ICACHEHIT

miss PCLL2ICACHE_MISS MI0_10

1a)Ng-apIse-}007-19jsuel] :£°E a|geL

category event| eventname DEC Alpha MIPS SUN IBM Intel
21164 | 21264 R10000 | ULTRA | PPC604e Pentium-MMX | PPro/PII/PIlI

TLB hit PCLTLB_HIT

miss | PCLTLB_MISS MI1_7 IB1.7+ 1B0.6
TLB hit PCLITLB_HIT
(instruction) miss | PCLITLB_MISS AL2.4 | AL264.15 1B1.7 PEOPE113 PPOPP17
TLB hit PCLDTLB_HIT
(data) miss | PCLDTLB_MISS || AL2.6 1BO_6 PEOPE12

S)IUN [BUOIOUN PUR SUONINNSU| 1°S 3|geL

category event event name DEC Alpha MIPS SUN IBM Intel
21164 21264 R10000 ULTRA | PPC604e| Pentium-MMX PPro/PII/PINI

cycles PCLCYCLES ALO.0 AL264.0_.0 MIO_-0 SuUQ.0 1B3_1 PEQ4 PPOPP161

elapsed cycles | PCLELAPSEDCYCLES PCC pPCC TC* TSC TSC
completed integer PCLINTEGERINSTR AL19 1BO_14
instructions floating-point PCLFP.INSTR AL1.10 MI1_5 1BO_15 PEOPE130° PPQO

load PCLLOAD.INSTR AL1.11 Mi1_2 I1BO_16

store PCLSTOREINSTR AL1.12 MI1_3

load or store PCLLOADSTOREINSTR PEOPE136 PPOPPI0

sum PCLINSTR AL0_1° AL264.01 | MI0_15% SULl 1B0_2 PEOPE120 PPOPP144
branch succ. predicted | PCLIJUMP_SUCCESS MI06 — MI18 PE14™ PPOPP152
instructions wrong predictedq PCLJUMP.UNSUCCESS AL2_2 AL264.1.2 MI1_8 PEOPE1.16 — PE14 PPOPP151

sum PCLJUMP AL264.11 | MIO_6 IB1_16 PEOPE116 PPOPP150
atomic with success PCLATOMIC_SUCCESS AL2_13 MI14— MIOS5 1B1.9
instructions without succes§ PCLATOMIC_UNSUCCESS MI0.5

sum PCLATOMIC Mi1_4

0T

SHuNn paxd0|g G’ a|qel

category event event name DEC Alpha MIPS SUN IBM Intel
21164 | 21264 | R10000 | ULTRA | PPC604e| Pentium-MMX | PPro/PII/PIlI

blocked integer PCLSTALL_INTEGER
functional floating-point| PCL.STALL_FP 1B2.19
units branch PCLSTALL_JUMP 1B2_12

load PCLSTALL_LOAD PEOPE124

store PCL.STALL_STORE PEOPE123

sum PCL.STALL PPOPP158

11

soiey pue sayey 19 a|qeL

event event name DEC Alpha MIPS SUN IBM Intel

21164 21264 | R10000 ULTRA PPC604e Pentium-MMX PPro/PII/PIII
MFLOPS PCLMFLOPS AL1.10/AL2.11 x Mhz MI1.5/MI00 % Mhz IB0.15/IB1.1* Mhz | PEOPE1.30/PE04 « Mhz | PP0.0/PPOPP1.61x* Mhz
instr./sec PCLIPC ALO0.1/AL211 SU0-.0/SU1-0 IB0.15/IB1-1 PEOPE1.20/PEO4 PPOPP1.44/PPOPP1.61

L1 Dcache missrate
L2 Dcache missrate
memory-ops/FP-ops|

PCLL1IDCACHEMISSRATE
PCLL2DCACHEMISSRATE
PCLMEM_FP_RATIO

AL2.5/AL1.14

SU1.9/SU0.11

PEOPFE1.37/PEOPFE1.36

PEOPE1.36/PEOPE1.30

PPOPP1.1/PPOPP1.0

[A)

3.2 Interface Functions

The interface functions to control the performance cowsaes given below. All functions are callable from
C, C++, Fortran, and Java. All functions return status ced#sthe following meaning:

PCL_SUCCESS function successful finished
PCL_NOT_SUPPORTED requested event is not supported on this hardware
PCL_TOO_MANY _EVENTS more events requested than performance counters areldgaila

PCL_TOO_MANY _NESTINGS there are more nested calls than allowe€(_MAX NESTINGLEVEL
)

PCL_TOO_ILL NESTING either a different number or different types of events atpiested in nested
calls

PCL_ILL _.EVENT event identifier illegal
PCL_MODE _NOT_SUPPORTED performance counting for that mode is not supported

PCL_FAILURE failure for some unspecified reason

3.2.1 PCLquery

With this function, queries are done if a certain functidgiyak available on this machine. The user sup-
plies in counterlist an array of sizencounterof event names (of type integers). Event names are any
of those introduced in the tables 3.1 to 3.5 in the last sectio mode the user specifies the execution
mode for which performance data should be gatheP€zl: MODE USERspecifies counting in user mode,
PCL.MODE _SYSTEMspecifies counting in system mode, aa@L MODE_USERSY STEMspecifies ei-
ther of both modes. The function returRE€L SUCCESY the requested functionality is possible (i.e. if
the requested events can be counted in parallel), othesmissror code is returned why the requested
events are not supported on this system. No resources acat@l on this call.

int PCLquery(
int *counterlist, /* I: requested event counters */
int ncounter, * 1: number of counters */
unsignedint mode /*I: mode flags (PQUODE _xxx) */
);

3.2.2 PCLstart

With PCLstart performance counting is started (if it is possible). Therssipplies ircounterlist an array
of sizencounterof event names. Event names are any of those introduced iatkes 3.1 to 3.5 in the
last sectionmodehas the same meaning as in the descriptioR@Equery If the requested functionality
is available, the appropriate performance counters asredieand started. On succeB§L SUCCESSs
returned, otherwise an error code is returned.

int PCLstart(
int *counterlist, /* . events to be counted */
int ncounter, [* I: number of counters */
unsignedint mode /*I: mode flags (PQUODE _xxx) */
);

3.2.3 PCLread

Reads out performance counters and returns counter vatiae$. of the the result values is either written
into the (user supplied) integer-typed bufferesultslist or into the (user supplied) floating point typed
buffer fp_resultslist both of sizencounter PCL.CNT_TYPEis a 64-bit integer typeRCL FP_CNT.TYPE

is a 64-bit floating point type. Which of the buffers is usedtfte i-th result depends on the requested i-th
event type. If the i-th event type is less than PRIELOPS, the result is an integer value which is stored in
i_resultslist[i] . If the i-th event type is greater than or equal to PRELOPS (i.e. belongs to the category
rates and ratio}, the result is a floating point value storedfimresultslist[i] . If the i-th result is stored in
i_resultslist[i] , the content ofp_resultslist[i] is undefined, and the same holds for the other way.

13

Processor oS software used counters saved on
context switches

Alpha 21164 Digital Unix 4.0x yes?

Alpha 21264 Digital Unix 4.0e yes!®

Alpha 21164 CRAY Unicos/mk not necessaryf

R10000 SGI IRIX 6.x yes

UltraSPARC I/11 Solaris 2.x perfmon no

PowerPC 604e AlX4.1,4.2 PMapi yes

Pentium/PPro/Pentium Il/Pentium Il Linux 2.x msr no

Table 3.7: Supported systems

The arguments supplied with the callR&€Lreadmust correspond to the latest callR€Lstart i.e. the
number of requested performance counters must be equal.dfror occursPCL SUCCESSs returned,
otherwise an error code. The performance counters areéibg)i not stopped.

int PCLread(
PCLCNT_TYPE* i_resultlist, /* O: int counter values */
PCLFPCNT.TYPE* fp_resultlist, /* O:fp counter values */
int ncounter /* I: number of events */

);

3.2.4 PCLstop

Stops performance counting and returns counter valuesuiltRegues are written into the (user supplied)
buffersi_resultlist or fp_resultlist both of sizencounter SeePCLreadfor a description how the results
are stored in the two arrays. The arguments supplied withahéo PCLstopmust correspond to the latest
call to PCLstart i.e. the number of requested performance counters mustjle.elf no error occurs,
PCL.SUCCESSs returned, otherwise an error code.

int PCLstop(
PCLCNT_TYPE * i_resultlist, /* O:int counter values */
PCLFP.CNT_TYPE * fp_resultlist, /* O: fp counter values */
int ncounter /* 1: number of events */
);

3.3 Programming Aspects

The allowed calling sequence is one calPRGLstartfollowed by zero or more calls t8CLreadfollowed
by one call toPCLstop Between a call té°CLstartandPCLstop(and possible calls tBCLread may be
nested calls to other allowed calling sequences with theesammber of events and the same event types.
On system with virtual (low level) performance countersgrating a process to another processor
is possible (SGI, AIX). On the other systems, we bind the etieg process to a processor (DEC, SO-
LARIS)*?, or the process can not migrate (CRAY). On Solaris systefritegiprocess is not bound to a
specific processor, the process gets bound to the procesgoerd executing th@ClLstartfunction. On
DEC systems, the process gets bound to the processor thespriscurrently running on.
Currently, performance counters are not saved on contétdisye on Solaris and Linux systems by our
library and therefore performance measurements shouldhe ahly on a lightly loaded system.
Currently, we do not check if any other process uses the praioce counters as w&ll Therefore, on
certain systems if two distinct processes use performamaeters in parallel, they may disturb each other.
To avoid overflow e.g. on systems with 32-bit hardware cagnt@n interval timer is called on these
systems (Solaris, AlX, Linux) which interrupts the procesery second. Programs which use sleéitimer
system call (or th&IGALRMsignal), may be in conflict with PCL.

3.4 Supported Systems

Currently, the Performance Counter Library is availableétansystems listed in table 3.7.

120n Linux systems, currently it is not possible to bind a pssc® a processor.
13This may be a program using the performance counters directthrough a different application interface.

14

3.5 Examples
3.5.1 Simple Example

Figure 3.1 shows a simple example program how to use therReafae Counter Library. First, the list of
requested event®CL LOAD_INSTRfor load instructions, an®@CL LIDCACHEMISSfor 1st level data
cache misses) is put into the arregunterlist. With the call toPCLquerywe test, if it is possible to serve
these two requested events simultaneously on the compstens where the program is executed. If this
is possible, event counting is started with the calPLstart After that follows the code to be measured
and a call toPCLstopto stop performance counting and to read out the performemweter values. Then,
the results are printed.

3.5.2 Example with Nested Calls

Figure 3.2 shows an example how to use nested calls. In taisjgbe, for the outer loop as well as for each
iteration the number of cycles spent in this code sectiondasured.

3.5.3 Example in Java

Figure 3.3 shows an example how to use PCL in Java.

140nly one process can open thm-device, but spawned children have access to this devicets w
150nly one process can open thn-device, but spawned children have access to this deviceths w
16There is no multiprogramming on application nodes.

15

#i ncl ude <pcl . h>

void do_work()

i nt

{

mai n(i nt argc, char **argv)

int counter_list[2];

i nt ncounter, res;

unsi gned i nt node;

PCL.CNT_TYPE i .result list[2];
PCL_FP_CNT_TYPE fpresult_list[2];

/* Define what we want to neasure. */
ncounter = 2;

counter list[0]
counter _list[1]

PCL_CYCLES;
PCL_I NSTR;

/* define count node */
node = PCL_MODE USER

[* Check if this is possible on the machine. */
i f (PCLqguery(counter_list, ncounter, mode) ! = PCL_SUCCESS)
printf("requested events not possible");

/* Start performance counting.
We have checked al ready the requested functionality
with PCL_query, so no error check woul d be necessary. */
res = PCLstart(counter_list, ncounter, mode)
if(res !'= PCL_SUCCESS)
printf("sonmething went wong");

/* Here cones the work to be neasured. */
do_wor k() ;

/* Stop perfornmance counting and get the counter val ues. */

i f (PCLstop(i_result_list, fp_result_list, ncounter) ! = PCL_SUCCESS)
printf("problems with stopping counters");

[* print out results */

printf("% instructions in % cycles",
(double)i _result list[1], (double)i result list[0]);

Figure 3.1: Example program on how to use PCL

16

#i ncl ude <pcl . h>

#define NI TER 4

i nt

{

mai n(i nt argc, char **argv)

int counter _list[1];

int ncounter, res, iter;

unsi gned i nt node;

PCL_CNT_TYPE i _all _result_list, i_result_list[NTER;
PCL_FP_CNT_TYPE fp_all result _list, fp_result_list[N TER];

/* Define what we want to neasure. */
ncounter = 1;
counter |ist[0] = PCL_CYCLES;

/* define count node */
node = PCL_COUNT_USER;

/[* Start performance counting. */
res = PCLstart(counter_list, ncounter, mode)

for(iter = 0; iter < NNTER, ++iter)

/* Start performance counting. */
res = PCLstart(counter_list, ncounter, mode)

/* Here cones the work to be neasured. */
do_wor k() ;

/* Stop perfornmance counting and get counter val ues. */
res = PCLstop(&i_result_list[iter], &fp _result_list[iter], ncounter) ;

/* Stop perfornmance counting and get the counter val ues. */
res = PCLstop(&i-all_result_list, &fp _all_result_list, ncounter);

[* print out results */

printf("used cycles: % % % %, total: %",
(double)i _result_list[0], (double)i _result_list[1],
(double)i _result list[2], (double)i _result list[3],
(double)i _all result _list);

Figure 3.2: Example program on how to use nested calls to PCL

17

/1 import PCL class description

i mport PCL;

public class pcl _jtest

{static final int N =
static double[][] a
static double[][] b
static double[][] ¢

200; /'l matrix dinmension
new doubl e

[NI[N;
new doubl e[NN [N];
[NI[N;

new doubl e ;
/] test nethod
static void natadd(double[][] a, double[][] b, double[][] c¢)
{int i, j;
for (i =0; i <N ++i)
for (j =0; j <N, ++)
} a[i][j] =bli][j] +c[i][j];

/1 main program
public static void nmain(String[] args)

{int event;
PCL pcl = new PCL(); /1 instantiate PCL
i nt node = pcl.PCL_MODE USER SYSTEM // count node
int[] events = newint[1]; /] events; array required
long[] i _result = new long[1]; /[l int results; array required

doubl e[] fp_result = new double[1]; // fp results

/] test supported events
for(event = 0; event < pcl.PCL_MAX EVENT; ++event)
{events[0] = event;
i f(pcl.PCLquery(events, 1, mode)== pcl . PCL_SUCCESS)
{/'l start counting
i f(pcl.PCLstart(events,1,mode)! = pcl . PCL_SUCCESS)
Systemout.println("problemw th starting event");

/1 test program
mat add(a, b, c¢);

/1 stop counting
i f(pcl.PCLstop(i_result,fp_result,1) ! = pcl . PCL_SUCCESS)
Systemout.println("problemwth stopping event");

/1 print result for event i
i f(event < pcl.PCL_M-LOPS)

/1 integer result

System out. println(pcl.PCLeventnane(i)+":"+i _result[O0]);
el se

/1 floating point result

System out. println(pcl.PCLeventnane(i)+":"+fp_result[0]);

Figure 3.3: Example program in Java.

18

Chapter 4

Related Projects

In the Parallel Tools Consortium there is a subproject ddfoadled PerfAPI. Its main aspect is to define
an API to access all system specific hardware performanage,i.e. to start/read out/stop all hardware
performance counters on a microprocessor with all everdadle on that system. This is a different
approach than ours as we focus on a single framework on airegsi.e. a uniform application interface as
well as a well-defined set of events accessible with unifoamas on all systems. For the PerfAPI project,
have a look at http://www.cs.utk.edu/ mucci/pdsa/.

There are a lot of interfaces to access performance cownense specific system, eltdpperfexon SGI
systems with the R10000-processor orjpfre-device on Digital Unix systems (21064 or 21164 processors)
To establish a common platform for performance countinglbR@GWER and PowerPC microprocessors,
IBM has defined an application interface called PMapi. Tlagiproach is as well, to define the set of
possible events as the union of all possible events on all BRAhd PowerPC microprocessors. On Linux
systems, libpperf supports all Pentium, PentiumPro, antita Il processors through a common interface.

19

Chapter 5

Summary

PCL - the Performance Counter Library — is a common interfac@ortable performance counting on
modern microprocessors. It is intended to be used by thereapplication programmer who wishes to do
detailed analysis on program performance, and it is intétalee used by tool writers who need a common
platform to base their work on.

The application interface supports query for functioyabtart and stop of performance counting and
reading out the values of the performance counters. Nestégito the functions are possible (with the
same events) therefore allowing to do hierarchical peréorce measurements on sections and subsections
of a program. Further, performance counting in user modsesy, and user-or-system mode can be distin-
guished. Language bindings are available for C, C++, Foraad Java.

PCL is available at http://www.fz-juelich.de/zam/PCL/.

20

Chapter 6

Acknowledgments

We would like to thank the people who have written the sofenae based our work on. Namely, Richard
Enbody for perfmon on UltraSPARC-systems, and M. Patrickl&and Michael S. Warren for libpperf
which itself is based on the msr device implemented by Stephayer on Linux version 2.0.x, 2.1.x, and
2.2.x.

21

Bibliography

[1] Kirk W. Cameron and Yong Luo. Performance evaluatiomgshardware performance counters.
http://www.c3.lanl.gov/ kirk/isca99/.

[2] Digital Equipment Corporation, Maynard, Massachusettan 7 pfm

[3] Digital Equipment Corporation, Maynard, Massachusdttpha AXP Architecture Handbopkersion
2 edition, 1994,

[4] Silicon Graphics Incman libperfex

[5] MIPS Technologies Inc., Mountain View, CaliforniaDefinition of MIPS R12000 Performance-
counter

[6] Marco Zagha and et.al. Performance Analysis using thBe3/R10000 Performance Counters. In
Supercomputing 9Q6EEE Computer Society, 1996.

[7] Sun Microsystems, Palo Alto, CalifornialtraSPARC User’'s Manuall997.

[8] SPARC International, IncThe SPARC Architecture Manual, Versionl997.

[9] Motorala Inc., IBM. The PowerPC Family : The Bus Interface for 32-Bit Micropresers 3 1997.
[10] James E. Smith Shlomo WeidlBOWER and PowerPQMorgan Kaufmann Publishers, Inc., 1994.
[11] Motorola Inc., IBM. PowerPC 604e RISC Microprocessor User's Man@a1998.

[12] http://developer.intel.com/drg/mmx/AppNotes/perfrintm
[13] Intel Corp. Pentium Pro Family Developers Manual 113097.

22

Appendix A

Performance Counters on
Microprocessors

This chapter introduces performance counting aspectsmhunly used microprocessors. Each section
introduces a microprocessor family and is divided into ¢hsabsections: base information on the micro-
processor, performance counter events sorted by eachraniice counter, and in the third subsection
additional comments and references to existing implentientato access the performance counters on that
specific microprocessor. The second part of each sectierdehcription of the performance counters, is
given for each event as follows. The first line contains aariml identifier (2 letters corresponding to the
name of the microprocessor), the number of the performamaeter, and after a underline another number
giving the event number. We will refer to the whole name as igusidentifier in subsequent chapters.
The next line contains a manufacturer-specific name or diefin{in italics) of the event as found in the
manufacturer’s literature. After that, a description af #vent follows.

A.1 DEC Alpha

To use performance counters on DEC Alpha microprocessoditi@nal software support is necessary as
the low-level interface is given in PAL-Code. Tru64 (forméigital Unix) has the pseudo deviggm|[2]
which has a high-level interface basedioctl-calls to access the performance counters. fffhedevice on
systems distinguishes between user and system mode eweningp Only one process per CPU can open
the device, but child processes can be spawned which infudegerformance counters as well.

On the CRAY T3E, which uses the 21164 microprocessor tooetiseno software interface published
to access the performance counters.

A.1.1 DEC Alpha 21164

The RISC-processor DEC Alpha 21164 has 3 performance caunférst, let's have a closer look at
the architecture of the microprocessor. The first level @hes contain an instructiomGACHE) and a
data cachelICACHB), each having a size of 8 KB. The second level ca@@ACHBE has a size of 96
KB buffering instructions and data. An additional optiorais external third level cach CACHBE. The
memory hierarchy is given in figure A.1. A detailed descdptof the Alpha architecture can be found in
[3].

The 21164 contains pipelines of the following types:

e 7-stage integer pipelines
e 9-stage floating point pipelines
e 13-stage memory reference pipeline

The performance counter part on the DEC Alpha 21164 confaiosunters with distinct purposes.
Roughly speaking, counter O counts machine cycles or isgwgdictions, counter 1 counts successful
operations, and counter 2 counts unsuccessful operatiamshe counters, 2, 24, and 23 different events
are defined, respectively, and the counters can operatedltigdaThere is one restriction that when counting
certain events on counter 2, counter 1 gathers specialevent

Events countable on the DEC Alpha 21164 are:

e Counter O:

23

| :

i Register (32 * 64 Bit :/CPU DEC Alpha 21164
! i Level-1-Cache
P IO ART S !

I-Cache (8KByte) D-Cache (8KByte)

Level-3-Cache (0...64MByte)
Remark : optional

A

Main Memory

Figure A.1: Principal memory architecture of the DEC AlpHd 84

- ALOO
CYCLES
machine cycles

— ALO1
ISSUES
issued instructions

e Counter 1:

— AL10
NONLISSUECYCLES
Either no instructions have been issued to the pipelineemtimber of cycles, or the pipeline
has been stalled for that number of cycles.

- AL11
SPLITISSUECYCLES
Not all startable instructions have been included into tis¢ruction pipeline.

- AL1.2
PIPELINEDRY
A parallel execution of instructions was not possible.

- AL1.3
REPLAYTRAP
If a started instruction could not be further processed,iiseruction is issued again in the
instruction pipeline, which is called a replay trap.

- AL1 4
SINGLEISSUECYCLES
Exactly 1 instruction was issued in a cycle.

- AL15
DUAL_ISSUECYCLES
Exactly 2 instructions were issued in a cycle.

— AL16
TRIPLEISSUECYCLES
Exactly 3 instructions were issued in a cycle.

24

- AL17
QUAD_ISSUECYCLES
Exactly 4 instructions were issued in a cycle.

- AL18
FLOW.CHANGE
A jump instruction was executed. Conditional and uncoodai jumps are distinguished.
Remark:

x |f counter 3 counts branch-mispredictions, then branchesa@unted.
x If counter 3 counts pc-mispredictions, then jsr (subrautialls, returns) are counted.

- AL19
INTEGEROPERATE
Executed operations in the integer pipelines.

— AL1.10
FP_INSTRUCTIONS
Executed operations in the floating point pipelines.

— AL1.11
LOAD.INSTRUCTIONS
Executed load instructions.

— AL1.12
STOREINSTRUCTIONS
Executes store instructions.

— AL1.13
ICACHE ACCESS
Accesses to the 1st level instruction cache (ICACHE).

- AL1.14
DCACHEACCESS
Accesses to the 1st level data cache (DCACHE).

— AL1.15-AL121
"CBOX1"
Accesses to 2nd or 3rd level cache. There need to be defin@hadtoptions [3]:

x AL1_15
SCACHEACCESS
Accesses to 2nd level cache (SCACHE).
x AL1_16
SCACHEREAD
Read accesses to 2nd level cache (SCACHE).
x AL1.17
SCACHEWRITE
Write accesses to 2nd level cache (SCACHE).
« AL1.18
SCACHEVICTIM
Number of non-completed memory frees in 2nd level cache (SdRA).
x AL1.19
BCACHEHIT
Hits in 3rd level cache (BCACHE).
x AL1_20
BCACHEVICTIM
Number of non-completed memory frees in 3rd level cache (SEB).
x AL1.21
SYSREQ
Requests of additional hardware (multiprocessor system).

e Counter 2:

- AL20
LONG.STALLS
Number of events that instruction pipeline was blocked forerthan 12 cycles.

25

- AL2_1
PC_.MISPR
Program counter mispredictions.

- AL2_2
BRANCHMISPREDICTS
Branch mispredictions.

- AL23
ICACHEMISSES
Misses in the 1st level instruction cache (ICACHE).

— AL2.4
ITB_LMISSES
Misses in instruction TLB.

- AL2.5
DCACHEMISSES
Misses in 1nd level data cache (DCACHE).

— AL2.6
DTB_MISS
Misses in data TLB.

— AL2_7
LOADSMERGED
An entry in the Miss-Address-File corresponds to a memoguest.

- AL2.8
LDU_REPLAYS
A replay trap was triggered by a missed load operation.

- AL29
WB.MAF_FULL_REPLAYS
A replay trap was triggered by a missed write-back operatioby an inconsistency in the
miss-address-file.

— AL2.10
EXTERNAL
A signal change at the pirpérf.monh” occurred.

— AL211
CYCLES
Number of cycles.

— AL2.12
MEM_BARRIER
Executed memory barrier instructions.

— AL2_13
LOAD.LOCKED
A locked load instruction was executed.

— AL2_14-AL221
"CBOX2"
Accesses to 2nd or 3rd level cache. There need to be defin@badtioptions [3]:

x AL2_14

SCACHEMISS

Misses on 2nd level cache.
* AL2_15

SCACHEREADMISS

Read misses on 2nd level cache.
* AL2_16

SCACHEWRITEMISS

Write misses on 2nd level cache.
* AL2_17

SCACHESHWRITE

Number of write-operations which go to caches other thamptbeessor-specific 2nd level

cache.

26

+ AL2_.18
SCACHEWRITE
Write accesses to 2nd level cache.

+ AL2_.19
BCACHEMISS
Misses in 3rd level cache.

x AL2_20
SYSINV
Requests of additional hardware to invalidate a cache limét{processor).

x AL2.21
SYSREADREQ
Requests of additional hardware to read-copy a cache lin#ifrrocessor).

A.1.2 DEC Alpha 21264

The DEC Alpha 21264 is a four-way out-of-order-issue micoggssor that performs dynamic scheduling,
register renaming, and speculative execution. There amgeder execution units and 2 floating-point exe-
cution units. The processor includes a 64 KB 1st level irtsimn cache and a 64 KB 1st level data cache.
The 21264 has 2 performance counters of 20 bit width eachn®@ami0 is capable of counting one of 2
different events, and counter 1 is capable of counting oredifferent events. Therefore, the ability to do
a detailled performance analysis on the 21264 is significaetiuced compared to the 21164.

Events countable on the DEC Alpha 21264 are:

e Counter 0O:

— AL26400
machine cycles

— AL264.0.1
retired instructions

e Counter 1:

— AL264.10
machine cycles

— AL264.1.1
retired conditional branches

— AL264.1.2
retired branch mispredicts

— AL264.13
retired DTB single misses * 2

— AL264.1.4

retired DTB double double misses
— AL264.1.5

retired ITB misses
— AL264.1.6

retired unaligned traps

— AL264.17
replay traps

A.2 MIPS R10000/R12000

The microprocessors R10000 and R12000 of MIPS are 64 Bit RiBCoprocessors with integrated perfor-
mance counters. The differences of the two processors oanggerformance counting will be discussed
at the end of this section. The R10000 processor has 64 pthysigisters and 32 logical registers. The
1st level cache is split between a data cache and an instnuctiche, both of size 32 KB. The 2nd level
cache can be between 512 KB and 16 MB and the cache is a unifiedt btiit caches data as well as
instructions. The main memory can be up to 1 TB. Figure A.2xsh@ picture of the memory architecture
of the processor.

27

T T T T T T T T T/ 1

! i CPU MIPS R10000
| Register (64* 64 Bit) :

E LLLE // .. \\ _____ .‘ir/LEVEI-l-Cache

| | I-cache (32KByte) D-Cache (32KByte) ! ;

| = F--%------cuerx PRy ye———

—_——— L I IR S |

\ 4 A 4

Level-2-Cache (512K-16MByte)

A\ 4

Main Memory

Figure A.2: Memory hierarchy of the MIPS R10000

The R10000 microprocessor has 2 performance counters (arigten can be found at
http://www.sgi.com/processors/r10k/performance.h&gath capable of counting one of 16 different events.
The R10000 has 5 execution pipelines executing decodadatisins. There are 2 integer pipelinédd. (J1,
ALU?2), 2 floating point pipelineskPU1, FPU2, and 1 address pipelineQAD/STORIE The integer and
floating point pipelines can operate in parallel. For a beattederstanding we define the two following
terms:

e issued An instruction was decoded and supplied to the executilitg un

e graduated An execution of an instruction has finished and all insinrcissued before the instruction
have finished, too.

Another term to be defined 8CTP-Logiavhich is the Secondary Cache Transaction Processing Logic,
which has the task to store up to 4 internally generated otereally generated 2nd level cache transactions.

e Counter 0O:

- MIOO
Cycles
Machine cycles.
- MI0_1
Instructions issued
The counter is incremented with the sum of the following ¢sen

x integer operations completed at this cycle. There can befegations each cycle.
x floating-point-operations completed at this cycle. Thene loe 0-2 operations each cycle.
x load/store operations which have been delivered in theclade to the address pipeline.
There can be 0 or 1 each cycle.
— MI0_2

Load/prefetch/sync/CacheOp issued
Each of these instructions is counted when started.

- MIO3
Stores(including store-conditional) issued
Each time a store operations is delivered to the addresslattm unit, the counter is incre-
mented.

- MIO 4
Store conditional issued
Each time a conditional store operations is delivered tatldress calculation unit, the counter
is incremented.

28

— MIO5
Failed store conditional
The counter is incremented each time a conditional stoledfai

— MIO_6
Conditional Branch resolved
Count all resolved conditional branches.

— MIO_7
Quadwords written back from secondary cache
Counter is incremented each time a quad-word is written fiter2nd level cache to the output
buffer.

- MIO.8
Correctable ECC errors on secondary cache data
A correctable 1-bit ECC error occurred while reading a quamdifrom the 2nd level cache.

— MIO9
Instruction cache misses
Misses in the instruction cache.

— MI0_10
Secondary cache misses (instruction)
Instruction misses in the 2nd level cache.

— MI0_11
Secondary cache way mispredicted (instruction)
An attempt was made to load an instruction from the 2nd lezehe and the entry is marked as
invalid.

— MI0_12
External intervention requests
Number of requests to tH&CTP-Logidrom outside of the processor (I/O devices, multiproces-
sor etc.) for a copy of a cache line markedsaared

- MI0_13
External invalidate requests
Number of requests to tH&CTP-Logidrom outside of the processor (I/O devices, multiproces-
sor etc.) for invalidation of a cache line marked.

- MI0_14
Functional unit completion cycles
The counter is incremented if at least one of the functiondbkthas completed an operations in
this cycle.

— MIO_15
Instruction graduated
The counter is incremented with the number of instructiohi&tvhave been completed in the
last cycle. An integer multiplication or division increntsithe counter by 2.

e Counter 1:

- MI1.0
Cycles
Machine cycles.

- Mi11
Instructions graduated
The counter is incremented by the number of instructionslwhave been completed in the last
cycle. An integer multiplication and division incremenist

- MI1.2
Load/prefetch/sync/CacheOp graduated
Every completed instruction of this type is counted.

- MI1.3
Stores (including store-conditionals) graduated
Every completed store operation is counted.

29

- M1 4
Store conditionals graduated
Every conditional store is counted independently of sugcdsis is possible at most once a
cycle.

- MI1l5
Floating-point instructions graduated
Floating point instructions completed in the last cycled(@ach cycle).

- MI1l 6
Quadwords written back from primary cache
The counter is incremented by 1, if in a cycle at least one woadlis written back from the 1st
level cache to the 2nd level cache.

- MI17
TLB refill exceptions
TLB misses are counted in the cycle after they occur.

- MI18
Branches mispredicted
The counter is incremented on every mispredicted branch.

- MI19
Primary data cache misses
Miss in the primary data cache.

- Mi1.10
Secondary cache misses (data)
Miss in the secondary cache caused by a data access.

- MI1.11
Secondary cache way mispredicted (data)
The counter is incremented if the 2nd level cache contriiies to access the 2nd level cache
after a previous access failed.

- MI1.12
External intervention request is determined to have hieicondary cache
The processor got an external request for a copy of a 2nddaeble block.

- MI1.13
External invalidate request is determined to have hit iroselary cache
The processor got an external request to invalidate a 2eti¢eche block.

- Mi1l.14
Stores/prefetches with store hint to CleanExklusive sgagncache blocks
The SCTP-logic got a request for status change of a cachigdimeCleanExclusivéo Dirty Exk-
lusive

- MI1.15
Stores/prefetches with store hint to Shared secondaryechldtks
The status of a cache line was changed f@maredo DirtyExklusive

Software support for the performance counters on R10000egsmrs is available either on a lower
level in IRIX 6.x through the/proc file system or on a higher level through tperfexlibrary [4]. The
kernel maintains data structures for 32 virtual perforngaccunters with a size of 64 bits each. It is
possible to distinguish between counting in user modeesystode, or both. When running in user mode,
performance counters are saved on context switches. Fpetfexlibrary, the routinestart counterszeroes
out the internal counters, amelad_countersstops the counters after reading them.

Different to the R10000, the R12000 has 4 counters each t@pélounting one of 32 events. For
counter 1, a trigger mechanism was included such that ant é&verounted by counter 1 if any of the
other counters reached a certain value. Additionally, @@l counting is possible. For example, it is
possible to count the number of cycles in which 4 instrucibave been completed. Also, some semantic
inaccuracies concerning the definition of events have bksified [5]. An introduction to measurement
and interpretation of events can be found in [6].

A.3 SUN ULTRASparc I/lI

The UltraSPARC I/11 64-bit microprocessors of SUN have tlosgibility to count performance relevant
events. A detailed description of the SPARC V9 architectae be found in [7]. Both variants have

30

———————— 1

: Register 82464 Bit | CPU SUN ULTRASparc Il

% ERELE // .. \‘\\\ ______ .‘E/Level-l-Cache

| .| I-Cache (16KByte) D-Cache (16KByte)| . |
| - F--% -----------5-- PRy ye————

—_— I o — J

y y

Level-2-Cache (512K-16MByte)

A

Main Memory

Figure A.3: Memory hierarchy of the SUN ULTRASparc I

8 times 24 64-bit registers which are organized in so-cal@tows to optimize argument passing on
subroutine calls without time-consuming copying of regjistto memory. The 1st level cache has a 16 KB
data (D-cache) and a 16 KB instruction cache (I-Cache). Tel@vel cache (E-cache) has a size of 512
KB up to 4 MB on UltraSPARC |, and 512 KB up to 16 MB on UltraSPARCThe main memory can be
as large as 2 TB (see figure A.3).

Another important component of the supporting logic isthr#, the Universal Port Architecture, which
connects several processors over a high-speed crossiteln-sw

The microprocessor contains two performance counterdd(FRCC1), which are able to count different
events. Each counter can count one of 12 different eventset@nts can be counted on both counters,
which sums up to a total of 22 different events [8]. Additityahere exists a elapsed cycle counter.

e Counter PICO:

— SuU0.0
Cyclecnt
Machine cycles.

- Su0.1

Instr_cnt
Instructions graduated.

- Su0.2
DispatchQIC_miss
Number of cycles waiting after a miss in the 1st level indinrccache (including handling of a
follow-on E-cache miss).

- Su03
DispatchQstoreBuf
Number of cycles a write buffer could not store new valuesi{(iestruction is a store instruc-
tion).
- Suo4
IC_ref
1st level instruction cache references.

— SuU05
DC_rd
1st level data cache read references.

— SU06
DC_wr
1st level data cache write references.

- SuQ.7
Load.use
Number of cycles instructions are waiting on a previous lopération.

31

- Su0s8
EC_ref
Number of 2nd level cache references.

- SuU09
EC_write_hit RDO
Number of hits on 2nd level cache read accesseseaad for ownershigJPA-transaction.

— SuU010
EC_snoopinv
Number of cache line invalidations due to a UPA-transastion

— SuU0.11
EC_rd_hit
Number of E-cache read hits caused by 1st level data caclse mis

e Counter PIC1 counts:

- SuUl0
Cyclecnt
Machine cycles.

- Sul1l
Instr_cnt
Instructions graduated.

- SuU12
DispatchQmispred
Number of cycles waiting with an empty instruction buffetesfa wrong branch prediction.

- SuU13
DispatchQFP_use
Number of cycles which waits the first instruction in a grogzéuse the result of a previous
floating-point operation is not available.

- SuU14
IC_hit
Number of 1st level instruction cache hits.

— SuU15
DC_rd_hit
Number of 1st level data cache read hits.

- SuU16
DC_wr_hit
Number of 1st level data cache write hits.

- SuUL7
LoaduseRAW
Number of cycles load operations spent in the instructigrelie while at the same time a
read-write-inconsistency exists because of a not-comglead operation.
- Su1ls8
EC_hit
Number of 2nd level cache hits.

- SuU19
EC.wb
Number of 2nd level cache misses causing a write-back aparat

- SuU110
EC_snoopchb
Number of UPA-transactions which caused a copy-back of d&red cache line.

- SuU1l11
EC.ic_hit
Number of 2nd level cache read hits caused by a 1st levelict&in cache miss.

The performance registers are controlled by the Perform&uantrol Register (PCR) which can be
accessed only in privileged mode. Accesses to the PICtezgisay be either in user or privileged mode,
dependent on a bit in the PCR which can be changed in privdlegele. Event counting can be done either

32

e e 1
| CPU IBM PowerPC 604e

I
| Register 32*32 Bit
i

| .| 1-cache (32KByte) D-cache (32KByte)| . |
Berres wew veree R e —F

——— A g ——— i

A A y

Level-2-Cache (optional)

A

Main Memory

Figure A.4: Memory hierarchy of the IBM PowerPC 604e

for the user mode, system mode, or both. Overflow of the cosiigesilently. For accurate timing, event
counting should be done as taking the difference betweemdaas of a performance counter.

The actual version 2.6 of the Solaris operating system hasupport for the performance counters in
form of a programming interface. A software library to accése performance counters in a convenient
way is perfmon from Richard Enbody. A drawback of this paekég that neither process migration to
another CPU on a multiprocessor machine nor a context swdt@nother process on the same CPU is
handled.

A.4 IBM PowerPC 604e

The PowerPC 604e is a 32-bit microprocessor with 32 32-t8ger and 32 32-bit floating point registers.
The 1st level cache consists of a 32 KB data cache (D-cacliea @2 KB instruction cache (I-cache).
Different to other microprocessors, the PowerPC 604e hasnthip logic to control a 2nd level chip but
signals are available for additional cache logic [9]. OnifgghA.4, the additional logic has been included as
most of the non-embedded uses of the PowerPC 604e use a 2hcdelie. Additionally, there exist perfor-
mance counter events concerning the 2nd level cache. Aelbtiéscription of the PowerPC architecture
can be found in [10].
The pipelines of the PowerPC 604e consist of:

e a 5-stage branch unit (BPU/CRU)

e a 6-stage integer unit (SCIU1/SCIU2/MCIU)
e a 7-stage load/store unit (LSU)

e an 8-stage floating-point unit (FPU)
Sub-unit names are:

e BPU branch prediction unit

e CRUcontrol register unit

e SClUxsingle-cycle integer unit

e MCIU multiple-cycle integer unit

The PowerPC 604e has 4 performance counters (PMC1/PMCZ23HNUGC4) capable of counting 116
different events [11].

e Counter PMC1 counts:

33

- 1B0O
000 0000 Nothing. Register counter holds current value.
The counter keeps its current value.

- 1B01
000 0001 Processor cycles Obl. Count every cycle.
Number of cycles the processor executes "0b1”.

— 1B0-2
000 0010 Number of instructions completed every cycle.
Number of instructions completed each cycle.

- 1B0_3
000 0011 RTCSELECT bit transition. 0 =47, 1 =51, 2 = 55, 3 = 68glfrom the time base
lower register).
Bit-transitions on the RTCSELECT-Pin.

- 1B0 4
000 0100 Number of instructions dispatched.
Number of instructions arrived at the 3rd stage of the irtstom pipeline.

- IB05
000 0101 Instruction cache misses.
Number of 1st level instruction cache misses.

— IBO_6
000 0110 Data TLB misses (in order).
Number of misses in the translation look-aside buffer faada

- 1B0_7
000 0111 Branch misprediction correction from executeetag
Number of correctable branch misses in the execution pHake dth stage of the pipeline.

- 1B0-8
000 1000 Number of reservations requested. The Iwarx iotitnu is ready for execution in the
LSU.
Number of reservations for an atomic load instruction inltSéJ.

— 1B0_9-1B0_10
000 1001 Number of data cache load misses exceeding théthdeslue with lateral L2 cache
intervention.
000 1010 Number of data cache store misses exceeding trshdhdevalue with lateral L2
cache intervention.
Number of 1st level data cache misses which exceeded a lahieand additionally, LANT
signal was active.

- 1B0-11
000 1011 Number of mtspr instructions dispatched.
Number ofmtsprinstructions arrived at the 3rd stage of the pipeline.

— 1B0_12-IB0.15
000 1100 Number of sync instructions completed.
000 1101 Number of eieio instructions completed.
000 1110 Number of integer instructions completed everledyo loads or stores).
000 1111 Number of floating-point instructions completestgeycle (no loads or stores).
Number of completed mtspr/sync/eieio/integer/floatirgapinstructions.

— 1B0-16-1B0_18
001 0000 LSU produced result.
001 0001 SCIU1 produced result for an add, subtract, compatate, shift, or logical instruc-
tion.
001 0010 FPU produced result.
Number of results generated at the LSU/SCIU1/FPU units.

— 1B0_19-1B0.21
001 0011 Number of instructions dispatched to the LSU.
001 0100 Number of instructions dispatched to the SCIU1.
001 0101 Number of instructions dispatched to the FPU.
Number of instructions issued from the 3rd stage of the ums$ibn pipeline to the
LSU/SCIU1/FPU unit.

34

- 1B0_22
001 0110 Valid snoop requests received from outside the.6Dées not distinguish hits or
misses.
Number of snoop requests.

— 1B0_23-1B0.24
001 0111 Number of data cache load misses exceeding thétidegalue without lateral L2
intervention.
001 1000 Number of data cache store misses exceeding ttshdtidevalue without lateral L2
intervention.
Number of 1st level data cache misses which exceeded a lahieand additionally, LANT
signal was not active.
— 1B0_25-1B0_27
001 1001 Number of cycles the branch unit is idle.
001 1010 Number of cycles MCIUOQ is idle.
001 1011 Number of cycles the LSU is idle. No new instructim@gxecuting; however, active
loads or stores may be in the queues.
Number of cycles the BPU/MCIUOQ/LSU units were idle.
— 1B0-28
001 1100 Number of times the IIRT is asserted (regardless of TA state).
Number of times L2NT signal was asserted.
— 1B0-29
001 1101 Number of unaligned loads.
Number of unaligned loads.
— 1B0_30
001 1110 Number of entries in the load queue each cycle (nuewiof five). Although the load
queue has four entries, a load miss latch may hold a load ngibr data from memory.
Number of load queue entries per cycle (max. of 5).
- 1B031
001 1111 Number of instruction breakpoint hits.
Number of times instructions hit a breakpoint.

e Counter PMC2 counts:

- 1B1.0
00 0000 Nothing. Register counter holds current value.
The counter keeps its current value.
—1B11
00 0001 Processor cycles 0b1. Count every cycle.
Number of cycles the processor executes "0b1”.
- 1B12
00 0010 Number of instructions completed every cycle.
Number of instructions completed every cycle.
- 1B13
00 0011 RTCSELECT bit transition. 0 = 47, 1 =51, 2 = 55, 3 = 63tgdrom the time base
lower register).
Number of bit transitions on the RTCSELECT-pin.
—1B14
00 0100 Number of instructions dispatched.
Number of instructions dispatched to the 3rd stage of thetioBon pipeline.
—I1B1.5
00 0101 Number of cycles a load miss takes.
Number of load miss cycles.
- IB16
00 0110 Data cache misses (in order).
Number of 1st level data cache misses.
—1B1.7
00 0111 Number of instruction TLB misses.
Number of misses in the translation look-aside buffer fatriuctions.

35

- 1B1.8
00 1000 Number of branches completed. Indicates the nunfldenaach instructions being
completed every cycle (00 = none, 10 = one, 11 = two, 01 is agdl value).
Number of completed branch instructions every cycle (méf).0

- 1B1.9
00 1001 Number of reservations successfully obtained xstwperation completed success-
fully).
Number of successfully completed atomic store instrustion
- 1B1.10
00 1010 Number of mfspr instructions dispatched (in order).
Number ofmfsprinstructions arrived at the 3rd stage of the instructiqgrepne.

- 1B111
00 1011 Number of icbi instructions. It may not hit in the cach
Number oficbi-instructions without necessary hitting the cache.

- IB1.12
00 1100 Number of pipeline "flushing” instructions (sc, isymtspr (XER), mcrxt, floating-
point operation with divide by O or invalid operand and MSE[; FE1] = 00, branch with
MSR[BE] = 1, load string indexed with XER =0, and SO bit gegtset)
Number of instructions flushing the pipeline.

— IB1.13-IB1.15
00 1101 BPU produced result.
00 1110 SCIUO produced result (of an add, subtract, compatate, shift, or logical instruc-
tion).
001111 MCIU produced result (of a multiply/divide or SPRiinstion).
Number of results produced by the BPU/SCIUO/MCIU-units.

- 1B1.16-1B1.17
01 0000 Number of instructions dispatched to the branch unit
01 0001 Number of instructions dispatched to the SCIUO.
Number of instructions issued from the 3rd stage of the uresion pipeline to the BPU/SCIUO-
units.

- 1B1.18
01 0010 Number of loads completed. These include all cackeatipns and tlbie, tlbsync,
sync, eieio and icbi instructions.
Number of completed load instructions.

- 1B1.19
01 0011 Number of instructions dispatched to the MCIU.
Number of instructions issued from the 3rd stage of the liesion pipeline to the MCIU-unit.

- 1B120
01 0100 Number of snoop hits occurred.
Number of snoop hits.

- 1B121
01 0101 Number of cycles during which the MSR[EE] bit is aielar
Number of cycles during which the MSR[EE] bit is cleared.

— IB1.22-IB1.24
01 0110 Number of cycles the MCIU is idle.
01 0111 Number of cycles SCIU1 is idle.
01 1000 Number of cycles the FPU is idle.
Number of cycles the SCIU1/MCIU/FPU-unit is idle.

- 1B1.25
01 1001 Number of cycles the IRIT signal is active (regardless of TA state).
Number of cycles the L2ZNT-pin had an active level.

— 1B1.26-1B1.30
01 1010 Number of times four instructions were dispatched.
01 1011 Number of times three instructions were dispatched.
01 1100 Number of times two instructions were dispatched.
01 1101 Number of times one instruction was dispatched.
Number of times 1/2/3/4 instructions arrived at the 3rd stafithe instruction pipeline.

36

- 1B131
01 1110 Number of unaligned stores.
Number of unaligned stores.

- 1B1.32
01 1111 Number of entries in the store queue each cycle (naxiofi six).
Number of entries in the store-queue every cycle (max. of 6).

e Counter PMC3 counts:

- 1B2.0
0 0000 Nothing. Register counter holds current value.
The counter keeps its current value.

—1B2_1
0 0001 Processor cycles Ob1. Count every cycle.
Number of cycles the processor executes "0b1”.

- 1B22
0 0010 Number of instructions completed every cycle.
Number of instructions completed every cycle.

- 1B2_3
0 0011 RTCSELECT bit transition. 0 = 47, 1 =51, 2 =55, 3 = 63 ¢biitom the time base
lower register).
Number of bit-transitions on the RTCSELECT-pin.

-1B24
0 0100 Number of instructions dispatched.
Number of instructions arrived at the 3rd stage of the irtstom pipeline.

- IB2.5-1B2.7
0 0101 Number of cycles the LSU stalls due to BIU or cache IZmynts cycles between when
a load or store request is made and a response was expectecx&mple, when a store is
retried, there are four cycles before the same instructigorésented to the cache again. Cycles
in between are not counted.
0 0110 Number of cycles the LSU stalls due to a full store queue
0 0111 Number of cycles the LSU stalls due to operands noliedain the reservation station.
Number of cycles the LSU-unit was blocked either because 8é-unit was busy or the cache
was busy or the store queue was full or an operand was noabiail

- 1B28
0 1000 Number of instructions written into the load queuesdiigned loads are split into two
transactions with the first part always written into the logieue. If both parts are cache hits,
data is returned to the rename registers and the first partishiéd from the load queue. To count
the instructions that enter the load queue to stay, the figisat load hits must be subtracted.
Number of instructions in the load queue.

- 1B29
0 1001 Number of cycles that completion stalls for a stor&riresion.
Number of cycles that completion stalls for a store instaurct

- 1B2_10
0 1010 Number of cycles that completion stalls for an unfedshstruction.
Number of cycles that completion stalls for an unfinishedrutdion.

-1B211
0 1011 Number of system calls.
Number of system calls.

- 1B2_12
0 1100 Number of cycles the BPU stalled as branch waits farperand.
Number of cycles the BPU waits for an operand.

- 1B2.13
0 1101 Number of fetch corrections made at the dispatch stageritized behind the execute
stage.
Number of fetch corrections made at the 3rd stage of theliatstn pipeline.

37

- 1B2_.14
0 1110 Number of cycles the dispatch stalls waiting for ingions.
Number of cycles the 1st stage of the instruction pipelingesidor instructions.

- 1B2_15
01111 Number of cycles the dispatch stalls due to unavéifabf reorder buffer (ROB) entry.
No ROB entry was available for the first non-dispatched ingion.
Number of cycles the 1st stage of the instruction pipelingeglebecause the reorder buffer was
not available.

—1B2.16
1 0000 Number of cycles the dispatch unit stalls due to no FFPRme buffer available. First
non-dispatched instruction required a floating-point er buffer and none was available.
Number of cycles the 1st stage of the instruction pipelingatlébecause the FPR-rename buffer
was not available.

- 1B2.17-1B2.18
1 0001 Number of instruction table search operations.
1 0010 Number of data table search operations. Completiado@sult from a page fault or a
PTE match.
Number of search operations in the data/instruction table.

- 1B2.19-1B2.20
1 0011 Number of cycles the FPU stalled.
1 0100 Number of cycles the SCIU1 stalled.
Number of cycles the FPU-/SCIU1-unit was blocked.

- 1B2.21
1 0101 Number of times the BIU forwards non-critical datanirthe line-fill buffer.
Number of transfers of uncritical data from the line-fill flrifdone by the bus-interface unit and
initiated by the BIU. to the

- 1B222
1 0110 Number of data bus transactions completed with pigjione deep with no additional
bus transactions queued behind it.
Number of completed data bus transactions without additibus transactions queued.

- 1B223
1 0111 Number of data bus transactions completed with twa Bas transactions queued
behind.
Number of completed data bus transactions with two additibas transactions queued.

- 1B224
1 1000 Counts pairs of back-to-back burst reads streameuabwita dead cycle between them
in data streaming mode
Number of pairedack-to-back-burstead accesses without intervening idle cycles.

- 1B2.25
1 1001 Counts notRT' RY d processor kill transactions caused by a write-hit-on-sfthcon-
dition
Number of invalidated cache lines caused by a write hit toaaeghline.

- 1B2.26
1 1010 This event counts nohRT RY d write-with-kill address operations that originate from
the three castout buffers. These include high-priorityteviith-kill transactions caused by a
snoop hit on modified data in one of the BIU’s three copy-batdfebs. When the cache block
on a data cache miss is modified, it is queued in one of threg-bapk buffers. The miss is
serviced before the copy-back buffer is written back to nrmg@® a write-with-kill transaction.
Number ofWrite-with-kill-address operations.

- 1B227
1 1011 Number of cycles when exactly two castout buffersarepied.
Number of cycles when exactly two castout buffers are oamipCastoutbuffer are used to
write 1st level data cache lines to memory.

- 1B228
1 1100 Number of data cache accesses retried due to occugstaut buffers.
Number of retried 1st ;level data cache accesses due to iectcegstout buffer.

38

- 1B2_29
1 1101 Number of read transactions from load misses broutdbtthe cache in a shared state.
Number of read transactions which (after a miss) brought ée¢sl cache line into the cache
with a status oshared

— 1B230
11110 CRU Indicates that a CR logical instruction is beingsfied.
Number of logical instructions completed in the CRU.

e Counter PMC4 counts:

- 1B3.0
0 0000 Nothing. Register counter holds current value.
The counter keeps its current value.

- 1B31
0 0001 Processor cycles Ob1. Count every cycle.
Number of cycles the processor executes "0b1”.

- 1B32
0 0010 Number of instructions completed every cycle.
Number of instructions every cycle.

— 1B34
0 0011 RTCSELECT bit transition. 0 = 47, 1 =51, 2 =55, 3 = 63 ¢hfitom the time base
lower register).
Number of bit-transitions on the RTCSELECT-pin.

- 1B35
0 0100 Number of instructions dispatched.
Number of instructions arrived at the 3rd stage of the irtstom pipeline.

— IB3_6-I1B3.8
0 0101 Number of cycles the LSU stalls due to busy MMU.
0 0110 Number of cycles the LSU stalls due to the load quelie ful
00111 Number of cycles the LSU stalls due to address cailisio
Number of cycles the LSU stalled because of a busy MMU, fablqueue, or address collision.

- 1B39
0 1000 Number of misaligned loads that are cache hits for HweHfirst and second accesses.
Number of misaligned loads that are cache hits for both tkedird second accesses.

- 1B3.10
0 1001 Number of instructions written into the store queue.
Number of instructions written into the store queue.

- 1B3_11
0 1010 Number of cycles that completion stalls for a loadrirton.
Number of cycles the completion of an instructions stalledause of a load instruction.

- 1B3.12
0 1011 Number of hits in the BTAC. Warning-if decode buffarsiot accept new instructions,
the processor re-fetches the same address multiple times.
Number of hits in theBranch Target Address Cache

—1B3.13
0 1100 Number of times the four basic blocks in the complétigfer from which instructions
can be retired were used
Number of times the four basic blocks in the completion bufifem which instructions can be
retired were used.

- 1B3.14
0 1101 Number of fetch corrections made at decode stage.
Number of corrections made between the 1st and 2nd stage ofdtruction pipeline.

— 1B3.15-1B3.18
0 1110 Number of cycles the dispatch unit stalls due to noawatlable. First non-dispatched
instruction requires an execution unit that is either futlaaprevious instruction is being dis-
patched to that unit.
0 1111 Number of cycles the dispatch unit stalls due to utelility of GPR rename buffer.

39

First non-dispatched instruction requires a GPR reordeffbuand none are available.

1 0000 Number of cycles the dispatch unit stalls due to no @&me buffer available. First
non-dispatched instruction requires a CR rename bufferraonk is available.

1 0001 Number of cycles the dispatch unit stalls due to CTRiteRRock. First non-dispatched
instruction could not dispatch due to CTR/LR/mtcrf inteko

Number of cycles spent at the 3rd stage of the instructioaliip waiting for any of the condi-
tions:

x in the 4th stage of the pipeline (MCIU/SCIU0/SCIU1..) wasumit available
x no GPR-Rename-Buffer was available

x no CR-Rename-Buffer was available

x the Counter- or Link-Register was locked

— 1B3.19-1B3.20
1 0010 Number of cycles spent doing instruction table seapghrations.
1 0011 Number of cycles spent doing data table search ojpersti
Number of cycles spent searching in the data/instructibleta

— 1B321-IB3.22
1 0100 Number of cycles SCIUOQ was stalled.
1 0101 Number of cycles MCIU was stalled.
Number of cycles the MCIU/SCIUO was stalled.

- 1B323
1 0110 Number of bus cycles after an internal bus requesbwith qualified bus grant.
Number of bus-cycles after an internal bus request withautadified bus grant.

— 1B3.24
10111 Number of data bus transactions completed with oreelzlat transaction queued behind
Number of completed data-bus transactions with one dat&réusaction queued behind.

- 1B325
1 1000 Number of write data transactions that have been exedibefore a previous read data
transaction using the DBWO feature
Number of write data transactions that have been reordefedéda previous read data transac-
tion.

— 1B3.26
11001 Number oA RT' RY d processor address bus transactions.
Number of address bus transactions caused by a signal chattgeA RT' RY d-pin.

— 1B3_27
1 1010 Number of high-priority snoop pushes. Snoop traisast except for write-with-kill,
that hit modified data in the data cache cause a high-priasitige (snoop push) of that modified
cache block to memory. This operation has a transaction tfperite-with-kill. This event
counts the number of noART RY d processor write-with-kill transactions that were caused
by a snoop hit on modified data in the data cache. It does nattdagh-priority write-with-kill
transactions caused by snoop hits on modified data in oneedlld’s three copy-back buffers.
Number of high-priority snoop pushes.

— I1B3.28-IB3.29
11011 Number of cycles for which exactly one castout bigfeccupied
1 1100 Number of cycles for which exactly three castout tsuffiee occupied
Number of cycles for which exactly one/three castout buffare occupied.

— 1B3.30
1 1101 Number of read transactions from load misses brougbthe cache in an exclusive (E)
state
Number of read transactions caused by a load miss and whichrgoght into the cache in
exclusive state.

- 1B331
1 1110 Number of un-dispatched instructions beyond branch
Number of undispatched instructions beyond branch.

IBM has the PMapi library which supports access to the paréorce counters on different PowerPC
and POWER chips. PMapi supports the distinction betweeersignr mode, problem (user) mode, or both.
On AIX versions 4.2 and higher, performance counter statgaved and restored on context switches.

40

A.5 Intel Pentium Family

A.5.1 Intel Pentium

The Intel Pentium is a 32-bit CISC microprocessor. The Remtias 2 performance counters with most of
the events countable by either of the counters and only seer@®countable only by a specific counter
(as noted). With the introduction of the MMX-extensionsnfe@m’s with MMX have defined more events
as statedNIMX-extensions We have left out all events which are specific to the MMX fiimigal unit as
compilers normally do not generate code for this unit.

The events countable by both counters are:

e PEOPEI10
00H DATAREAD
Number of memory data read operations.

e PEOPE11
01H DATAWRITE
Number of memory data write operations.

e PEOPE12
02H DATATLB_MISS
Number of misses to the data cache translation look-asifferbu

e PEOPE13
03H DATAREADMISS
Number of memory read accesses that miss the internal dette.ca

e PEOPE14
04H DATAWRITEMISS
Number of memory write accesses that miss the internal detaec

e PEOPE15
05H WRITEHIT_TO_M-_.OR E-STATELINES
Number of write hits to exclusive or modified lines in the dedahe.

e PEOPE16
06H DATACACHELINESWRITTENBACK
Number of dirty lines that are written back.

e PEOPE17
07H EXTERNALSNOOPS
Number of accepted external snoops.

e PEOPEI18
08H EXTERNALDATA.CACHE SNOOPRHITS
Number of external snoops to the data cache.

e PEOPE19
09H MEMORY ACCESSES IN BOTH PIPES
Number of data memory reads or writes that are paired in hipéspf the pipeline.

e PEOPE110
OAH BANK CONFLICTS
Number of actual bank conflicts.

e PEOPE111
O0BH MISALIGNED DATA MEMORY OR I/0 REFERENCES
Number of memory or I/O reads or writes that are misaligned.

e PEOPE112
OCH CODE READ
Number of instruction reads.

e PEOPE113
ODH CODE TLB MISS
Number of instruction reads that miss the code TLB.

41

PEOPE114
OEH CODE CACHE MISS
Number of instruction reads that miss the internal code&ach

PEOPE115
OFH ANY SEGMENT REGISTER LOADED
Number of writes into any segment register in real or prewchode.

PEOPE116

12H Branches

Number of taken or not taken branches, including conditibnanches, jumps, calls, returns, soft-
ware interrupts, and interrupt returns.

PEOPE117
13H BTBHITS
Number of BTB hits that occur.

PEOPE118
14H TAKENBRANCHORBTB.HIT
Number of taken branches or BTB hits that occur.

PEOPE119
15H PIPELINE FLUSHES
Number of pipeline flushes that occur.

PEOPE120
16H INSTRUCTIONEXECUTED
Number of instructions executed (up to two per clock).

PEOPE121

17H INSTRUCTIONEXECUTEDVPIPE

Number of instructions executed in thepipe. It indicated the number of instructions that were
paired.

PEOPE122
18H BUSCYCLEDURATION
Number of clocks while a bus cycle is in progress. This evesasares bus use.

PEOPE123
19H WRITEBUFFERFULL_STALLDURATION
Number of clocks while the pipeline is stalled due to full terbuffers.

PEOPE124
1AH WAITINGFORDATAMEMORYREAD STALLDURATION
Number of clocks while the pipeline is stalled while waitifog data memory reads.

PEOPE125
1BH STALLON.WRITETO_AN_LE-_.ORM-STATELINE
Number of stalls on writes to E- or M-state lines..

PEOPE126

1CH LOCKEDBUSCYCLE

Number of locked bus cycles that occur as the result of the K@fefix or LOCK instruction, page-
table updates, and descriptor table updates.

PEOPE127
1DH I/O_READORWRITECYCLE
Number of bus cycles directed to 1/0 space.

PEOPE128
1EH NONCACHEABLBMEMORYREADS
Number of non-cacheable instruction or data memory readyxles.

PEOPE129
1FH PIPELINEAGI_STALLS
Number of address generation interlock (AGI) stalls.

42

PEOPE130

22H FLOPS

Number of floating-point operations that occur. Transcetaénstructions consist of multiple adds
and multiplies and will signal this event multiple times.structions generating the divide-by-zero,
negative square root, special operand, or stack exceptitingot be counted. Instructions generat-
ing all other floating-point exceptions will be counted. Tiheeger multiply instructions and other
instructions which use the FPU will be counted.

PEOPE131
23H BREAKPOINTIMATCH ON.DRO.REGISTER
Number of matches on register DRO breakpoint.

PEOPE132
24H BREAKPOINIMATCH.ON.DR1 REGISTER
Number of matches on register DR1 breakpoint.

PEOPE133
25H BREAKPOINIMATCH ON_.DR2REGISTER
Number of matches on register DR2 breakpoint.

PEOPE134
26H BREAKPOINIMATCH ON.DR3 REGISTER
Number of matches on register DR3 breakpoint.

PEOPE135
27H HARDWARHNTERRUPTS
Number of taken INTR and NMI interrupts.

PEOPE136
28H DATAREADORWRITE
Number of memory data reads and/or writes.

PEOPE137
29H DATAREADMISSORWRITEMISS
Number of memory read and/or write accesses that miss theadtdata cache.

Counter-specific events:

— Specific to counter 0:

+ PEQO
2AH BUSOWNERSHIELATENCY
The time from LRM bus ownership request to bus ownershiptgthfVIMX extensioh
x PEQ1
2CH CACHEM-STATELINE_SHARING
Number of times a processor identified a hit to a modified line th a memory access in
the other processoMMX extension
x PEQ2
2DH EMMSINSTRUCTIONEXECUTED
Number of EMMS instructions executeBlX extensioh
x PEQ3
2EH BUSUTILIZATION.DUE_TO_.PROCESSORCTIVITY
Number of clocks the bus is busy due to the processor’s ovwitgdtMMX extensioh
x+ PEQ4
30H NUMBEROF_CYCLESNOT.IN_HALT_STATE
Number of cycles the processor is not idle due to HLT instomcMMX extensioh
+ PEQ5
32H FLOATINGPOINT_.STALLSDURATION
Number of clocks while pipe is stalled due to a floating-pfieéze MMX extensioh
+ PEQ6
33H DLSTARVATIOMND_FIFO_IS EMPTY
Number of times D1 stage cannot issue ANY instructions sthed=IFO buffer is empty
(MMX extensioh

43

x PEQ7
35H PIPELINEFLUSHESDUE_TO.WRONGBRANCHPREDICTIONS
Number of pipeline flushes due to wrong branch predictiosslued in either the E-stage
or the WB-stageNIMX extensioh
x PEQS8
37H MISPREDICTEDOR UNPREDICTEDRETURNS
Number of returns predicted incorrectly or not predictedlBfMMX extension
x PEQ9
39H RETURNS
Number of returns executetMMX extensioh
+* PEQ10
3AH BTBFALSEENTRIES
Number of false entries in the Branch Target BuffdiMX extensioh

— Specific to counter 1:

* PELO
2AH BUSOWNERSHIPTRANSFERS
Number of bus ownership transfeMN§X extensioh
x PEL1
2CH CACHELINE_SHARING
Number of shared data lines in the L1 cachMX extensioh
x PEL12
2EH WRITESTO_NONCACHEABLEMEMORY
Number of write accesses to non-cacheable memdiX extensioh
* PEL3
30H DATACACHETLB.MISSSTALLDURATION
Number of clocks the pipeline is stalled due to a data cadreskation look-aside buffer
miss MMX extension
x PE14
31H TAKENBRANCHES
Number of branches takeMMX extensioh
x PEL15
33H D1.STARVATIONAND_ONLY ONE.INSTRUCTIONIN_FIFO
Number of times the D1 stage issues just a single instrustiose the FIFO buffer had just
one instruction readyMMX extensioh
x PEL6
35H PIPELINEFLUSHESDUE_TO.WRONGBRANCHPREDICTIONSRESOLVEDIN_WB-
STAGE
Number of pipeline flushes due to wrong branch predictiosslued in the WB-stage
(MMX extensioh
x PEL7
37H PREDICTEDRETURNS
Number of predicted return$AMX extensioh
x PELS8
3AH BTBMISSPREDICTIONON_NOT_-TAKEN.BRANCH
Number of times the BTB predicted a not-taken branch as tWémX extensioh

By default, the instructionRDMSRandWRMSRo access the performance counter registers are kernel-
mode instructions (ring 0).

In [12] are software tools concerning the performance censmin Pentium-like processors described.
On Linux systems, libpperf is available to access the peréorce counters. It was written by M. Patrick
Goda and Michael S. Warren from Los Alamos National Labayattbpperf itself is based on the msr
device implemented by Stephan Meyer for Linux 2.0.x and.1.

A.5.2 Intel PentiumPro/Pentium IlI/Pentium Il

To keep binary compatibility with the predecessor procesgbe PentiumPro, Pentium Il, and Pentium Ill
have 8 registers, 32 bit width each. First level cache is 8 &Brfstructions (ICache) and 8 KB for data
(DCache) on PentiumPro, and 16 KB for both caches on Pentiamd Pentium Ill. As the PentiumPro,
Pentium I, and Pentium Il are CISC-microprocessors (clemimstruction set computer), every instruction

44

I .

i Register (8 * 32 Bit) :/CPU Intel Pentium Pro
! | Level-1-Cache
[EEEERE T Y RCEREEE .

Main:Memaory

Figure A.5: Memory hierarchy of the Intel PentiumPro

is divided internally into micro-operations (UOP’s) of ftkéength. Dependent on the complexity of the
instruction, the instruction is divided into 1-4 UOP’s.

The PentiumPro, Pentium Il, and Pentium IIl has 2 perforreazaunters capable of counting a total
of 77 different events (at most two at a time), some of thenhm a&it additional unit mask as parameter to
further subdivide the event type. Some of the events aretablaonly by a specific counter. The Pentium
[l has 4 additional events concerning Streaming SIMD Estens. The events countable by both counters
are:

e PPOPP10
43H DATAMEM_REFS
All memory references, both cacheable and non-cacheable.

e PPOPPI11L
45H DCU_LINES.IN
Number of allocated lines in the 1st level data cache.

e PPOPP12
46H DCUM_LINESIN
Number of allocated lines in the 1st level data cache whisie lfae statusnodified

e PPOPP13
47H DCUM_LINESOUT
Number of evicted lines in the 1st level data cache which weaieked asnodified

e PPOPP14
48H DCU.MISSOUTSTANDING
Weighted number of cycles while a 1st level data cache m@stiganding. An access that also misses
the L2 is short-changed by 2 cycles. (i.e. if counts N cydbsuld be N+2 cycles.) Subsequent loads
to the same cache line will not result in any additional ceu@pbunt value not precise, but still useful.

e PPOPPI5
80H IFU_IFETCH
Number of 1st level instruction cache loads.

e PPOPP16
81H IFU_IFETCH.MISS
Number of 1st level instruction cache misses.

e PPOPPI17
85H ITLB.MISS
Number of instruction transfer look-aside buffer misses.

45

PPOPP18
86H IFU.MEM_STALL
Number of cycles in which the instruction fetch pipe stagetédled.

PPOPP19
87H ILD_STALL
Number of cycles the instruction length decoder is stalled.

PPOPP110
28H L2IFETCH
Number of instruction fetches from the 2nd level cache.

PPOPP111
29H L2LD
Number of data loads from the 2nd level cache.

PPOPP112
2AH L2ST
Number of data stores to the 2nd level cache.

PPOPP113
24H L2 LINESIN
Number of lines allocated in the 2nd level cache.

PPOPP114
26H L2 LINESOUT
Number of cache lines removed from the 2nd level cache.

PPOPP115
25H L2M_LINESINM
Number of allocated cache lines in the 2nd level cache whisie bheen modified.

PPOPP116
27H L2M_LINESOUTM
Number of modified cache lines in the 2nd level cache whicleliaen removed.

PPOPP117
2EH L2 RQSTNumber of requests to the 2nd level cache.

PPOPP118
21H L2 ADS
Number of address strobes at 2nd level cache address bus.

PPOPP119
22H L2DBUSBUSY
Number of cycles during which the data bus was busy.

PPOPP120

23H L2DBUSBUSYRD

Number of cycles during which the data bus was busy transtedata from 2nd level cache to the
processor.

PPOPP121
62H BUSDRDY_.CLOCKS
Number of cycles the DRDY-signal was active.

PPOPP122
63H BUSLOCK.CLOCKS
Number of processor clock cycles during which the LOCK-alge asserted.

PPOPP123

60H BUSREQOUTSTANDING

Number of outstanding bus requests which either resultrout i cacheable read request of 1st level
data cache lines or a to be completed bus operation.

46

PPOPP124
65H BUSTRANBRD
Number of burst read transactions.

PPOPP125
66H BUSTRANRFO
Number of read for ownership transactions.

PPOPP126
67H BUSTRANSWB
Number of write back transactions.

PPOPP127
68H BUSTRANIFETCH
Number of completed instruction fetch transactions.

PPOPP128
69H BUSTRANINVAL
Number of completed bus invalidate transactions.

PPOPP129
6AH BUSTRANPWR
Number of completed partial write transactions.

PPOPP130
6BH BUSTRANSP
Number of completed partial transactions.

PPOPP131
6CH BUSTRANSIO
Number of completed I/O transactions.

PPOPP132
6DH BUSTRANDEF
Number of completed deferred transactions.

PPOPP133
6EH BUSTRANBURST
Number of completed burst transactions.

PPOPP134
70H BUSTRANANY
Number of all completed transactions.

PPOPP135
6FH BUSTRANMEM
Number of completed memory transactions.

PPOPP136
64H BUSDATARCV
Number of bus clock cycles during which this processor igingog data.

PPOPP137
61H BUSBNRDRV
Number of bus clock cycles during which this processor igidg the BNR pin.

PPOPP138

7AH BUSHIT_DRV

Number of bus clock cycles during which this processor igidg the HIT pin including cycles due
to snoop stalls.

PPOPP139

7BH BUSHITM_DRV

Number of bus clock cycles during which this processor igidg the HITM pin including cycles
due to snoop stalls.

47

PPOPP140
7EH BUSSNOORSTALL
Number of clock cycles during which the bus is snoop stalled.

PPOPP141
O3H LD_BLOCKS
Number of store buffer locks.

PPOPP142
04H SBDRAINS
Number of cycles in which the store buffer blocks.

PPOPP143
05H MISALIGNMEM_REF
Number of misaligned data memory references.

PPOPP144
COH INSTRETIRED
Number of instructions retired.

PPOPP145
C2H UOPSRETIRED
Number of micro-operations retired.

PPOPP146
DOH INST.DECODER
Number of instructions decoded and translated to UOP’s.

PPOPP147
C8H HWINT_RX
Number of hardware interrupts received.

PPOPP148
C6H CYCLESIINT_MASKED
Number of processor cycles for which interrupts are dighble

PPOPP149
C7H CYCLESNT_-PENDIND.AND_MASKED
Number of ptrocessor cycles for which interrupts are disdlind interrupts are pending.

PPOPP150
C4H BRINST.RETIRED
Number of branch instructions retired.

PPOPP151
C5H BRMISSPREDRETIRED
Number of completed but mispredicted branches.

PPOPP152
C9H BRTAKEN.RETIRED
Number of completed taken branches.

PPOPP153
CAH BRMISSPRED.TAKENRET
Number of completed taken, but mispredicted branches.

PPOPP154
EOH BRINST.DECODED
Number of decoded branch instructions.

PPOPP155
E2H BTBMISSES
Number of branches that missed the BTB.

PPOPP156
E4H BRBOGUS
Number of bogus branches.

48

PPOPP157
E6H BACLEARS
Number of times BACLEAR-signal is asserted.

PPOPP158
A2H RESOURCESTALLS
Number of cycles during which there are resource relatdid sta

PPOPP159
D2H PARTIALRAT.STALLS
Number of cycles or events for partial stalls.

PPOPP160
06H SEGMENIREGLOADS
Number of segment register loads.

PPOPP161
79H CPUCLK_ UNHALTED
Number of cycles during which the processor is not halted.

PPOPP162
BOH MMXINSTREXEC
Number of MMX-instructions executed.

PPOPP163

B3H MMXINSTRTYPEEXEC

Number of MMX-instructions executed. The further parameigt mask specifies which category
should be counted.

PPOPP164
B1H MMXSATINSTREXEC
MMX saturated instructions executed.

PPOPP165
B2H MMXUOPSEXEC
Number of MMX uops executed.

PPOPP166
CCH FP.MMX_TRANS
Transitions from MMX instructions to FP instructions.

PPOPP167
CDH MMX_ASSIST
Number of MMX assists (EMMS instructions executed).

PPOPP168
CEH MMXINSTRRET
Number of MMX instructions retired.

PPOPP169
D4H SEGRENAMESTALLS
Segment register renaming stalls.

PPOPP170
D5H SEGREGRENAMES
Segment registers renamed.

PPOPP171
D6H RET.SEGRENAMES
Number of segement register rename events retired.

PPOPP172
D8H EMONSSEINST-RETIRED
Number of Streaming SIMD extensions retired.

49

e PPOPP173
D9H EMON.SSECOMP.INST.RET
Number of Streaming SIMD Extensions computation instangiretired.

e PPOPP174
07H EMONSSEPREDISPATCHED
Number of prefetch/weakly ordered instructios dispatdlieciusive speculative prefetches).

e PPOPP175
4BH EMONSSEPREMISS
Number of prefetch/weakly-ordered instructions that raitsaches.

e Counter-specific events:

— Specific to counter 0:

* PPQO

C1H FLOPS

Number of retired floating point instructions.
* PPQ1

10H FP.COMP_.OPSEXE

Number of floating point operations started (but which matyhave been all completed.)
* PPQ2

14H CYCLESDIV_BUSY

Number of cycles during which the divider is busy.

— Specific to counter 1:

x PP10

11H FPASSIST

Number of floating-point exception cases handled by mialeco
x PPL11

12H MUL

Number of multiplies (integer and floating-point).
x PP12

13H DIV

Number of divides (integer and floating-point).

All of the events can be counted on PentiumPro as well as otiuPeH and Pentium Ill. The Pentium
I and Pentium Il have additional events defined mainly favild-extensions [13].

The same remarks as stated above in the Pentium-sectioaroamg software environments apply to
the Pentium Pro, Pentium II, and Pentium Il as well.

50

