
Zentralinstitut für Angewandte Mathematik

Interner Bericht

Metacomputing in Gigabit Environments:
Networks, Tools, and Applications

Thomas Eickermann, Jörg Henrichs, Michael Resch*,
Robert Stoy*, Roland Völpel**

FZJ-ZAM-IB-9824

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35011915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Interner Bericht

Metacomputing in Gigabit Environments:
Networks, Tools, and Applications

Thomas Eickermann, Jörg Henrichs, Michael Resch*,
Robert Stoy*, Roland Völpel**

FZJ-ZAM-IB-9824

August 1998

(letzte Änderung: 14.08.98)

Parallel Computing 24 (1998), pp. 1847-1872

(*) Höchstleistungsrechenzentrum Stuttgart, Abteilung Parallel Computing, Allmandring 30,
D–70550 Stuttgart, Germany

(**) GMD – Forschungszentrum Informationstechnik Schloß Birlinghoven,
D–53754 Sankt Augustin, Germany

1

Metacomputing in Gigabit Environments: Networks, Tools, and
Applications

Th. Eickermanna∗ , J. Henrichsa, M. Reschb†, R. Stoyb, and R. Völpelc

aCentral Institute for Applied Mathematics, Forschungszentrum Jülich, D–52425 Jülich,
Germany

bHöchstleistungsrechenzentrum Stuttgart, Abteilung Parallel Computing, Allmandring
30, D–70550 Stuttgart, Germany

cGMD – Forschungszentrum Informationstechnik, Schloß Birlinghoven, D–53754 Sankt
Augustin, Germany

This article gives an overview over recent and current metacomputing activities of the
Computing Centers at the Forschungszentrum Jülich, the GMD Forschungszentrum In-
formationstechnik and the University of Stuttgart. It starts with a discussion of the
underlying network connections which are dedicated testbeds. A library that provides an
MPI–API for metacomputing applications is presented, as well as a library that supports
load–balancing and latency hiding. Finally, results from several applications ranging from
tightly coupled homogeneous to loosely coupled heterogeneous metacomputing are pre-
sented.

keywords: Gigabit Networking, Transatlantic Metacomputing, MPI, Load Balancing, Het-
erogeneous Metacomputing

1. INTRODUCTION

During the last years metacomputing has become a catchword among the supercomput-
ing community. Like other catchwords it is mostly unclear what it is supposed to mean.
However, commonly it describes some sort of linking together of computational resources
that compete with supercomputers or try to outperform them, at least theoretically. This
development is driven mainly by two ideas:
First, supercomputing resources are expensive and have a short life–cycle. They should

be shared between different research centers for economical reasons. Such resources not
only include supercomputers of different architectures (massively parallel and vector–
based), but also high quality visualization hardware like the CAVE [1] and other devices
that produce or consume data at high rates. An example for the latter are Magnetic
Resonance (MR) Tomographs. Combining these resources leads to a heterogeneous meta-

∗Email: Th.Eickermann@fz-juelich.de
†Email: Resch@hlrs.de

2

computer. Typical examples for such a scenario are the coupled simulation of groundwater
flow and transport of contaminants in the groundwater and the real-time visualization of
brain activity as described in this paper.
The second idea is that the coupling of supercomputers offers a way to increase the

peak performance of a machine. In principal two T3Es could be twice as powerful as one.
Typical applications for such a homogeneous metacomputing–scenario are Monte Carlo
codes as described in this paper.
Since the efforts that have to be made to couple such powerful machines is high and the

benefit is limited to very loosely coupled applications it is obvious that metacomputing
as described here is restricted to a limited number of special applications. However,
those applications can then benefit substantially from the accumulated performance of a
metacomputing environment.
Metacomputing currently faces a number of problems. Some of which are well under-

stood, others still have to be investigated thoroughly. Following a layered approach the
problems are threefold.
First, there is the network problem. Coupling of remote resources requires fast and

reliable networks. A resource like the internet is not designed to support the traffic
characteristics of a metacomputing application. A software relying on the internet may
therefore sometimes yield acceptable results and sometimes fail completely. One of the
prerequisites for metacomputing is therefore to be able to provide the application with
a stable and fast network connection that can be dedicated to a single application run.
Typically such quality of service can be provided by ATM. But, so far, ATM–networks
for research activities are not yet widely available.
Second, there is the communication problem. While each hardware vendor has adopted

the MPI standard and provides his users with fast and stable implementations, there is
no support for metacomputing. Since even the MPI–Forum has refused to put the topic
on its todo list it is up to the user to find ways how to overcome the problem. PVM
definitely is designed to overcome that problem. But then PVM is no longer the standard
in the field and most users have moved to MPI and do not want to change their code for
metacomputing experiments. A tool to bridge the gap between PVM and MPI would be
PVMPI [9]. But again this would require the user to substantially change his code. It
has therefore become necessary to set up tools that provide the user with a global MPI —
often called an interoperable MPI. One such tool, PACX–MPI, is described in this paper.
Third there is the application level at which one has to consider the limitations of meta-

computing. Latencies even on fast networks tend to go up to several milliseconds. Even
traveling at the speed of light a message traveling from Germany to the US will take about
25 milliseconds. And even though bandwidths are constantly increasing it is unlikely that
external bandwidths will ever be able to compete with the internal bandwidth of a highly
integrated MPP. Applications have therefore to take into consideration a substantially
higher latency for communication between machines. And in addition they will have to
deal with the problem of bandwidths that vary by orders of magnitude between internal
and external communication. An approach to overcome this problem is latency hiding
by overlapping communication with calculation. Since it is often a non–trivial task to
incorporate such methods in an application, supporting libraries would be useful. Such a
library is described in the load balancing section of this paper.

3

Besides these technical problems there is a number of organizational ones. Running
metacomputing applications requires a synchronization the computing resources of several
computing centers. Furthermore, the input and output data have to be distributed and
collected. This is not a real problem as long as metacomputing is performed on an
experimental basis. But in a production environment a secure and consistent access to
distributed computing resources and data will be essential too. Research projects that
address these topics include UNICORE [2] and HPCM [3].
In the following, our current activities and results in the above mentioned aspects of

metacomputing: networking, tools and applications will be discussed.

2. NETWORKS

A key factor for the success of metacomputing activities are communication networks
that provide high–bandwidth and low–latency connections between the components of
the metacomputer. Generally, the performance available over wide area networks is low
compared to the communication within a parallel computer.
In Germany, the network that connects research, science and educational institutions

with each other and the rest of the internet is operated by the DFN–Verein, an association
of these institutions founded in 1984. Since 1996 this network is based on ATM–technology
and allows for access capacities up to 155 Mbit/s. Plans exist to extend the bandwidth
into the Gbit/s range, on a national basis, in the near future. To prepare this transition,
two testbeds have been set up in the western and southern parts of Germany. They will
serve to evaluate new network technology as well as to gain experience with applications
requiring bandwidths beyond the currently available 155 Mbit/s. In the area of scientific
computation, such applications can e.g. be found in multimedia, distributed access to huge
amounts of data and of course in metacomputing, which is the subject of this article.
Besides providing Gigabit networks on a national scale, there is also a requirement to

interconnect supercomputers across national and continental borders. Currently, speeds
in the range of several Mbit/s are possible. The German National Research Network
B-WiN provided by the DFN connects the to US with a bandwitdth of 2*45 Mbit/s.
This bandwidth is shared by all research institutes within the DFN community. The long
term performance requirements of a metacomputer, especially regarding packet losses
and delay, can currently not be met by this standard Internet path. Therefore, a separate
ATM-Link between the Rechenzentrum Universität Stuttgart (RUS) and the vBNS, the
network that connects the US national Super Computing Centers, has been established.

2.1. Gigabit Testbed West
The first of the two German testbeds started in August 1997. It is a joint project of

the Forschungszentrum Jülich and the GMD–Forschungszentrum Informationstechnik in
St. Augustin close to Bonn. In the beginning the two locations — which are approxi-
mately 100 km apart — are connected by an OC–12 ATM–link (622 Mbit/s) based upon
Synchronous Digital Hierarchy (SDH/STM4) technology. The connection is provided by
o.tel.o Service GmbH and uses the optical fiber infrastructure inside the power lines of
the German power supplier RWE AG. Fore Systems ATM switches (ASX–1000) link the
OC–12 line to the local ATM networks of the research centers. The link will be upgraded
to OC–24 (1.2 Gbit/s) and OC-48 (2.4 Gbit/s) as soon as the next generation of switches

4

is available. This is expected for mid 1998.
For the purpose of metacomputing the CRAY supercomputer complex in Jülich, con-

sisting of two T3E massively parallel computers and a T90 vector–computer, is connected
to the IBM SP2 parallel computer in St. Augustin via the OC–12 line. Whereas network-
ing components with gigabit capabilities are already available or will be available within
the next few months, connecting the CRAY and IBM supercomputers to such a network
imposes more problems.
The most convenient and simple solution — single ATM interfaces supporting OC–12

or more — will not be available before late 1998, if at all. Currently several OC–3 ATM
interfaces are installed in the machines in Jülich and St. Augustin. One possible way to
increase the bandwidth is to multiplex the communication of a single application over
more than one interface. This is a challenge left for the application (or the underlying
communication library) alone since there is no support by the operating systems.
Still there are other options to choose from. A well–established networking technology

is the ’High Performance Parallel Interface’ (HiPPI). Although its peak bandwidth of
800 Mbit/s can only be achieved with very large transfer–blocks (1 MByte) and a low–
level protocol, the so–called framing–protocol, reasonable results can be obtained even
with IP communication. In Jülich, HiPPI is used to interconnect the CRAY machines.
Transfer rates of more than 400 Mbit/s can be seen for single socket–based connections.
An ATM/HiPPI–gateway by Ascend Communications allows to connect an 800 Mbit/s
HiPPI network to a 622 Mbit/s ATM network for IP communication. It is also possible
to tunnel the HiPPI framing–protocol through the ATM connection if there is another
gateway and a HiPPI device at the other end of the line.
For the IBM SP, a so called ’SP Switch Router’ has recently been announced. It will

directly connect the SP–internal High Performance Switch to an external router with a
peak bandwidth of more than 1 Gbit/s.
Several SUN workstations and servers in Jülich and St. Augustin are equipped with

OC–12 ATM interfaces and are connected via the Gigabit Testbed. Preliminary mea-
surements with this equipment show a high reliability of the network and reasonable
throughput. Message latency of TCP socket–connections is below 1 msec. This is consis-
tent with the average latency of 10 msec/1000 km of the SDH/ATM–line as specified by
the provider o.tel.o. The measured transfer rates for this connections are in the range of
160 Mbit/s which is well below the theoretical limit for IP connections over an OC–12 line.
Measurements with two pairs of workstations, however, result in an aggregate bandwidth
that is almost twice as high. This shows that the bottleneck are neither the ATM/SDH
line nor the ATM switches in the path but the networking capabilities of the worksta-
tions. It should be noted, that the measurements have taken place while the participating
servers were under regular workload. Using dedicated machines and tuning their kernel
networking parameters is currently under way and should lead to better results.

2.2. Transatlantic Network Connections
During Summer 1997, in cooperation with RUS, the Pittsburgh Supercomputing Center

and the participating network providers, a transatlantic Metacomputer was established
connecting the two CRAY T3Es across the Atlantic through a separate dedicated ATM
Channel with a 2 Mbit/s link. For the Supercomputing ’97 event, this network was

5

Figure 1. Network for transatlantic metacomputing demonstrations during SC’97

extended to Sandia National Laboratory, Albuquerque New Mexico, and to San Jose.
Figure 1 shows the the geographic extension of the transatlantic metacomputing environ-
ment during SC’ 97.
The Max-Planck-Institut-für-Plasmaphysik, Garching, used the transatlantic ATM-

Link for their demonstrations at SC’97. They werde connected to the dedicated ATM-Link
end-point in Stuttgart through B-WiN.

2.2.1. Network Performance Issues
In the given context, the most relevant performance parameters were latency and band-

width. With respect to latency, comparing the cross atlantic standard path provided by
DFN and the dedicated ATM-Link, it was interesting to note the effect due to the number
of routers involved and the translation of packet losses into additional delays. The results
achieved on the network connection between a test workstation at RUS and the CRAY
T3E in Pittsburgh over the Standard Path and the dedicated Link are depicted in Table
1.
The network performance of the standard path is strongly influenced by the European

working hours. During night-time, the packet loss and packet round-trip time were ac-
ceptable and a TCP throughput of approx. 250 kByte/s was achievable. However, during
the daytime, the IP packet losses (with packetsize of 1 kByte) downgraded the TCP
througput to less than 50 kByte/s. The mean packet round-trip time on the standard
path ranged from 150 to 300 ms.
On the dedicated ATM-Link, there were practically no packet losses (during SC’97 a

small number of packet losses appeared during the change over from CANARIES ATM-

6

Table 1
Comparison of network performance on DFN’s standard internet path vs. direct ATM
Link. 1average value (variation between 160 and 300 ms). 2variation between 150 and
155 ms. 3the socket buffer used was 64 kB.

Connection Bandwidth no. of tcp-throughput packet losses delay
[Mbit/s] routers [kByte/s]3 [%] [ms]

day/night day/night day/night
DFN 2*45 15 50/300 30/3 1801/160
ATM-Link 2 5 200/- 0/0 1502/-

network to CA*Net II) with a nearly constant round-trip time of 150 ms. This good
link performance resulted in a constant TCP throughput of 200 kByte/s, which is the
maximum throughput available on a 2 Mbit/s ATM-Link.
The higher number of routers on the standard path introduced a relatively small latency,

so in the case of a small load as seen during European night-time hours the round-trip
time on the standard path is comparable to that of the direct ATM Link.
Figure 2 shows a comparison of the network delay and packet losses during a 24 hour

period over the standard path and the dedicated ATM-Link. The data on the dedicated
ATM-Link was captured during SC’97, the data on the standard path some time after
SC’97.
As is well known, the TCP performance on links with large bandwidth times delay

products is strongly dependant upon the TCP Window size, which is configured on the
end-systems through the TCP socket buffer sizes. The following figure shows that on
the 2 Mbit/s ATM-Link a socket buffer size of 64 kByte is required for maximum TCP
throughput.

2.2.2. Political Issues
Using the vBNS, as shown in Figure 3 above, required the formal approval of the

National Science Foundation. The SC’97 preparation and demonstration was the first
involving a non-US center accessing the ’project only’ network infrastructure. At the
same time, useful discussions were conducted between the DFN and the NSF regarding
the global context and placement of the STAR TAP (Science, Technology and Research
Transit Access Point) in Chicago as an international exchange point and its geographical
relation to the DFN and Europe’s Point-of-Presence close to Washington DC.

3. TOOLS

3.1. PACX–MPI
PACX–MPI was developed to allow to extend MPI [4] communication beyond the

boundary of an MPP system. Typically, on such systems an optimized version of MPI is
offered that does not allow to communicate outside that system. Only recently commercial
implementations have come up that allow to run one single MPI application across a series
of machines. But then again the user is restricted to one hardware vendor [5,6]. Public
domain implementations of MPI like MPICH [7] support clusters of machines but can

7

Figure 2. Round trip time and packet loss on the standard path and the direct ATM Link
during a 24 hour period.

not be used to couple two or more MPPs efficiently. Another option for metacomputing
would be to use PVM [8] but since MPI has become a standard for MPP programming
most users have migrated from PVM to MPI already.
There is a number of projects that aim to support the MPI programmer in meta-

computing but all of them require changes in code [9–11]. One of them is PVMPI
[12]. PVMPI focuses specially on establishing a connection between two already run-
ning MPI applications. Whenever an MPI application starts up it creates a communi-
cator MPI COMM WORLD. This communicator can not be extended to add new pro-
cesses. MPI-2 will be able to do so, but so far dynamic process control is not available.
Furthermore, MPI has no defined way to talk to external programs. PVMPI provides
a way to overcome these restrictions. By incorporating some parts of PVM into MPI
the user is given the opportunity to create an intercommunicator from the two separate
MPI COMM WORLDs of the two applications running. On this newly defined intercom-
municator point-to-point communication is possible.
The disadvantages of that concept with respect to our intended project are twofold.

First, we would have to add some non-MPI calls to the application, making it impossible
to run the same code on one or two machines at the highest possible performance. Sec-
ond, this would have meant to redesign the code in order to reduce the communication

8

Figure 3. TCP throughput on the transatlantic 2 Mbit/s ATM Link as a function of
endsystem TCP socket buffer size.

between processes running on different machines to simple send/recv communication. We
therefore decided to implement PACX–MPI as a transparent extension to existing MPI
implementations.
The first version of PACX–MPI evolved from a project aiming to exploit at the same

time the advantages of an MPP system and of a vector-supercomputer. Some parts of the
code used in that project performed excellently on an Intel Paragon. They were well fit for
a distributed memory system with a high speed network. Other parts only performed well
on a Cray YMP vector-supercomputer. The idea behind the initial project was therefore
to let the parallel parts of the program be run on the distributed memory machine while
the vector parts would run on the vector machine and both could communicate in one
MPI world [13]. At that time no MPI implementation was available that would have
allowed to integrate the two machines into one single environment and at the same time
exploit the performance of the fast network of the Intel Paragon. Later on this concept of
connecting a vector supercomputer as an additional processor to an MPP was extended
to couple two or more MPPs in one single computing resource [14,15].
The goals of these projects were the following:

• Provide the user with a single virtual machine on which MPI applications can be
loaded. No changes to the code are necessary.

• Use highly tuned MPI for internal communication on each MPP.

• Rely on fast standard communication protocols for external communication.

3.1.1. Basic Concept
The concept of PACX–MPI is based on two major design decisions:

9

• Design PACX–MPI as an intermediate layer between the application and the com-
munication protocol.

• Let all external communication be done by two servers that are responsible for
incoming and outgoing traffic respectively.

There are some advantages and some disadvantages in that concept that should be
briefly discussed here. Using two servers that have to handle all communication between
the MPPs involved means to implement a bottleneck for all external communication.
However, it makes it easier to handle all external traffic by reducing the number of con-
nections that have to be supervised. Furthermore, one has to take into account that in
most scenarios a bottleneck is already constituted by the fact that physically there is only
one connection available and that all external communication has to be routed through
one I/O node of the MPP.
The layered approach seems to be the most flexible solution to reach the goal of highest

performance on both internal and external communication. Although one has to imple-
ment all MPI calls as separate PACX–MPI calls one may very easily decide about com-
munication methods without having to touch either the local MPI implementation or the
remote communication software of the two servers. Furthermore, such a layered approach
allows to easily optimize global communication and global operations that otherwise may
harm the performance of an application running in a metacomputing scenario.

3.1.2. Implementation
PACX–MPI has been implemented in C. For external communication standard TCP/IP

protocol is used [16]. However, there is also a version of the interface available that is based
on HiPPI. Like MPI, PACX–MPI has language bindings for FORTRAN 77 and ANSI C.
But while MPI consists of more than 120 function calls PACX–MPI was restricted to a
smaller number. It mainly implements those functions that are the most frequently used
ones and omits the ones that are not that important for numerical simulations. At this
time PACX–MPI supports the following calls:

• Initialization and control of the environment

• Standard point-to-point communication

• Collective operations:
MPI Barrier, MPI Bcast,MPI Reduce and MPI Allreduce

• Standard nonblocking communication

In addition to these calls, communicator constructs have been implemented and are
currently in the testing phase. These will allow normal usage of communicator constructs
across the machines without restrictions.
Point-to-point Communication:
The handling of a point-to-point communication is shown in the next figure. Since

PACX–MPI provides an MPI COMM WORLD across the two machines involved there
has to be a mapping of local process numbering and global one. Numbers in the squares

10

3 1

035

0

1 5

4

4 6

2

5

3

4 2 1

7

02

MPP 1 MPP 2

MPI_Send
Data and Status

Data Data

Command Command

Confirmation Confirmation

Figure 4. Point-to-point communication be-
tween two MPPs using PACX–MPI.

0

0

1

1

PACX_Comm_1PACX_Comm_2

3

5

4

2

2

0

1

3

4

2

5

3

4

6

5

7

MPP 1 MPP 2

Figure 5. Broadcast operation on two
MPPs.

indicate this global node numbering. If global node 6 wants to send a message to global
node 2 the following steps are taken:

• Node 6 calls an MPI Send specifying node 2 in communicator
MPI COMM WORLD as destination. This call is processed by the PACX–MPI
library.

• PACX–MPI finds that global node 2 is on the other machine. So it has to hand
the message over to the PACX-server . For this the message is split into a com-
mand package and a data package. The command package contains all envelope
information of the original MPI call plus some information for PACX–MPI.

• Both packages are compressed to reduce network traffic and sent over to the other
systems incoming communication node. There, data is uncompressed and the com-
mand package is interpreted.

• Using this information a normal MPI Send to the destination node is issued. The
return value of this call is handed back to the first system to be handed back to the
original sender.

Global Communication:
For a global communication things become even more complicated. The next figure

shows how a broadcast to MPI COMM WORLD from root 6 is handled correctly on two
machines using PACX–MPI.
The following steps are taken:

11

• Node 6 first sends a command package describing the broadcast and the data to be
broadcast to the outgoing communication node.

• It then does a broadcast in a communicator PACX Comm 1 especially provided by
PACX–MPI to include all local application nodes.

• The outgoing communication node meanwhile hands the information over to the
second MPP’s incoming communication node.

• This node now sets up a normal MPI Bcast from the command package and the
data package and distributes it in a second communicator PACX Comm 2 provided
by PACX–MPI including the incoming node and all local application nodes.

This concept for global communication allows to overlap communication to the second
MPP and internal communication. Furthermore, the local broadcast communication on
the two machines is done asynchronously.

3.1.3. Performance
Some measurements of performance of PACX–MPI have been done for standard bench-

marks like the ping-pong test [17]. Those tests were performed in the frame of a testbed
in which a T3E at Stuttgart and a T3E at Pittsburgh were interconnected by a dedicated
2 Mbit connection. The results for latency are as follows:

• The overhead incurred on internal communication by the layered approach is about
3 microseconds. Latency for internal communication is increased from about 16
microseconds to about 19 microseconds.

• Latency incurred by usage of the TCP/IP protocol is in the range of 4 milliseconds.
This compares well to results known from usage of the TCP/IP protocol in clusters
of workstations.

• The latency across the transatlantic connection is in the range of 75 milliseconds
where 70 milliseconds are imposed by the network.

Also for bandwidth acceptable results can been seen so far:

• The overhead incurred on internal communication only reduces bandwidth by about
3 percent from 307 MB/s to 297 MB/s for Cray’s MPI.

• Bandwidth on the transatlantic network connection goes up to about 1 Mbit/sec
which is acceptable.

3.1.4. Applications
Since PACX–MPI is developed to meet the needs of special applications all development

was thoroughly tested with respect to the performance that our applications could achieve.
Results for two applications will be given below. They show clearly that usage of PACX–
MPI on a very low bandwidth network limits the range of applications to a small subset.
The main focus will be on loosely coupled applications that are able to hide latencies in
the range of tens of milliseconds. As network bandwidth on wide area networks is growing

12

bandwidth on the other hand will not become a critical issue for metacomputing. The
first test results however show that metacomputing is worth doing and that PACX–MPI
can substantially contribute to that.

3.1.5. Future Work
Experiments have shown that the choice of protocol may severely influence the latency

and bandwidth that can be achieved. Since in the future fast network connections will
be based on ATM, it is planned to base external communication of PACX–MPI on ATM
directly rather than using TCP.
Furthermore, we will have to extend the functionality of PACX–MPI to be able to

support a wider range of applications. The user should however be aware of the fact that
a metacomputing application will only perform well if sophisticated functions of MPI that
require tightly coupled processors and fast networks are avoided.
Currently PACX–MPI has been installed on an Intel Paragon, a Cray T3E and an IBM

SP2. A version for a Hitachi SR2201 is in work. In a next step PACX–MPI will be ported
to machines of the NEC SX series to be able to couple those vector computers to an MPP.
Furthermore, PACX-MPI is in use by several research centers in Germany and the USA
that provide feedback for further development.

3.2. Optimizing and Load Balancing Metacomputing Applications
Practical applications often fail to utilize the potential of metacomputers. Using the

available memory is no particular problem [17], and also the distribution of different pro-
grams between different computers, each one being a part of a larger application, was done
successfully [21]. But it is still quite difficult to get a speed-up when distributing one,
possible tightly-coupled code. Even when coupling different programs, it might be desir-
able to further speed-up one of the programs (e.g. to get a better load balance) by using
processors available on the other machine. So while we will only examine tightly-coupled,
single applications in this section, the ideas apply to a broad range of metacomputing
applications.
Our first experiments were done in the Regional Testbed NRW [22,23], were we tried

to distribute a tightly-coupled application across a metacomputer (see chapter 4.1). But
in this application we not only got a slow-down when remote processors were added, even
the metacomputer itself did not scale: the run time increased, when further processors
were added [22]. This difficulty has been observed in many metacomputing projects, see
e.g. [17,24,25].
The reasons for this unexpected behavior are manifold: First of all, the high latency of

the external connection slows down the algorithm significantly. Most algorithms are tuned
for a homogeneous machine and a fast interconnection network. Therefore no attention is
spent to latency-hiding, which results in a general slow-down if some of the interconnects,
the external ones, are slower than the internal ones. Existing message-passing libraries
like MPI [4,7] or PVM [26] actually hide this kind of heterogeneity. While this makes
developing parallel programs easier, it makes it difficult to optimize communication, for
example by combining several messages into only one external message. This is of course
due to the lack of application-specific information, they do not know which messages can
be combined without causing a deadlock. For the programmer it is quite a lot of work to
perform this straight forward optimization.

13

Another reason for the performance loss is the comparatively low bandwidth of external
connections. The performance of modern ATM connections seems to be comparable with
the internal communications: the Cray T3E offers a bandwidth of approximately 270
MByte/s (using MPI), the SP-2 installed at the GMD offers a bandwidth of approximately
80 MBytes/s and the ATM connection between Jülich and the GMD has a theoretical
peak performance of about 77 MByte/s. But this comparison is misleading: an MPP
system offers this bandwidth between a large number of PEs at the same time which
enables an application to exchange more than 138 Gigabyte of data per second on a 512
processor T3E. For a real application this ’overall’-bandwidth must be considered to get
an idea of the influence which the external communication will have.
The third problem is load balance. Even when using two computers of the same kind,

there are often speed differences due to different compiler or library versions, different
amounts of memory per processor, sometimes also different hardware (clock speed etc.).
On the one hand, this is one of the great advantages of metacomputing: if an application
shows an inherent static load imbalance, it can be easy to get a much better load balance
by running some processes on a faster computer. In [22] an example is given, where the
runtime of a program was reduced by a factor of nearly two simply by placing one process
on a node of the SP2 instead of the Intel Paragon. On the other hand, a previously
load-balanced application may be imbalanced on the metacomputer.
We therefore looked for a way to optimize an existing application without changing

the underlying algorithm or forcing too many changes to the application itself. The
most important point is to optimize the external communication by combining external
messages between the machines to one message, so that we loose only time for one startup
[22]. If possible, we would like to overlap communication and computation, so that even
this startup time can be hidden.
We are trying to reach these goals by using a specialized library, which will have more

information about the communication structure of the program than a general message-
passing library and use these data to improve the performance. We assume a simple
structure of a parallel program like the one suggested in [27], which is typical for a
wide variety of programs. In this model each process performs three different kinds of
operations (for simplicity we are neglecting the initialization and clean-up phase here):

• Local computations involving no communication. All processes work in parallel
without having to exchange any data or synchronize.

• Neighbor communication: in this case, data are exchanged with ’neighbor’ pro-
cesses. This requires a synchronization with the neighbor processes, but no global
synchronization.

• Global communication; this involves a synchronization of all processes.

Assuming this parallel program structure, the only application-specific data the new com-
munication library needs is the communication structure, i.e. which processors are consid-
ered to be neighbors and therefore exchange data in the neighbor communication phase.
Having this information available, the library can multiplex messages which are sent to
the same remote machine by combining them into one, thus reducing the number of ex-

14

Computer 1 Computer 2

Virtual process with only
internal communication

Virtual process with only
local communication

Virtual process with
external communication

External, combined message

Local message for combining

Physical processor with
9 virtual processes

Figure 6. Scheduling using virtual processes

ternal messages. This combined message is distributed (’demultiplexed’) to the proper
receiving processes by one process on the remote machine.
To enable the overlap of computation and communication without having to change the

algorithm we use the concept of ’virtual processors’ or ’virtual processes’ [28,29]. This
means that the application is distributed on more processors than physically available.
Each physical processor gets a number of virtual processes and has to schedule them for
computing. The advantage of virtual processors are twofold: Firstly, by an appropriate
scheduling it is possible to perform some latency hiding. Secondly, they can be used for
load balancing purposes. In Figure 6 an example is shown, in which 8 processors on each
of two machines form a metacomputer. By using 9 virtual processes on each machine, you
have up to three different kind of virtual processes on each processor: processes which
have to communicate with a remote processor, processes which only have to do local
(meaning within the same machine) communication, and processes which only have to
communicate with processes on the same processors. By an appropriate scheduling, i.e.
first execute the processes, which have to use external communication, then processes,
which will communicate locally and at last start the remaining processes, it is possible to
overlap the communication time with computation of the remaining processes. Of course,
this will increase the number of messages (while reducing the size of each message) within
the system, since more processes have to exchange data. As a first optimization, messages
which are sent to the same receiving processor are combined into one message, which is sent
as soon as all virtual processes, which have to send data to the receiver, have computed
their new values. This ensures that not more messages are sent by using virtual processors
than by using only one process on each processor3. Furthermore, external messages,
messages sent to a virtual process on a different machine, are sent to one ’collector’-
process on the same machine, which in turn combines these messages and sends only one
external message to a remote machine. On the receiver side, this message is demultiplexed
and then locally distributed to the proper receiving processors which in turn take these
messages apart, so that the messages for each virtual process is produced.
Virtual processes can also be used to improve static load balance. By increasing or

3Internal messages, a message for a virtual process on the same processor, remain within the memory of

a processor so that no additional cost is involved.

15

decreasing the number of virtual processes on a processor the different speeds of the
processors can be compensated for.

3.3. Implementation
There are different ways to implement virtual processes:

• Run several processes on each processor, each realizing one virtual process. The
disadvantage of this implementation are the high cost for context switching and the
additional operations for exchanging internal messages.

• Generate several threads on each processor, one for each virtual process. Since
threads are not available on the Cray T3E this possibility was not considered. Ad-
ditionally one has to deal with the differences between thread libraries on different
machines.

• Use only one process (and one thread) on each processor and let this process sim-
ulate the different virtual processes. The additional benefit of this implementation
is the easy and platform-independent way of scheduling the virtual processes. Oth-
erwise, changes to the operating system or thread libraries would be necessary to
implement the intended scheduling, which in turn would be a major obstacle in a
metacomputing environment due to incompatibilities across the different machines.

We decided to implement the virtual processes by simulating them within one process. A
prototype of this library, programmed in C++, is being developed and tested.

3.4. Results
We used the library for the algorithmic kernel of a partial differential equation solver,

a multigrid code which solves a system of linear equations with of 2.3 million variables.
Figure 7 shows our first results, where we used the same number of processors on each
machine (so ’8’ processors means, that we used 4 processors on the Cray T3E, and 4
processors on the IBM SP2). We compared a ’standard’ distribution, using one (virtual)
process on each processor, with a distribution, which used 16 virtual processes on each
processor. Not only was the optimized implementation faster than the original version
(as much as ten times on 32 processors), it was also possible to get a speed-up by adding
additional processors to the metacomputer. This experiment was done without paying
attention to load-balancing, each SP2 processor had the same amount of work to do as a
T3E processor. As soon as the static load-balancing scheme is enabled, we expect to get
even better results.

4. APPLICATIONS

4.1. TRACE/PARTRACE
The program TRACE (Transport of Contaminants in Environmental Systems) simu-

lates the flow of water in variably saturated, porous, heterogeneous media. It is used in
combination with the program PARTRACE (PARticle TRACE) for 3–D simulations of
particle transport in ground water [30]. The programs have been developed at the Insti-
tute for Petroleum and Organic Geochemistry at the Forschungszentrum Jülich. TRACE
is based upon 3DFEMWATER, a ground water simulation code by Yeh [31]. PARTRACE

16

0

200

400

600

800

1000

1200

1400

1600

5 10 15 20 25 30 35 40

R
un

tim
e

(s
ec

.)

Nr. of physical processors

not optimized
optimized

Figure 7. Runtime of the multigrid program: comparison of the non-optimized program,
using one virtual process per processor, and the optimized program, where external mes-
sages are combined and communication is overlapped with communication.

performs a Monte–Carlo simulation of the particle transport, while TRACE uses a finite–
element discretization of the model equations. To allow for a large number of elements
— which are needed for realistic simulations — the program was parallelized at the Cen-
tral Institute for Applied Mathematics (ZAM) in Jülich using a domain decomposition
[32]. Following Schwarz’ method [33], the linear equation that has to be solved in each
timestep, is solved separately in each domain. Then the boundaries are exchanged be-
tween the domains and the process is repeated until a global convergence is reached.
In an earlier metacomputing project of the FZ Jülich and the GMD, ’Distributed Mas-

sively Parallel Computer’ [23], the IBM SP2 of the GMD was coupled with the Intel
Paragon XP/S 10 in Jülich via an OC–3 ATM line. For this metacomputer a message–
passing library, that would allow applications to run distributed, was necessary. As at
that time no such library existed, an especially adapted version (7.X) of the Parmacs
library [34] was implemented by Pallas for the needs of the project. Parmacs made the
heterogeneity of the metacomputer completely transparent for the application. Each com-
puting node could communicate with every other node of the metacomputer regardless
of its location. The obvious advantage of this approach is that existing message–passing
applications like TRACE could easily be ported to the metacomputer.
The problem, however, is that the application is not aware of the heterogeneity of

the metacomputer. Huge differences in bandwidth and latency between communication
inside and between the two massively parallel computers result in dramatically increased
communication time and reduced efficiency. A further complication is that the difference
in floating–point performance leads to a load–imbalance although the program is perfectly
balanced on a homogeneous system.
Efforts have been made to overcome these problems with some success. The load–

17

imbalance was resolved by choosing the domain sizes in the decomposition proportional
to the floating–point performance of the computing nodes. The communication bottleneck
was addressed by modifying the topology of the domain decomposition such that only one
pair of nodes had to exchange messages over the external connection [22]. Nevertheless
the main result of these investigations is that a tightly–coupled homogeneous application
is not a good candidate for metacomputing due to the gap between internal and external
communication performance.
Therefore, a different strategy is pursued in our current metacomputing activities. In

their present versions, TRACE and PARTRACE are independent programs that ’com-
municate’ via files. TRACE simulates the water flow until a stationary flow evolves and
writes the resulting fields into a file which is then used as input for the particle simulation
that is done by PARTRACE. The main reason for this splitting was that the memory re-
quirements for a resonable spatial resolution and number of particles could not be fulfilled
simultaneously.
It is considered a serious restriction of this approach that the simulation of particle

transport is limited to stationary flows. Running both applications simultaneously on a
metacomputer and exchanging the data via message–passing will resolve this limitation.
This approach is well–suited for our metacomputing environment for the following rea-
sons. The applications are only loosely coupled, in the sense that an exchange of data only
takes place at most once per timestep. This involves a large amount of data, because the
complete fields representing the flow have to be communicated between the two machines.
Inside the program TRACE less data (only boundaries between the domains) have to be
exchanged, but more often: about 10 to 15 times per timestep until global convergence
of the Schwarz method is achieved. Communicating the fields representing the water flow
from TRACE to PARTRACE still requires a high bandwidth — we expect up to 300
MBit/s for realistic simulations. The main advantage of the new approach is that, al-
though the latency in the testbed is rather high, it is not a critical factor, since information
flows in one direction only. A final point is that some kind of static load–balancing has
to be introduced when running TRACE and PARTRACE on two computers. This can
simply be done by choosing the number of processors used in each machine appropriately.
The basis of the coupled application is the ’homogeneous’ version of TRACE, which

does not include the earlier metacomputing–specific optimizations. This is due to the
fact that TRACE itself will not be run distributed and the metacomputing-optimizations
introduce some overhead into the program. However, running TRACE distributed as in
the earlier experiment on the new metacomputer yields some rule–of–a–thumb factor of
the improvements since the former project. It should be noted that a lot of things have
changed since then, so this factor may vary from application to application.

• The Paragon was replaced by a T3E-900. Besides the higher performance of the
T3E, this removed the additional overhead of data conversion. T3E and SP2 both
use IEEE–arithmetic with the same byte order. Only the lenghts of the integer
datatypes differ.

• The network connection is faster. In the former project, the gross bandwidth was 34
Mbit/s. The OC–3 ATM interface of the T3E is the limiting factor in our current
configuration.

18

Table 2
Execution time of TRACE for different (meta–)computer configurations and communica-
tion libraries.

Library No. of Nodes exec. time
SP2 Parmacs 7 4 226

8 152
XPS Parmacs 7 4 1106

8 735
XPS — SP2 Parmacs 7 2+2 1173

4+4 1398
SP2 MPI 4 147

8 101
T3E MPI 4 77

8 47
T3E — SP2 MPI–PACX 2+2 190

4+4 208

• The communication library was Parmacs then and now is MPI–PACX. PACX had
to be modified to support the coupling of a T3E and an SP2. This was not difficult,
because PACX already contained some mechanisms to support heterogeneity and
the data types on both machines are almost identical.

• Some new features of TRACE have not been used in the comparison, so they should
not have influenced execution time. Porting TRACE from Parmacs to MPI had
some effect, as can be seen from the results.

The results of our measurements are shown in Table 2. All of them use a version of
TRACE that does not contain any metacomputing–specific optimizations. The test case
is a 313 grid. The execution times given are for 15 time–steps and do not include the time
needed for reading the initial data from disk and writing the results back to disk.
As can be seen, the execution time on the SP2 alone has been reduced about 35%. This

is due to the change of the communication library. While Parmacs was layered on top of
the SP2–native MPL, we now use the native MPI implementation by IBM. Improvements
in the compilers might also have some influence.
In both metacomputers, load–imbalance is introduced by the different performance

of the components. As was demonstrated in detail by the former project, the effective
floating–point performance of the metacomputer is determined by the slower machine
[23], because the additional power of the faster machine is wasted by idle waiting for
communication with the slower one. The same effect can of course be seen here. Whereas
the execution time on the XPS/10 with Parmacs was more than 7 times longer than
on the SP2 with MPI, the bandwidth and latency of the network connection have only
been improved by a factor of 4. Therefore the scaling of the application — when run
on the metacomputer — should be worse than before. This is exactly what we observe:
the penalty for running TRACE distributed is larger for both the 2+2 and the 4+4
processors case. The fact that the slow–down from 2+2 to 4+4 processors is smaller is

19

due to optimizations in PACX that reduce the extra effort for sending smaller messages.
This supports our conclusion that tightly coupled homogeneous applications should not
be run on a metacomputer (at least without extra efforts like those described in section
3.2).

4.2. Current Activities, Future Plans
In the case of TRACE/PARTRACE the motivation for metacomputing is mainly the

size of the problem. The heterogeneous structure of the problem qualifies it for our
geographically distributed environment. Besides that, several other applications that can
benefit from metacomputing for different reasons, are currently under investigation — in
cooperation of several institutes in the FZ Jülich, the GMD and other locations — as part
of the Gigabit Testbed West project.
Two applications arise from experiments on brain activity, which are performed by the

Institute of Medicine in the FZ Jülich. One of them is the Analysis of magnetoezephalog-
raphy data. The magnetic field around a human head is measured with an array of
superconducting quantum interference devices (SQUIDs). From these data, the distribu-
tion of electric currents in the brain can be reconstructed by solving an inverse problem.
In Jülich, this is done with the ’Multiple Signal Classification’ (MUSIC) algorithm [35].
With MUSIC parameters of a finite number of current dipoles are obtained in two phases
[36]. The positions of the dipoles are estimated in phase 1, orientation and strength in
phase 2. Phase 1 involves a nonlinear optimization, which is done best on a massively
parallel system. Phase 2 is a least–squares problem, which is well–suited for a vector
computer. In the current configuration, execution time is not really critical, since the
calculations don’t have to be performed in realtime. Nevertheless, this application is a
good candidate for heterogeneous metacomputing, because it can benefit from running
distributed on different supercomputer architectures and does not suffer from latency
problems, since data has to be transfered mainly in one direction — from phase 1 to
phase 2.
Another experiment in Jülich that deals with brain activity is based on Magnetic Reso-

nance (MR) Tomography. Here a test person is exposed to e.g. periodic visual or acoustic
stimulations. The areas of brain activity are identified from temporal correlations of the
MR data. Therefore time series of tomographic data have to be corrected for head move-
ment and then correlated. The results are visualized in 3–D. In order to allow interactive
response of the experimentalist, all this has to be done in realtime. The high hardware
requirements for this project can be met by the project partners in the FZ Jülich and
the GMD. The necessary computing power is available in both locations, a tomograph
in Jülich and an SGI visualization server (as well as the visualization know–how) in the
GMD. It should be noted that a similar application has recently been demonstrated by
the Pittsburgh Supercomputing Center [37].
Another metacomputing project that will use the Jülich–St. Augustin metacomputer

deals with the distributed calculation of climate and weather models. Here, the Alfred–
Wegener–Institute (AWI), the German Climate Computing Center (DKRZ) and the GMD
will use the supercomputers in Jülich and St. Augustin for a coupled simulation of atmo-
spheric processes and the ocean–ice system. The approach is promising, because these
subsystems are only loosely coupled — by the exchange of energy and water at the ocean

20

surface. For this purpose existing codes will be modified and coupled. Further projects
like ’Multimedia applications in a Gigabit–WAN’ have been set up in the framework of
the Gigabit Testbed West, but are beyond the scope of this paper.

4.3. Transatlantic Metacomputing applications
In the frame of the metacomputing projects at RUS a transatlantic cooperation was

set up to run applications on the T3Es of Pittsburgh Supercomputing Center (PSC) and
the High Performance Computing Center at Stuttgart. Additionally the research group
had access to a T3E at San Diego Supercomputing Center. So tests could be performed
either across the transatlantic connection or via vBNS.
The critical point for an application in such a metacomputing scenario is the latency.

Latencies across the Atlantic go up to about 70 milliseconds imposed by the hardware
only. PACX–MPI adds some 4-5 milliseconds to that. The most critical point for an
application is therefore to hide away as much as possible latency. Other points that
inhibit performance are the following:

• Parallel I/O: A lot of applications still dedicate one node to read in the data at
the beginning and distribute all information to the other nodes. While on an MPP
the overhead caused may still be acceptable in a metacomputing scenario this is a
serious bottleneck. This problem can be seen in our applications. Future work in
metacomputing will have to deal with the problem not to have only parallel I/O on
one single system - as will be provided by MPI-2 very soon - but to find also ways
to distribute I/O across a cluster of MPPs.

• In consequence this will require to provide the user with a distributed file system
that allows for handling of distributed data.

• Based on such a distributed file system another critical feature will be the dis-
tributed visualization of data. At HLRS a distributed visualization environment
was developed that will provide such functionality [18].

4.3.1. URANUS
The Navier-Stokes solver URANUS (Upwind Relaxation Algorithm for Non-equilibrium

flows of the University of Stuttgart) was developed at the Institute for Space Systems at
the University of Stuttgart [19]. It is used for the simulation of non-equilibrium flows
around reentry vehicles in a wide altitude-velocity range. The unsteady, compressible
Navier-Stokes equations in the integral form are discretized in space using a cell-centered
finite volume approach. The inviscid fluxes are formulated in the physical coordinate
system and calculated with Roe/Abgrall’s approximate Riemann solver. Second order
accuracy is achieved by a linear extrapolation of the characteristic variables from the
cell-centers to the cell faces.
To compute large 3-D problems, the URANUS code was parallelized at RUS [20]. Since

the code is based on a regular grid a domain decomposition was chosen. This results in
a perfect load balancing and an easy handling of communication topology. An overlap of
two cells guarantees numerical stability of the algorithm.

21

So far the code is split into three phases (pre-processing, processing and post-processing).
Pre-processing is still done sequentially. One node reads in all data, does some pre-
processing work, and distributes data to the other nodes. This may be a serious bottleneck
when we simulate larger configurations and it will surely compromise parallel efficiency.
Therefore, a future version based on a multiblock approach will provide parallel input.
Experiments show us that this can dramatically reduce the startup phase of the code.
To adapt the code for metacomputing the following steps are taken:

• Eliminate the bottleneck of reading in data on one node only. This will not only
eliminate the I/O bottleneck, but since data must no longer be distributed to all
nodes, network traffic can be substantially reduced.

• Reduce communication in the solver part by not updating the right hand side after
each iteration. This may affect the solver and the stability of the method. Exper-
iments have to be done to find a tradeoff between network traffic reduction and
convergence speed.

• Extensively overlap communication and computation to reduce idle times for all
processes.

Performance:
The ultimate goal of metacomputing is to solve very large problems. Metacomputing

provides more memory than is available on one machine and hopefully more performance.
But while it is easy to double main memory by simply adding a second machine, the
performance gained by the additional machine depends on the network connection.
So when looking at performance for metacomputing, one has primarily to look at latency

and bandwidth of the available network. Theoretical peak bandwidth of current networks
can go up to 622 Mbit/s, but this may be available only for a short time window and
may be rather expensive. Latency can not be reduced at will to compete with integrated
systems. So overall performance for metacomputing will always depend on how much
latency can be reduced.
The application tested is not yet adapted for metacomputing. It does no latency hiding

and uses some collective operations. And due to the I/O bottleneck, results can not be
expected to be spectacular. In the following we give the overall time that it takes to
solve a medium sized problem (880.000 grid cells). Timings as given here include pre-
processing, processing and post-processing. Since it was difficult to do testing on more
than one machine we calculated only 10 iterations. Normally it needs from 200 to 10000
iterations for the code to converge. But these first test results certainly point out the
metacomputing challenges we face.
Running 10 iterations we compare the results of a simulation on a single machine using

128 nodes and on two machines using 2 times 64 nodes. A first test run shows that time
for the processing part goes up from 102.4 seconds on one machine to 157 seconds on
two machines. Obviously the overhead imposed by the higher latency is more than 50
percent. Time for pre-processing goes up from 272 seconds to 508 seconds. The code than
was adapted for metacomputing a little bit. This meant to reduce the number of global
communications. On one machine this reduced processing time to about 91 seconds and

22

pre-processing time to about 269 seconds. In the metacomputing environment processing
time was reduced to 150 seconds and pre-processing time to about 480 seconds. In the
next step asynchronous message-passing was introduced. It helped to reduce processing
time to 117 seconds for the metacomputing scenario.
It is obvious that PACX–MPI imposes such a high overhead on the communication by

using TCP that for the non-optimized version of PACX–MPI and without having changed
the code of URANUS we see a slow down for all problem sizes even if we are on the same
machine. However, the message that we see from these first results is that timings remain
nearly constant which implies that it is latency that slows down the calculation. If we
then go to two machines, we see an additional slow down and again nearly constant values
for timings. Again it seems that latency dominates the results.

4.3.2. P3T-PSMC
P3T-PSMC is an object oriented Direct Simulation Monte Carlo Code that employs an

orthogonal design based on the P3T (Parallel/Physics/Particle 3D Tools) kit in develop-
ment at the Institute for Computer Applications of the Stuttgart University for general
particle tracking applications.
Monte Carlo codes are well suited for metacomputing since they show an excellent

ratio of communication and computation. First results in the metacomputing scenario
on the transatlantic connection show good performance. For small number of particles
the metacomputing shows some overhead. But already for about 15000 particles no time
difference can be seen between running the code on 60 nodes of one machine or on 30
nodes each of two machines. Up to 125000 particles timings for one time step are the same.
Only for 500000 particles a difference of about 3 percent can be seen. This indicates that
the amount of data to be sent is too large to still be handled by the 2 Mbit/s connection.
However, during Supercomputing 97 based on PACX-MPI the program was able to set
a new world record for molecular dynamics simulating a crystal with 1.4 billion particles
on two T3Es using 1024 processors.

5. CONCLUSION

The examples in this contribution show that various problems we have to face in meta-
computing environments are quite well understood. The evolution of the Wide Area
networks is continuously enhancing the available bandwidth, but the latency is already
approaching the limit imposed by the speed of light. Therefore applications have to
be selected carefully for metacomputing. To keep the effort for porting applications to
a metacomputer acceptable supporting tools and libraries are essential. With PACX–
MPI, an easy–to–use yet efficient message–passing library has been developed and is used
successfully in several metacomputing applications. Experiments with several such appli-
cations show that latency hiding and load–balancing are important when performance is
an issue. A library that supports these two key–points is currently under development
and shows promising preliminary results.
Other concepts for optimization still have to be investigated. Using parallel I/O and

making explicit use of the heterogeneity of the applications by appropriately mapping it on
the different components of the metacomputer are such concepts. Also, using networking
protocols different from TCP/IP can substantially reduce latency and enhance bandwidth

23

— when the distance between the connected supercomputers is not too large. Several
projects which are just starting up address these points.

Acknowledgments

The authors gratefully acknowledge support from Pittsburgh Supercomputing Center
and supercomputing time provided by the San Diego Supercomputing Center. We also
wish to thank the BMBF for funding parts of this work and the DFN for its support.

REFERENCES

1. C. Cruz-Neira, D.J. Sandin, T.A. DeFanti, R.V. Kenyon, and J.C. Hart, The CAVE:
Audio Visual Experience Automatic Virtual Environment, Communications of the

ACM, Vol. 35, No. 6, pp. 65-72, 1992.
2. D. Erwin, The UNICORE Architecture and Project Plan, Workshop on Seamless

Computing, ECMWF, Reading, September 16–17, 1997.
3. V. Sander, High Performance Computer Management, Workshop Hypercomputing,

Rostock, September 8–11, 1997.
4. Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, Uni-

versity of Tennessee, http://www.mcs.anl.gov/mpi/index.html, 1995.
5. Roch Bourbonnais, The Thinking behind SUN’s MPI Machines, The Fourth EurPVM-

MPI Users’ Group Meeting, Cracow, Poland, November 3-5, 1997.
6. Paco Romero, Message Passing Interface on HP Exemplar Systems, The Fourth

EurPVM-MPI Users’ Group Meeting, Cracow, Poland, November 3-5, 1997.
7. William Gropp, Ewing Lusk, Nathan Doss, Anthony Skjellum, A high-performance,

portable implementation of the MPI message passing interface standard, Parallel

Computing, 22(6):789-828, September 1996.
8. A. Geist, PVM 3 User’s Guide and Reference Manual, ORNL/TM-12187, 1994.
9. G.E. Fagg, J.J. Dongarra, PVMPI: An Integration of the PVM and MPI Systems, De-

partment of Computer Science Technical Report CS-96-328, University of Tennessee,
1996.

10. M. Brune, J. Gehring and A. Reinefeld, A lightweight Communication Interface for
Parallel Programming Environments, in High-Performance Computing and Network-

ing HPCN’97, Springer, Berlin, 1997.
11. F-C. Cheng, P. Vaughan, D. Reese, A. Skjellum, The Unify System, Technical Report,

NSF Engineering Research Center, Mississippi State University, 1994.
12. Graham E. Fagg, Jack J. Dongarra and Al Geist: Heterogeneous MPI Application

Interoperation and Process Management under PVMPI, in Marian Bubak, Jack Don-
garra, Jerzy Wasniewski, Eds., Recent Advances in Parallel Virtual Machine and Mes-

sage Passing Interface, pages 91-98, Springer-Verlag Berlin Heidelberg, 1997.
13. T. Beisel, Ein effizientes Message-Passing-Interface (MPI) für HiPPI. Diplomarbeit,

RUS, 1996. In German.
14. E. Gabriel, Erweiterung einer MPI-Umgebung zur Interoperabilität verteilter MPP-

Systeme, Studienarbeit, RUS-37, 1997. In German.
15. T. Beisel, E. Gabriel, M. Resch, An Extension to MPI for Distributed Computing on

MPPs, in Marian Bubak, Jack Dongarra, Jerzy Wasniewski, Eds., Recent Advances in

24

Parallel Virtual Machine and Message Passing Interface, pages 75-83, Springer-Verlag
Berlin Heidelberg, 1997.

16. W.R. Stevens, UNIX Network Programming, Prentice Hall, Englewood Cliffs, 1990.
17. M.M. Resch, T. Beisel, T. Boenisch, B. Loftis, R. Reddy, Performance Issues of In-

tercontinental Computing, Cray User Group Conference, 1997.
18. A. Wierse, Performance of the COVISE visualization system under different condi-

tions in Visual Data Exploration and Analysis II, in Georges G. Grinstein, Robert F.
Erbacher eds., Proc. SPIE 2410, pages 218-229, San Jose, 1995.

19. H.-H. Fruehauf,O. Knab, A. Daiss, U. Gerlinger, The URANUS code - an advanced
simulation tool for reentry nonequilibrum flow simulations, Journal of Flight Sciences
and Space Research, 19 (1995) pp. 219-227.

20. T. Boenisch, R. Ruehle, Portable Parallelization of a 3-D Flow-Solver, inParallel
Comp. Fluid Dynamics ’97 (Elsevier, Amsterdam, 1997) to appear.

21. O. A. McBryan, HPCC: The Interrelationship of Computing and Communication, in:
E. D. Hollander, G. R. Joubert, F. J. Peters, D. Trystran (editors): PARALLEL

COMPUTING: State-of-the-Art and Perspectives. Elsevier Science B.V., 1996.
22. J. Henrichs, M. Weber, W. E. Nagel, R. Völpel, H. Grund, Metacomputing in a Re-

gional ATM-Testbed - Experience with Reality -, Proceedings of the ParCo’97 Con-

ference, North-Holland, Amsterdam, to appear.
23. J. Henrichs, W. E. Nagel, M. Weber, R. Völpel, H. Grund, Abschlußbericht des Teil-

projektes “Höchstleistungsrechenzentrum: Verteilter massiv-paralleler Rechner” im
“Regionalen Testbed Nordrhein-Westfalen (RTB-NRW)”, Forschungszentrum Jülich,
ZAM, Technical Report FZJ-ZAM-IB-9711, Juli 1997, in German.

24. H. Fukumori, Y. Kono, K. Nishimatsu, and Y. Muraoka, Finite Element Analysis
with Heterogeneous Parallel Computer Environment over ATM Network, Proceedings
of I-SPAN’96: International Symposium on Parallel Architectures, Algorithms, and
Networks, 1996.

25. D. J. Morton and J. M. Tyler, An Integrated Scheme for the Distribution of Adaptive
Finite Element Code in the Cray Y-MP/T3D Computing Environment, Technical
Report arsc-sp-117-95, Arctic Region Supercomputing Center, University of Alaska,
Fairbanks, 1995.

26. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck, V. Sunderam, PVM: Par-
allel Virtual Machine. A Users’ Guide and Tutorial for Networked Parallel Computing,
MIT Press, Cambridge, MA., 1994.

27. W. D. Gropp, Parallel Computing and Domain Decomposition, Technical Report
Mathematics and Computer Science Division, Argonne National Laboratory, MCS-
P257-0891, 1991.

28. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to Parallel Computing:

Design and Analysis of Parallel Algorithms. The Benjamin/Cummings Publishing
Company, Inc., 1994.

29. C. Perez, Load Balancing HPF programs by migrating virtual processors, Rapport de
recherche de l’INRIA - Rhône-Alpes, RR-3037, 1996.

30. H. Vereecken, G. Lindenmayr, A. Kuhr, D.W. Welte, and A. Basermann, Numeri-
cal Modelling of Field Scale Transport in Heterogeneous Variably Saturated Porous
Media, Forschungszentrum Jülich, ZAM, Technical Report IB-9301, 1993.

25

31. G.T. Yeh, 3DFEMWATER: A Three Dimensional Finite Element Model of Water
Flow through Saturated–Unsaturated Media, Oak Ridge National Laboratory, Publi-
cation No. 2904, 1987.

32. R. Wimmershoff: Entwicklung und Implementierung einer dreidimensionalen Parti-
tionierungsstrategie für das Programm TRACE auf einem massiv parallelen Rechner.
Technical Report Forschungszentrum Jülich, Jül–3157, 1995, in German.

33. M. Dryja and O.B. Widlund, Multilevel Additive Methods for Elliptic Finite Element
Problems, in Parallel Algorithms for Partial Differential Equations, W. Hackbusch,
Ed., Proceedings of the Sixth GAMM–Seminar, F. Fieweg, Braunschweig, pp. 58–69,
1990.

34. R. Calkin et al., Portable programming with the PARMACS message–passing library,
Parallel Computing, 20(4):615–632, April 1994.

35. J.C. Mosher, P.S. Lewis, and R.M. Leahy, Multiple Dipole Modeling and Localization
from Spatio–Temporal MEG DATA. IEEE Trans. Biomed. Eng. 39, pp. 541–557,
1992.

36. R. Beucker and H.A. Schlitt, Objective Signal Subspace Determination for MEG,
Forschungszentrum Jülich, ZAM, FZJ–ZAM–IB–9715, 1997.

37. N.H. Goddard, G. Hood, J.D. Cohen, W.F. Eddy, C.R. Genovese, D.C. Noll, and
L.E. Nystrom, Online Analysis of Functional MRI Datasets on Parallel Platforms.
Journal of Supercomputing, in press.

Katalog der wissenschaftlichen Publikationen des ZAM (Stand: 25.01.99)

Die mit ftp gekennzeichneten Publikationen stehen im PostScript-Format auf dem Anonymous ftp-Server
des ZAM (ftp.zam.kfa-juelich.de) im Verzeichnis pub/zamdoc/ib/ib-9x oder
pub/zamdoc/juel zur Verfügung.
Bitte richten Sie Bestellungen mit E-Mail an literatur.zam@fz-juelich.de oder an:

Zentralinstitut für Angewandte Mathematik
FORSCHUNGSZENTRUM JÜLICH GmbH
Informationszentrum
D-52425 Jülich

IB-9801 ftp Ulrike Begiebing, Volker Sander: ServerVision

IB-9802 ftp Werner Anrath, Rainer Grallert: Aufbau von NT-basierten Arbeitsgruppen in TCP/IP-

Netzen am Beispiel Forschungszentrum Jülich

IB-9803 ftp Felix Wolf, Bernd Mohr: EARL - A Programmable and Extensible Toolkit for Analy-

zing Event Traces of Message Passing Programs -

IB-9804 ftp Friedel Hoßfeld: Verbund der Supercomputer-Zentren in Deutschland - Ansichten, Ein-

sichten, Aussichten

IB-9805 ftp Jörg Henrichs: Optimizing and Load Balancing Metacomputing Applications

IB-9806 ftp Volker Sander, Dietmar Erwin, Valentina Huber: High-Performance Computer Mana-

gement Based on Java

IB-9807 ftp Jürgen Meißburger:
”

zammon“ - Ein Webserver für das JuNet-Management

IB-9808 ftp Michael Gerndt, Bernd Mohr, Mario Pantano, Felix Wolf: Automatic Performance

Analysis for CRAY T3E

IB-9809 ftp Jim Galarowicz, Bernd Mohr: Analyzing Message Passing Programs on the Cray T3E

with PAT and VAMPIR

IB-9810 Rudolf Berrendorf: Optimizing Load Balance and Communication on Parallel Com-

puters with Distributed Shared Memory

IB-9811 ftp Bart Theelen: Wrappers for Tracing Collective Communication Functions with PAT

IB-9812 ftp Johannes Grotendorst, Jürgen Dornseiffer: Computer-aided Modelling and Simulation

of the Thermodynamics of Steam Reforming

IB-9813 ftp Volker Sander, Lothar Wollschläger: RAID-Systeme: Durchsatz im Überfluß?

IB-9814 ftp Ralph Niederberger, Leonhard Radermacher, Karl Milz: Bits für Kids - Modellversuch

zur Unterstützung Jülicher Schulen beim Internetzugang

IB-9816 ftp Rudolf Berrendorf, Heinz Ziegler: PCL - The Performance Counter Library: A Com-

mon Interface to Access Hardware Performance Counters on Microprocessors

IB-9819 ftp Marlene Busch, Heinz Heer, Michael Wagener: Praxisbezogene Einführung in IDL

IB-9820 Johannes Grotendorst: Mathematik mit Maple - Eine Einführung mit Beispielen aus

der Analysis und Linearen Algebra

IB-9821 ftp Christian Bischof, Friedel Hoßfeld: Technisch-wissenschaftliches Hochleistungsrech-

nen: Herausforderungen komplexer Systeme an die Computer-Simulation

IB-9824 Thomas Eickermann, Jörg Henrichs, Michael Resch, Robert Stoy, Roland Völpel: Me-

tacomputing in Gigabit Environments: Networks, Tools, and Applications

IB-9901 ftp Friedel Hoßfeld: Teraflops Computing: A Challenge to Parallel Numerics

Jül-3551 ftp Felix Wolf: EARL - Eine programmierbare Umgebung zur Bewertung paralleler Pro-

zesse auf Message-Passing-Systemen

Jül-3552 ftp Rudolf Berrendorf: Benutzer- und datengesteuertes Schleifen-Scheduling auf Parallel-

rechnern mit Distributed Shared Memory

Jül-3581 ftp Volker Lempert: Methoden und Untersuchungen zur Optimierung des Datendurchsat-

zes in ATM-Netzen

Jül-3587 G. Egerer, R. Knecht, W.E. Nagel: Algorithmen und Strukturen in C

- Rüdiger Esser; Johannes Grotendorst; Marius Lewerenz (eds.): Höchstleistungsrech-

nen in der Chemie

- A. Kraus, O. Selke, F. Wissmann, J. Ahrens, H. -J. Arends, R. Beck, G. Galler, M. -
Th. Hütt, B. Körfgen, J. Peise, M. Schumacher, F. Smend, R. Wichmann: Angular and

polarization dependence of Compton scattering from 4He in the ∆-resonance region

- Ralf Wilhelm, Olaf Heller, Manuela Bohland, Cordula Tomaschewski, Inge Klein, Pe-
ter Klauth, Wolfgang Tappe, Joost Groeneweg, Carl Johannes Soeder, Paul Jansen,
Wolfgang Meyer: Biometric analysis of physiologically structured pure bacterial cul-

tures recovering from starvation

- G. Widman, K. Lehnertz, P. Jansen, W. Meyer, W. Burr, C.E. Elger: A fast general

purpose algorithm for the computation of auto- and cross-correlation integrals from

single channel data

