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Abstract

In this work we present a collisional-radiative model constructed for all ionization stages of beryllium. Con-

vergent close-coupling, K-matrix and Coulomb-Born-exchange methods were applied to calculate the necessary

atomic data. For neutral beryllium atom a comparison of all methods is given. Fractional ion abundances, radiative

power losses and electron cooling rates were calculated as functions of electron temperature. The comparison with

other available data shows a rather good agreement.
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1 Introduction

Beryllium is used in the ITER-like wall at JET and is foreseenas a plasma-facing material in the main cham-

ber of ITER [1]. For interpretation of spectroscopic measurements and for modelling of the beryllium impurity

behaviour in plasma, collisional atomic data (cross sections of elementary processes) are required. The “effective”

rate coefficients given in existing atomic databases (e.g. ADAS [2]) are sometimes insufficient for applications.

The formation of beryllium hydrides (BeH, BeH2) and their ions in the edge plasma and the subsequent fragmen-

tation directly populating excited atomic states and affecting the measured light emission can be mentioned as an

example. Unfortunately due to high toxicity of beryllium the experimental cross sections are practically unavail-

able in the literature. The most accurate theoretical methods, such as convergent close-coupling (CCC) [3] or the

R-matrix with pseudostates (RMPS) [4] demand very large computation time (especially at intermediate energies

when continuum coupling effects are important) and the corresponding cross sections (first of all, for transitions

between excited states) are still fragmentary. For the overcoming the lack of data the relatively simple, fast and

sufficiently accurate methods such as K-matrix [5] or Coulomb-Born with exchange and normalization can be

applied.

In this paper, we present a collisional-radiative model (CRM) constructed for all ionization stages of beryllium.

For neutral Be and selected transitions in Be+ the sophisticated CCC method was used. The cross sections for

ions Be2+, Be3+ were computed by the code ATOM [6] using the K-matrix (for excitation) and the normalized

Born (for ionization) methods. Also at the example of Beryllium atom we present a comparison between the K-

matrix and CCC results. Supplementary data associated withthis article (cross sectionsσ, rate coefficients〈vσ〉 as

well as the adjusted parameters for fitting formulas) are partially presented on the website [7] and are available in

electronic form upon request.

In the following, we use atomic units with the Rydberg unit for energy and temperature (Ry = 13.6 eV). Cross

sections are given in the unitsπa20 = 0.8797 ·10−16 cm2 wherea0 is the Bohr radius. We also use the designation:

[j1j2j3...] = (2j1 + 1)1/2 (2j2 + 1)1/2 (2j3 + 1)1/2 ...

2 Atomic data

2.1 K-matrix method

Here we confine ourselves to the consideration of transitions only between terms. The calculation of excitation

cross sections based on the K-matrix method [5] was performed by the code ATOM-AKM [6] and consists of three

parts.

1) A chosen list of atomic states (basis) is used as an input information. Usually the basisa = γcScLcnlSL

(whereγcScLc describe the atomic core,nl are the principal and orbital quantum numbers of the opticalelectron)
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includes the ground state, all one-electron excitations with n from n0 up tonmax and maybe a few two-electron

excitations.

2) For all pairs of states (ai, af : Ei < Ef ) from the basis, for a set of partial waves (λi, λf ) of the outer electron

and for total angular momentaST ,LT the transition amplitudesKB (matrix elements of interaction) are calculated

in B - approximation. Here and below we designate by the indexB the Born (for neutral atoms) or Coulomb-Born

(for ions) approximation with exchange between the incident and target electrons that we take into account using

the orthogonalized wave-function method [8]. The mixing coefficients appearing in the configuration interaction

expansion can be obtained from other sources (e.g. using theCowan code [9]).

3) From transition amplitudes the full matrixKB is constructed. The final unitary scattering matrixS is

obtained according to the matrix equation [5]:

S =
I+ iKB

I− iKB
(1)

whereI is the diagonal identity matrix. The cross sections are expressed in terms ofS-matrix [8]:

σ (ai − af ) =
1

2k2i

∑

λiλfLTST

[STLT ]
2

[SiLi]
2

∣

∣SΓiΓf
− δΓiΓf

∣

∣

2
(2)

HereΓ = asλSTLT is a full set of quantum numbers of the total system (“atom + incident electron”),ST andLT

are the full spin and angular momenta andk2i is the energy of the incident electron before the collision.

We call such an approach theK-matrix method. This method permits to correct some important shortcomings

of theB-approximations:

1) Normalization. The total flux of scattered electrons should not exceed the incident one. In any first-order

method this requirement may be broken since the excitation amplitudeKB
ΓiΓf

is proportional to the interaction

matrix element and not limited by any condition. TheS-matrix is unitary and the requirement of electron flux con-

servation (“normalization”) is automatically fulfilled. Normalization can considerably decrease the cross section

of strong transitions, such as dipole or transitions between nearby levelsnl0 − nl1. Equation (1) also includes

the possibility of normalization of week transitions for account of the strong transitions from the same initial level

(normalization by another channel).

2) Two-step transitions. A direct quadrupole (for example, 2s−3d) transition cross section may be comparable

(or smaller) than the two-step dipole one (2s−2p−3d). This possibility is not included inKB but is provided by

the transformation (1).

3) Other less straightforward consequences of thechannel interactionare also reflected by the K-matrix

method.

Note that the dimensions of matrixKB grow fast with the number of included states and partial waves. The

sum overλ in equation (2) converges slowly. The numerical calculations includeλ ≤ λm (usuallyλm = 28 was
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used). The contribution∆σ (ai − af ) from λ > λm is calculated in the Born approximation.

The radial functionsPnl of atomic electron were obtained by numerical solution of the radial Schrödinger

equation
[

d2

dr2
−

l (l + 1)

r2
+ 2

ζc (r/ω)

r
+ ε(nlSL)

]

Pnl (r) = 0 (3)

with the scaled potentialU (r) = − 1

r ζc(r/ω) where the effective atomic core chargeζc(r) is calculated with the

Slater functions. The energy parameter of the equationε(nlSL) is equal to the experimental value of the level

energy (from the ionization limit) and the scale parameterω is obtained as an equation eigenvalue. In most cases

the NIST database [10] was used forε (nlSL).

2.2 Comparison of K-matrix and CCC cross sections

In order to investigate the accuracy of K-matrix method we compared the collision strengths and rate coeffi-

cients for neutral Be with results of more sophisticated CCCand RMPS calculations [11] (for RMPS only rate

coefficients are published). The CCC cross sections are presented on the website [12] for transitions from the

states withn = 2 for collision energiesE up to1000 eV. Recently Igor Bray made more accurate calculations for

all transitions withn ≤ 4, E ≤ 400 eV. The procedure was quite similar to the one described in [3] but included

more target-space states (and pseudo-states): 293 in new and 108 in old calculations [3]. For energies below 10 eV

(relative to the ground state) 10 partial waves were explicitly calculated, and 16 above. Extrapolation to infinity

was done using the Born approximation.

The input data for K-matrix calculations included the following states:

2s2 1S, 2snl 1L, 3L, L = l, n = 2− 5, all l,

2p2 1S, 3P , 1D, 2p3l, l = 0− 2

and the matrix CV of configuration interaction vectors. The states2p3l were used only for configuration mixing.

The real transitions to these states were not considered. Corresponding levels are above the ionization threshold

and their contribution to the channel interaction is negligible. The total number of transitions (including the elastic

scattering channels) was equal to393. The mixing coefficients of the matrix CV were adjusted to obtain the

best coincidence of the oscillator strengthsf with the results of MCHF calculations [13]. The mixing up to4

configurations was included for every group of states with the sameSL and parity.

For discussion of the results it is important to distinguishtwo energy ranges. At large energies collisional part of

the problem is trivial: the cross sectionσ = σB whereσB is the Born cross section (without exchange if∆S = 0).

The difference between K-matrix and CCC data is connected with the difference of the atomic wave functions,

i.e. with the configuration mixing. At small and medium energies of the scattered electron the difference in the

approach to the collisional part of the problem (i.e. the normalization and the channel interaction) is important.

From the present results as well as our previous calculations we can conclude that the K-matrix method tends to

overestimate the effect of the channel interaction. We divide (perhaps rather arbitrary) the cross sections into three
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groups according to the degree of agreement with CCC:

1) Goodagreement was obtained, as illustrated in figure 1a, for dipole transitions, if oscillator strength is not

very small. We note also the significant influence of the configuration mixing. For intercombination transitions (fig.

1b) the difference is somewhat larger because the exchange is normally more sensitive to the used approximations.

The too fast decrease of CCC cross section can be connected with insufficient number of partial waves to ensure

convergence and the large peaks near threshold (resonancesdue to the virtual formation of the Be− ion) - with

overestimation of exchange due to nonorthogonality of total wave functions (“residual Born-Oppenheimer”).

2) Poor agreement was found in cases of very strong configuration interaction when the description of atomic

structure used in ATOM can be inadequate and for transitionswith extremely small values of oscillator strengths

for which the cancellation effects are important (fig. 1c).

3) Someproblematiccases for which we cannot give a definite explanation. One example is shown in fig. 1d.

For this transition (2s2 1S → 2p2 1D) two mechanisms are possible: the “step”2s2 1S → 2s2p 1P → 2p2 1D

(with asymptoticΩ ∼ 1

E ) and the quadrupole transition (2p2 1S → 2p2 1D) due to configuration interaction2s2

1S + 2p2 1S (the asymptotic isΩ → const). The collision strength of CCC, opposite to what we expect, increase.

Maybe it can indicate the non-orthogonality of2p2 1S and2p2 1D states.

In most cases the agreement between rate coefficients is usually much better than for cross sections (even

when there are substantial discrepancies for them). And of course the K-matrix results demonstrate essential

improvement comparing to the Born data.

2.3 Electron impact ionization cross sections

For ionization of electron from the stateai = γcScLcnliSiLi of the atom (ion)Xz

Xz (ai) + e (Eλi) → Xz+1 (γcScLc) + e (Ef lf ) + e (E′λf ) , E = E′ + Ef +∆E (4)

(here∆E = Ez is the ionization threshold) the ionization cross section in theB-approximation is equal:

σiz (nli) =
∑

lfSfLf

Em/2
∫

0

2σ (ai, af ) dEf (5)

whereEm = E − ∆E andaf = γcScLcEf lfSfLf . In this case the final state of the atom belongs to the

continuum, and therefore the continuum radial functionPf (r) must be used.

Due to additional sum over the momentalf , Sf , Lf and the integral over the energyEf of the ejected electron

the inclusion of ionization channel in the K-matrix scheme becomes unreasonable (and practically impossible,

which is why we didn’t include the ionization channels in theK-matrix for excitation). At the same time due

to these summations the ionization cross sectionσiz is not sensitive to thechannels interaction. However the

normalizationeffects must be included in the calculation ofσiz .
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The code ATOM [6] calculates ionization cross sections inB-approximation with additional normalization

for own (ionization channel) and some strong excitation channels (usually these are transitions to nearby levels

which are dipole connected with the initial state). The method of normalization is also based on K-matrix, but

with some simplifications appropriate for normalization purposes, namely, the approximate (reduced) K-matrix

contained only those matrix elements which include the initial stateΓi. It means that the normalization of each

LTST channel is performed independently.

The ionXz+1 can be produced either by direct ionization (DI) or through inner shell excitation ofXz followed

by autoionization (EA). In our calculations both DI and EA processes were included. As a rule, DI dominates

the total impact ionization cross section but the contribution of EA increases at energies above the corresponding

threshold.

A comparison of the ionization cross section from the groundstate of Be I obtained byB and CCC methods

is shown in figure 2. The account for exchange by the orthogonalized function method [8] sometimes leads to the

appearance of a noticeable (non-physical) peak in the crosssection at near-threshold energies. For this reason we

usually useB-data calculated with normalization but without exchange.

3 Collisional-radiative model

Collisional-radiative model constructed for all charge stages of beryllium contains80 LS - terms:

Be I: 2s2 1S; 2snl 1L, 3L, L = l, n = 2− 4, all l; 2p2 1D, 3P (19 terms)

Be II: 1s2nl 2L, L = l, n = 2− 6, all l (20 terms)

Be III: 1s2 1S; 1snl 1L, 3L, L = l, n = 2− 4, all l (19 terms)

Be IV: nl 2L, L = l, n = 1− 6, all l (21 terms)

Be V (bare nucleus): (1 state)

and includes the following processes: spontaneous radiative decays, electron impact excitation and ionization, as

well as radiative, dielectronic and three-body recombination. The plasma is supposed to be optically thin. The

energies of levels and (if available) the oscillator strengths were taken from NIST database. A new improved set of

CCC excitation and ionization cross sections for neutral beryllium as well as CCC data [14] for Be+ were used. For

selected transitions in Be, Be+ and for ions Be2+, Be3+ the cross sections were computed by the code ATOM [6]

(the K-matrix for excitation and the normalized Coulomb-Born-Exchange for ionization). Note that the method

used in ATOM corresponds to perturbation theory with a smallparameter1/Z, whereZ is the spectroscopic

symbol. Therefore, the method’s accuracy is expected to be better for ions. The partial photorecombination rate

coefficients for all ion stages were also calculated by the ATOM code. Three-body recombination rates were

obtained from the principle of detailed balance. For dielectronic recombination (DR) rates the formula suggested

in [15] was used. We also assumed that DR occurs from the ground state of the target ion into the highest state of

the recombined ion. This assumption is reasonable for Be with rather small resonance transition energy.

The steady-state solution of the system of balance equations for ionization equilibrium and level populations
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was obtained using the collisional-radiative code NOMAD [16]. As an illustration, figure 3 shows ionization bal-

ance and radiative power loss coefficientLz = Prad/NeNa as a function of electron temperature, for an assumed

electron densityNe = 1013 cm−3. HereNa =
∑

Z

NZ is the total beryllium density,Prad is the radiated power

(W×cm−3) including line (due to the cascade transitions), recombination (radiative and dielectronic) as well as

bremsstrahlung radiation:

Pl =
∑

Zij

1.6× 10−19NZ
i AZ

ij∆EZ
ij (6)

Prec =
∑

Zij

1.6× 10−19

(

αrr
ji

(

IZij +
3

2
Te

)

+ αdr
ji ∆ĒZ+1

j

)

NeN
Z+1

j (7)

Pbr = 1.54× 10−32 ḡNe

√

Te

∑

Z

NZZ2 (8)

The summation in (6), (7) is made over all the transitions andall ionsZ. In formula (8), the frequency-averaged

free-free Gaunt factor̄g has been taken equal to1.2, andTe is expressed in eV.

The two peaks inLz - one at low and another one at high temperatures - correspondto Be/Be+ and Be2+/Be3+

(i.e., L - andK - shell) radiation, respectively. The minimum at≃ 10 eV occurs due to the fact that the most

abundant He-like ions Be2+ cannot be excited at that temperature. Below100 eV, Lz is dominated by bound-

bound transitions. At higher temperatures beryllium becomes completely ionized and no longer produces the

line radiation. The increase of density leads to a shift of the ionization equilibrium and, more important, to the

competition of collisional deexcitation with radiative decays. As a result, the total power-loss coefficient at a given

temperature decreases.

In an ionizing regime, which is of special interest for the modeling of light impurity transport, electron cool-

ing rateΛ = Pe/NeNa (wherePe is the electron cooling power in W×cm−3) is dominated by excitation and

ionization:

Pex =
∑

Zij

1.6× 10−19 Ne

(

〈vσij〉ex N
Z
i − 〈vσji〉dex N

Z
j

)

∆EZ
ij (9)

Piz =
∑

Zij

1.6× 10−19 Ne

(

〈vσij〉iz N
Z
i −Neα

3bR
ji NZ+1

j

)

(

IZij +
3

2
Te

)

(10)

Figure 4 demonstratesΛ (Te) calculated for Be ions. The comparison with other availabledata (the ADAS

database) shows a rather good agreement.

We also performed calculations of effective ionization andrecombination rates and studied their dependence on

plasma parameters. The obtained coefficients will be implemented in the 3D Monte-Carlo neutral transport code

EIRENE [17]. The rates were derived from total rate matrix, under quasi-steady-state assumption:dNi/dt = 0 for

all excited states except for ground and metastable levels.An example for Be I is shown in figure 5. The essential

contribution of the excited states to the effective rates isclearly seen: the effective ionization rate increases mono-

tonically and becomes saturated at highNe. The recombination rate behaves nonmonotonically due to competition

between the recombination to and the collisional ionization from excited states.

7



4 Conclusion

In this work, a comparison between two independent methods (K-matrix/Coulomb-Born-Exchange and the

sophisticated Convergent Close-Coupling) is made for Be I and demonstrates reasonable agreement. Although the

CCC method generally provides an excellent accuracy, the use of K-matrix/CBE greatly reduces the computational

efforts. Similar K-matrix/CBE calculations (possibly including transitions between fine structure components) can

easily be done for other light (or more precisely, small-electron) elements (e.g., for alkali or alkaline earth atoms

and their isoelectronic ions).

The collisional-radiative model constructed for Be ions includes new improved set of CCC excitation and

ionization cross sections. The steady-state ionization balance, electron cooling rates and radiative power losses

were calculated as functions of electron temperature by theNOMAD code. The influence of the excited states on

effective ionization and recombination rate coefficients is demonstrated.

Acknowledgements

This work was supported in part (D. K.) by an EFDA fusion researcher fellowship.

8



References

[1] H. Bolt et al. In:J. Nucl. Mater.307-311 (2002), pp. 43–52.

[2] H. P. Summers. In:The ADAS User Manual (version 2.6)(2004).http://www.adas.ac.uk/.

[3] D. V. Fursa and I. Bray. In:J. Phys. B: At. Mol. Opt. Phys.30 (1997), pp. 5895–5913.

[4] C. P. Ballance et al. In:Phys. Rev. A68 (2003), p. 062705.

[5] M. J. Seaton. In:Proc. Phys. Soc.77 (1961), p. 174.

[6] V. P. Shevelko and L. A. Vainshtein.Atomic Physics for Hot Plasmas. IOP, Bristol, 1993.

[7] D. A. Kondratyev and L. A. Vainshtein.http://www-amdis.iaea.org/Atom_AKM/. 2012.

[8] I. I. Sobelman, L. A. Vainshtein, and E. A. Yukov.Excitation of Atoms and Broadening of Spectral Lines.

Springer-Verlag, New York, 1995.

[9] R. D. Cowan.The Theory of Atomic Structure and Spectra. University of California Press, Berkeley, 1981.

[10] Yu. Ralchenko et al. In:NIST Atomic Spectra Database (version 4.1)(2011).http://physics.nist.gov/asd/.

[11] S. D. Loch et al. In:Atomic Data and Nuclear Data Tables94 (2008), pp. 257–321.

[12] I. Bray and Y. Ralchenko.http://atom.curtin.edu.au/CCC-WWW/index.html. 1997.

[13] G. Tachiev and C. Froese Fischer. In:J. Phys. B: At. Mol. Opt. Phys.32 (1999), p. 5805.

[14] A. Starobinets et al. In:Physica Scripta67 (2003), pp. 500–504.

[15] P. Mazzotta et al. In:Astron. Astrophys. Suppl. Ser.133 (1998), p. 403.

[16] Yu. V. Ralchenko and Y. Maron. In:J. Quant. Spectrosc. Radiat. Transfer71 (2001), p. 609.

[17] D. Reiter, M. Baelmans, and P. Börner. In:Fusion Sci. Technol.47 (2005), p. 172.

9

http://www.sciencedirect.com/science/article/pii/S0022311502011753
http://www.adas.ac.uk/
http://iopscience.iop.org/0953-4075/30/24/023
http://link.aps.org/doi/10.1103/PhysRevA.68.062705
http://www-amdis.iaea.org/Atom_AKM/
http://physics.nist.gov/asd/
http://www.sciencedirect.com/science/article/pii/S0092640X07000708
http://atom.curtin.edu.au/CCC-WWW/index.html
http://stacks.iop.org/0953-4075/32/i=24/a=315
http://iopscience.iop.org/1402-4896/67/6/008/
http://aas.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/aas:1998330&Itemid=129
http://www.sciencedirect.com/science/article/pii/S0022407301001029


Figure captions

Figure 1: Collision strengthΩz2 as a function of incident electron energy. “K5” and “K” - K-matrix method

with levels up ton = 5 with and without configuration interaction, “B” - Born approximation with account of

exchange, “ccc” - convergent close-coupling method (293 states), “ccc0” - convergent close-coupling method [3]

(106 states).

Figure 2: Electron impact ionization cross section for Be ground state: Born (B), Born with normalization

(BN), Born with exchange and normalization (BEN) and CCC calculations.

Figure 3: Radiative power loss per unit volume due to line emission, recombination radiation and bremsstrahlung

as a function of electron temperature. The total power loss coefficient is shown in red. Dashed lines represent rel-

ative concentrations of Be ions.

Figure 4: Electron cooling rate for different ionisation stages of Beas a function of electron temperature.

Figure 5: Effective ionization and recombination rates as a functionof electron temperature for the ground

(2s2 1S) and metastable (2s2p 3P ) states of Be I.
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Figure 1: Collision strengthΩz2 as a function of incident electron energy. “K5” and “K” - K-matrix method with
levels up ton = 5 with and without configuration interaction, “B” - Born approximation with account of exchange,
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Figure 5: Effective ionization and recombination rates as afunction of electron temperature for the ground (2s2 1S)
and metastable (2s2p 3P ) states of Be I.
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