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Theta burst stimulation (TBS), a specific protocol of repetitive transcranial magnetic stimulation (rTMS), induces changes in cortical
excitability that last beyond stimulation. TBS-induced aftereffects, however, vary between subjects, and the mechanisms underlying
these aftereffects to date remain poorly understood. Therefore, the purpose of this study was to investigate whether increasing the
number of pulses of intermittent TBS (iTBS) (1) increases cortical excitability as measured by motor-evoked potentials (MEPs) and (2)
alters functional connectivity measured using resting-state fMRI, in a dose-dependent manner. Sixteen healthy, human subjects received
three serially applied iTBS blocks of 600 pulses over the primary motor cortex (M1 stimulation) and the parieto-occipital vertex (sham
stimulation) to test for dose-dependent iTBS effects on cortical excitability and functional connectivity (four sessions in total). iTBS over
M1 increased MEP amplitudes compared with sham stimulation after each stimulation block. Although the increase in MEP amplitudes
did not differ between the first and second block of M1 stimulation, we observed a significant increase after three blocks (1800 pulses).
Furthermore, iTBS enhanced resting-state functional connectivity between the stimulated M1 and premotor regions in both hemi-
spheres. Functional connectivity between M1 and ipsilateral dorsal premotor cortex further increased dose-dependently after 1800
pulses of iTBS over M1. However, no correlation between changes in MEP amplitudes and functional connectivity was detected. In
summary, our data show that increasing the number of iTBS stimulation blocks results in dose-dependent effects at the local level
(cortical excitability) as well as at a systems level (functional connectivity) with a dose-dependent enhancement of dorsal premotor
cortex-M1 connectivity.
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Introduction
Neural plasticity describes the fundamental property of the brain
to undergo structural and functional modifications after patterns
of activity or stimulation (Pascual-Leone et al., 2005). Repetitive
transcranial magnetic stimulation (rTMS) can be used to alter
electrophysiological properties of cortical areas (Wassermann,
1998). Depending on stimulation frequency and pattern, rTMS
may enhance or suppress cortical excitability with effects extend-

ing beyond the stimulation period (Pascual-Leone et al., 1998).
However, responses to rTMS vary considerably between subjects,
and the mechanisms underlying excitability changes remain
poorly understood (Ridding and Ziemann, 2010; Hamada et al.,
2013).

Intermittent theta burst stimulation (iTBS) is a specific rTMS
protocol that effectively increases cortical excitability of the tar-
geted brain region after a relatively short stimulation period
(Huang et al., 2005; Di Lazzaro et al., 2008; Gamboa et al., 2010,
2011; Cárdenas-Morales et al., 2013). Neuropharmacological
studies suggest that the response to iTBS, at least in part, depends
on NMDA-receptor activity (Huang et al., 2007; Teo et al., 2007).
Data obtained in rats imply that iTBS interferes with the cellular
expression of various neuronal proteins reflecting the activity
level of the GABAergic inhibitory system (Benali et al., 2011;
Funke and Benali, 2011). Moreover, the application of multiple
iTBS blocks has a dose-dependent effect on the expression of
these proteins in rodents (Volz et al., 2013). In contrast, studies in
humans thus far failed to demonstrate additive aftereffects of
multiple iTBS blocks on motor– cortical excitability (Gamboa et
al., 2010, 2011).
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Importantly, rTMS not only influences
neuronal properties of the stimulated re-
gion but may also impact on the activity
levels of remote but interconnected areas
(Bestmann et al., 2003, 2004, 2005). Stud-
ies using different kinds of rTMS proto-
cols provide converging evidence that
rTMS can be used to modulate connectiv-
ity of a given region within a network of
brain areas (Grefkes et al., 2010; Vercam-
men et al., 2010; Eldaief et al., 2011; van
der Werf et al., 2010; Watanabe et al.,
2014). The wealth of studies using rTMS
to modulate human cortical excitability is
contrasted by the dearth of data regarding
dose-dependent effects of rTMS or iTBS
on both local neural activity under the
stimulated area and on remote effects.

In the current study, we thus addressed
the question whether a repeated iTBS
application in humans exerts dose-
dependent effects on (1) regional, cortical
excitability in the primary motor cortex
(M1) and/or (2) motor–network connec-
tivity of the stimulated site (here, M1). To
this end, we used a multimodal approach,
where each of three serially applied iTBS
blocks was followed by the assessment of
(1) motor-evoked potentials (MEPs, cor-
ticospinal excitability) or (2) resting-state
fMRI (functional connectivity) on sepa-
rate days. Based on previous findings
(Gamboa et al., 2010, 2011; Volz et al.,
2013), we hypothesized that iTBS increases
cortical excitability in a dose-dependent
way. Moreover, we hypothesized that iTBS
induces changes in resting-state functional
connectivity (rsFC) between the stimu-
lated M1 and other regions of the (corti-
cal) motor network (Vercammen et al.,
2010; Eldaief et al., 2011; van der Werf et
al., 2010).

Materials and Methods
Subjects
We included 16 healthy, right-handed subjects
(7 males, mean � SD age: 27 � 3 years) with no
history of neurological or psychiatric diseases.
All subjects provided informed written con-
sent. Right-handedness was verified using the
Edinburgh Handedness Inventory (Oldfield,
1971). The study was performed according to
the Declaration of Helsinki (1969, last revi-
sion 2008) and approved by the local ethics
committee.

Experimental design
Main experiment. We used a single-blind, ver-
tex stimulation controlled crossover within-
subject design to test for the effects of multiple
serially applied iTBS blocks on (1) cortical ex-
citability and (2) functional connectivity. The
experimental design is illustrated in Figure 1. Each subject participated in
two MEP sessions (to assess cortical excitability) and two fMRI sessions
(to assess cortical connectivity) on different days (main experiment, Fig.

1A). Sessions were separated by at least 1 week to avoid carryover effects.
To test for dose-dependent effects, subjects received three iTBS applica-
tions with 600 pulses per application (see below) interrupted by a stim-
ulation break of 15 min (compare Volz et al., 2013) in each session. In

Figure 1. Experimental design. A, Main experiment. Subjects took part in two MEP sessions (M1-iTBS_MEPs, sham-
iTBS_MEPs) and two resting-state fMRI sessions (M1-iTBS_rs-fMRI, sham-iTBS_rs-fMRI) on four separate days. Using a within-
subject design, each subject received three serially applied iTBS blocks over M1 (M1 stimulation) and over the parieto-occipital
vertex (sham stimulation), each followed by the assessment of MEPs or resting-state fMRI. B, Supplemental control experiment. In a
second experiment, a subgroup of 6 subjects additionally received one stimulation over M1 followed by two stimulations over the parieto-
occipital vertex (supplemental control stimulation) to test for the specificity of additive aftereffects after serial iTBS over M1.
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two of the four sessions, subjects were stimulated over M1 of the domi-
nant (left) hemisphere (M1 stimulation). In the other two sessions, stim-
ulation was applied over the parieto-occipital vertex (sham stimulation).
Thus, each subject underwent the following four sessions: M1-
iTBS_MEPs, sham-iTBS_MEPs, M1-iTBS_rs-fMRI, and sham-iTBS_rs-
fMRI. In the MEP sessions, MEPs were measured at baseline and after
each iTBS block. Likewise, in the fMRI sessions, resting-state fMRI time
series were acquired at baseline and after each iTBS block. Importantly,
MEP and resting-state fMRI measurements were performed within a
similar time frame: both recordings were started �3 min after the end of
iTBS applications, and lasted �8 min (controlled by a stopwatch). The
order of M1 and sham stimulation was randomized between subjects.

Supplemental control experiment. Six participants from the main ex-
periment were tested in a control experiment to test for the specificity of
putative aftereffects after serial iTBS over M1 (Fig. 1B). Stimulation af-
tereffects were again tested with MEPs and resting-state fMRI on separate
days. In contrast to the main experiment, subjects now received only one
iTBS block over M1 followed by two sham stimulation blocks over the
vertex (supplemental control experiment, Fig. 1B). Data from the main
experiment (3 � M1 stimulation) were replotted for this subgroup of
subjects (n � 6). This allowed us to differentiate dose-dependent changes
in MEP amplitudes and rsFC after three consecutive M1-iTBS blocks
from stimulation effects resulting from the first M1-iTBS block and con-
secutive changes over time.

Neuronavigated transcranial magnetic stimulation
The position of the TMS coil was tracked and recorded using the
neuronavigation system “BrainSight2” (Rogue Research). For neuro-
navigation, the head of the subject was coregistered with an individual
high-resolution anatomical MR image (voxel size: 1.0 � 1.0 � 1.0 mm 3,
FOV � 256 mm, 176 sagittal slices, TR � 2250 ms, TE � 3.93 ms) via
anatomical landmarks (e.g., nasion and crus helicis) before the hotspot
search.

MEP amplitudes of the abductor pollicis brevis (APB) muscle were
measured using Ag/AgCl surface electrodes (Tyco Healthcare) in a belly-
tendon montage. The EMG signal was amplified, filtered (0.5 Hz high
pass and 30 –300 Hz bandpass), and digitized with a Powerlab 26T device
and the LabChart software package version 5 (AD Instruments).

For the initial positioning of the TMS coil, the M1 “hand knob” for-
mation was used as an anatomical landmark (Yousry et al., 1997). The
coil was positioned tangentially to the scalp with the handle pointing
posterolaterally. The stimulation “hotspot” for iTBS and MEP acquisi-
tion was defined as the location where MEPs with highest amplitude and
lowest latency could be evoked. Then, the resting motor threshold
(RMT) was defined using an algorithm provided by the TMS Motor
Threshold Assessment Tool 2.0 (http://www.clinicalresearcher.org/
software.htm). The software defines the RMT in 12 steps using maxi-
mum likelihood calculations based on positive (peak-to-peak amplitude
of at least 50 �V) or negative MEP responses as marked by the investiga-
tor via button press. The RMT was assessed at baseline and after the third
iTBS application on each of the four sessions.

Theta burst stimulation
We used the iTBS protocol described by Huang et al. (2005). Accord-
ingly, iTBS consisted of three pulses delivered at a frequency of 50 Hz (1
burst) applied every 200 ms for 2 s (10 bursts), repeated every 10 s for a
total duration of 191 s (600 pulses). As previously described and evalu-
ated, iTBS was delivered at 70% of the RMT (Gentner et al., 2008; Sarfeld
et al., 2012; Cárdenas-Morales et al., 2013). This is a slight modification
to the original iTBS protocol according to which iTBS has been applied at
80% of the individual active motor threshold (AMT) (Huang et al.,
2005). Our intention was to prevent voluntary preactivation of the target
muscle, which may impact on TBS aftereffects (Gentner et al., 2008;
Huang et al., 2008) but is necessary to assess the AMT. Evidence suggests
that 70% RMT reflects a comparable range of absolute stimulator output
intensities compared with 80% AMT (Chen et al., 1998; Sarfeld et al.,
2012). Furthermore, previous studies already applied TBS with 70% of
the RMT and reported aftereffects that are in perfect accordance to re-
sults using a stimulation intensity of 80% AMT (Gentner et al., 2008;
Cárdenas-Morales et al., 2013).

We applied iTBS either over the left, dominant M1 (i.e., the “hotspot”)
or over the parieto-occipital vertex as sham stimulation (Herwig et al.,
2007, 2010). For sham stimulation, the same stimulator output intensity
was used as for M1 stimulation. To reduce possible cortical stimulation
effects in the sham condition, the coil was held at 45°, touching the skull
not with the center but with the rim opposite the handle. In this position,
the coil– cortex distance is substantially larger such that the electromag-
netic field, if at all reaching the cortex, is substantially weaker and far
outside the target range (Herwig et al., 2007, 2010).

On each of the 4 d, iTBS was repeated three times (either 3 � M1
stimulation or 3 � sham stimulation over the vertex) separated by 15
min, leading to a total of 1800 pulses (i.e., iTBS600, iTBS1200, iTBS1800;
Figure 1A). This protocol was previously shown to evoke additive iTBS
aftereffects at the cellular level in rats (Volz et al., 2013). Use of the
neuronavigation system warranted a reliable positioning of the TMS
stimulation site across all sessions and subjects. iTBS was delivered using
a Magstim SuperRapid 2 with a figure-of-eight coil (70 mm standard coil,
Magstim).

MEPs
Motor cortex excitability was assessed via MEPs recorded from the APB.
Neuronavigated single-pulse TMS was applied over the same location as
used for iTBS (motor– cortical representation of the APB at the M1
“hand knob” formation) using a monophasic Magstim 200 2 stimulator
(Magstim). In line with other groups (Huang et al., 2005; Hamada et al.,
2013), we used different stimulators for MEP acquisition and delivery of
iTBS for the following reason: The SuperRapid2 stimulator, which we
used for high-frequency (burst) stimulation (i.e., iTBS), induces MEPs
with biphasic waveforms exciting different neuronal populations during the
different phases of the pulse. In contrast, the monophasic waveform of the
Magstim 2002 stimulator, which we used for MEP acquisition, results in
more homogeneous MEPs and hence represents the standard way of assess-
ing electrophysiological properties of M1 (Terao and Ugawa, 2002; Di Laz-
zaro et al., 2004). iTBS-induced changes in cortical excitability are
comparable, regardless of the waveform (mono/bisphasic) used to evoke
MEPs via single-pulse TMS (Zafar et al., 2008).

At baseline and after each iTBS application (three blocks separated by
15 min), a stimulus–response curve of MEPs evoked with 90%–150% of
the RMT was assessed in steps of 10%. TMS pulses were applied at �0.1–
0.2 Hz (acquisition time, �8 min). Two blocks of five pulses were re-
corded in a randomized order for each intensity, except for 120%, which
was assessed in six blocks at five pulses (because 120% represents the
commonly used stimulation intensity, see e.g., Kobayashi et al., 2004;
Cárdenas-Morales et al., 2013), adding up to a total number of 90 MEPs.
Ten MEPs per intensity have been shown to result in reliable stimulus–
response curves (Carroll et al., 2001).

Data analysis (MEPs)
For each subject and session (M1 stimulation, sham stimulation), MEP
amplitudes acquired after iTBS were normalized to baseline values (i.e.,
MEPs acquired before the first iTBS application in the respective session)
of the respective intensity. This means that after normalization all MEPs
for a given intensity of the stimulus–response curve were close to 1.0 (i.e.,
100%) in case that there was no difference in MEP amplitudes after iTBS.
We used normalized MEP amplitudes to assess changes in cortical excit-
ability rather than absolute MEP amplitudes to account for variance in
RMTs at different stimulation days (i.e., M1 and sham stimulation).
Normalized MEP amplitudes were then entered into a three-way
repeated-measures ANOVA with the factors intervention (2 levels: M1-
iTBS, sham-iTBS), dose (3 levels: iTBS600, iTBS1200, iTBS1800), and
intensity (7 levels: 90 –150% of the RMT) using SPSS version 21 (Statis-
tical Package for the Social Sciences, IBM). In case of significant main or
interaction effects, post hoc Student�s t tests were performed to compare
the aftereffects of the two types of stimulation and the different doses applied.
Given the clear directional hypothesis that iTBS would increase MEP ampli-
tudes (Huang et al., 2005, 2007; Di Lazzaro et al., 2008; Cárdenas-Morales et
al., 2013), we used one-tailed post hoc t tests (p � 0.05).

Finally, stimulus–response curves were plotted for each subject using
the absolute MEP amplitudes. The steepness of the curves was computed
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by means of linear regression analyses, and R 2 values were calculated to
assess the quality of fit using SPSS. Stimulation-induced changes were
again tested by a repeated-measures ANOVA.

MRI
The experimental procedures (iTBS applications) of the fMRI sessions
were equivalent to those of the MEP sessions (Fig. 1A). Instead of MEP
acquisition, however, resting-state fMRI time series were acquired at
baseline and after each block of iTBS. Before the baseline fMRI mea-
surements, the “hotspot” and RMT were assessed using the neuro-
navigation setup described above. Subjects were transported in an
MR-compatible wheelchair into the scanner room between each resting-
state fMRI and iTBS block to avoid any further movement and to obtain
comparable conditions for the resting-state scans.

The fMRI sessions started with a baseline resting-state scan (duration
�8 min) where subjects were instructed to lie motionless in the scanner
with open eyes fixating a red cross, which was presented on a TFT screen
visible through a mirror attached to the MR head coil. After completion
of the resting-state time-series, subjects were asked to perform an active
motor task, which served as a functional localizer for determining coor-
dinates of M1 and other motor related regions for subsequent analyses
(see below). This “activity” condition was acquired after the resting state
scan (i.e., resting-state connectivity estimates were not systematically
influenced by prior motor activity).

After completion of the baseline fMRI session, subjects were trans-
ported from the scanner to the anteroom of the MR console (again sitting
in the MR wheelchair without moving their right arm). After coregistra-
tion with the neuronavigation system (lasting 1–2 min), three blocks of
iTBS were applied separated by 15 min (controlled by a stopwatch). Each
of the three iTBS blocks was followed by another 8 min resting-state
fMRI. Hence, the time protocol in the fMRI sessions was identical to the
one used in the MEP sessions (Fig. 1).

Localizer task. We used a simple motor task as a functional localizer to
identify the location of core motor regions for the subsequent resting-
state analysis. The localizer task consisted of rhythmic thumb abductions
and adductions with the right or left hand activating the same muscle as
used for TMS recordings (APB). Left hand movements were necessary to
also localize motor regions of the hemisphere contralateral to stimula-
tion. Written instructions displayed for 2 s indicated movements of the
left or right thumb for the following block of trials. Abduction–adduc-
tion movements were triggered by a blinking circle at the frequency of 1.0
Hz for 15 s until a black screen indicated to rest for 15 s. Six blocks for
each hand resulted in an acquisition time of �7 min. Motor perfor-
mance was visually controlled during the whole assessment by the
experimenter.

Image acquisition and preprocessing (task and resting-state fMRI)
fMRI images were aquired on a Siemens Trio 3.0 T scanner (Siemens
Medical Solutions) using a gradient echo planar imaging (EPI) sequence
with following parameters: TR � 2070 ms, TE � 30 ms, FOV � 200 mm,
31 slices, voxel size: 3.1 � 3.1 � 3.1 mm 3, 20% distance factor, flip
angle � 90°, resting-state: 225 volumes (3 dummy images), localizer task:
202 volumes (3 dummy images). Acquisition planes and slice orientation
were identical for the four fMRI assessments (i.e., 1 � baseline, 3 � post
iTBS sessions) in both the M1 and sham stimulation condition. The slices
covered the whole brain extending from the vertex to the lower parts of
the cerebellum.

fMRI data were analyzed using Statistical Parametric Mapping (SPM8,
http://www.fil.ion.ucl.ac.uk/spm/). The first three volumes (“dummy”
images) of each session were discarded from further analyses to allow for
magnetic field saturation. All remaining EPI volumes were realigned to
the mean image of each time series and coregistered with the structural
T1-weighted image. In a next step, all images were spatially normalized to
the standard template of the MNI using the unified segmentation ap-
proach (Ashburner and Friston, 2005) and smoothed using an isotropic
Gaussian kernel of 8 mm full-width at half-maximum.

Statistical analysis: functional localizer task
In the functional localizer task, the two experimental conditions (move-
ments of the left or right thumb) were modeled using boxcar stimulus

functions convolved with a canonical hemodynamic response function.
The time series of each voxel were high-pass filtered at 1/128 Hz. The six
head motion parameters, as assessed by the realignment algorithm, were
treated as covariates to remove movement-related variance from the
image time series. Simple main effects for each experimental condition
were calculated for each subject by applying appropriate baseline con-
trasts. Voxels were identified as significant on the single-subject level if
their T-values passed a height threshold of p � 0.001 (T � 3.14). The
individual M1 coordinates of the stimulated hemisphere were then used
as seed regions for the resting-state whole-brain analysis (see below). For
the group analysis, the parameter estimates of all conditions (main effect
right thumb movements, main effect left thumb movements) were sub-
sequently entered into a full factorial ANOVA. Voxels were considered
significant when passing a height threshold of p � 0.05, family-wise error
(FWE)-corrected (T � 5.72).

Statistical analysis: resting-state fMRI
For the statistical analysis of the resting-state data, variance that could be
explained by known confounds was removed from the smoothed fMRI
time-series. Confound regressors included the tissue-class-specific global
signal intensities and their squared values, the six head motion parame-
ters, their squared values, and their first-order derivatives (Jakobs et al.,
2012; Reetz et al., 2012; Satterthwaite et al., 2013). A bandpass filter was
used to preserve only frequencies between 0.01 and 0.08 Hz in the time-
series data.

First, a seed-based whole-brain group analysis was computed: the time
course within a sphere of 10 mm-diameter centered on the seed voxel
(here, left M1, single-subject coordinates derived from localizer task;
Table 1) was correlated with the time course of every other voxel in the
brain by means of linear Pearson’s correlation (Eickhoff and Grefkes,
2011; zu Eulenburg et al., 2012). Correlation coefficients were converted
to Fisher’s z-scores using the formula z � (1/2) � ln(1 � r)/(1 � r) �
atanh(r) to yield approximately normally distributed data.

To determine changes in functional connectivity after iTBS, individual
baseline functional connectivity maps were subtracted from the respec-
tive maps after iTBS for each subject. For group level analysis, the indi-
vidual subtraction maps were subsequently entered into a “flexible
factorial” general linear model analysis in SPM8 with the factors subject
and intervention (2 levels: M1-iTBS and sham-iTBS) and dose (3 levels:
iTBS600, iTBS1200, and iTBS1800). Then, differential contrast were
computed between (1) M1 and sham stimulation for iTBS600, iTBS1200,
and iTBS1800, as well as (2) between the different doses applied (i.e.,
iTBS1800/iTBS1200, iTBS1800/iTBS600, and iTBS1200/iTBS600) for
both stimulation conditions. The resting-state maps were masked by

Table 1. Single-subject coordinates of left primary motor cortex (M1) derived from
the respective motor task baseline conjunction of both assessment daysa

MNI coordinates

Subject x y z

1 �34.5 �25.5 57
2 �40.5 �24 61.5
3 �40.5 �22.5 64.5
4 �37.5 �16.5 54
5 �30 �31.5 70.5
6 �40.5 �19.5 63
7 �42 �16.5 58.5
8 �31.5 �24 70.5
9 �33 �27 49.5
10 �40.5 �22.5 48
11 �42 �21 48
12 �39 �24 54
13 �43.5 �21 60
14 �43.5 �21 63
15 �36 �30 57
16 �34.5 �28.5 60
Mean �37 �24 56.4
SD 4.9 3.2 5.4
aSingle-subject coordinates were used as seed regions for the resting-state whole-brain analysis.
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cytoarchitectonic probability maps of frontoparietal sensorimotor areas
(Brodmann areas 6, 4 a/b, 3 a/b, 2, and 1) to focus inference on rsFC
within the cortical sensorimotor network as provided by the SPM Anat-
omy Toolbox (Eickhoff et al., 2005). The statistical threshold was set to
p � 0.05, family-wise error (FWE)-corrected at the cluster level.

Finally, to test whether iTBS applied over M1 also had influences on
functional connectivity of nonmotor networks, an additional group
analysis was performed for the visual network using an equivalent pro-
cedure as for the M1 maps. Accordingly, seed-based whole-brain connectiv-
ity maps were computed using the left primary visual cortex (V1) as seed
region (Table 2; individual coordinates were derived from the localizer task).
Like the M1 maps, visual resting-state connectivity maps were subsequently
masked by the respective cytoarchitectonic probability maps as provided by
the SPM Anatomy Toolbox (Eickhoff et al., 2005).

ROI analysis
As we hypothesized that rsFC would increase dose-dependently between
M1 and distinct motor regions, we performed small-volume corrections
in different ROIs for following contrasts: iTBS1800 versus iTBS600,
iTBS1800 versus iTBS1200, and iTBS1200 versus iTBS600. Based on pre-
vious studies, reporting altered neural activity or rsFC after rTMS in
distinct motor regions (Bestmann et al., 2004; Watanabe et al., 2014), we
chose the following ROIs (group MNI coordinates, x y z): bilateral sup-
plementary motor area (SMA, left: �4.5, �9, 64.5, right: 6, �3, 69),
bilateral dorsal premotor cortex (dPMC, left: �31.5, �9, 60, right: 36,
�9, 60), and right contralateral M1 (30, �28, 57). Connectivity estimates
in these regions were FWE-corrected on the voxel level ( p 	 0.05) using
10 mm spheres centered around the respective ROI coordinate.

Correlation between MEP amplitudes and rsFC
Finally, we tested for correlations between dose-dependent changes ob-
served at the electrophysiological level (i.e., MEPs) and changes at the
systems level (i.e., rsFC). Therefore, contrast images (iTBS1800 vs
iTBS1200; iTBS1800 vs iTBS600) were entered into SPM multiple regres-
sion analyses, including differences in normalized MEP amplitudes
(iTBS1800 vs iTBS1200; iTBS1800 vs iTBS600) as covariates.

Results
iTBS aftereffects on electrophysiological parameters
Main experiment
Resting motor thresholds did not differ between M1 (32.3 �
6.3% maximal stimulator output [MSO]) and sham stimulation
(33.4 � 7.3% MSO) (p � 0.164). Furthermore, iTBS had no
effect on the RMT after the third iTBS block compared with
baseline (M1 stimulation: 32.5 � 6.8% MSO, p � 0.78; sham
stimulation: 33.7 � 6.2% MSO, p � 0.74). MEP amplitudes ac-

quired at baseline were also not significantly different for M1
compared with sham stimulation (p 
 0.3 for each comparison).

A three-way repeated-measures ANOVA testing for iTBS af-
tereffects on normalized MEP amplitudes revealed a significant
main effect of the factor intervention (two levels: M1-iTBS,
sham-iTBS; F(1,15) � 8.78, p � 0.010) and an interaction effect for
intervention (two levels: M1-iTBS, sham-iTBS) � dose (three
levels: iTBS600, iTBS1200, iTBS1800) (F(2,30) � 5.61, p � 0.009).
The interaction effect indicated that there was a dose-dependent
effect on MEP amplitudes depending on whether subjects re-
ceived M1-iTBS or sham-iTBS. In contrast, there were no signif-
icant effects of the factor intensity (seven levels: 90%–150%
RMT, p � 0.05 for each comparison). However, the interaction
effect of the factors intervention � dose � intensity showed a
statistical trend (F(12,180) � 1.60, p � 0.095). When plotting the
normalized MEP amplitudes for the different intensities (Fig. 2),
dose-dependent iTBS aftereffects tended to be more pronounced
at low-stimulation intensities (90%–110% RMT) compared with
higher-stimulation intensities (120%–150% RMT).

To further explore what drives the significant interaction effect
intervention�dose, we performed post hoc t tests on MEPs averaged
across intensities for a given block of iTBS. This analysis showed that
averaged MEP amplitudes were significantly higher after M1-iTBS
compared with sham-iTBS for all doses: iTBS600 (p � 0.019),
iTBS1200 (p � 0.040), and iTBS1800 (p � 0.002) (Fig. 3). Further-
more, aftereffects of M1-iTBS were significantly enhanced for
iTBS1800 compared with iTBS1200 (p � 0.042) and iTBS600 (p �
0.024), whereas there was no significant difference between

Table 2. Single-subject coordinates of left primary visual cortex (V1)

MNI coordinates

Subjects x y z

1 �10.5 �94.5 �9
2 0 �94.5 �16.5
3 �16.5 �103.5 �4.5
4 �9 �100.5 �12
5 �18 �88.5 �9
6 �19.5 �99 �15
7 �16.5 �105 �9
8 �16.5 �99 �12
9 �16.5 �100.5 �6
10 �15 �102 1.5
11 �13.5 �102 �6
12 �18 �102 �9
13 �18 �102 �9
14 �16.5 �102 �10.5
15 �15 �96 �3
16 �12 �105 �12
Mean �18.6 �101.3 �10
SD 6.8 3.1 3.9

Figure 2. Main experiment: MEP amplitudes normalized to baseline (gray) at different stim-
ulation intensities relative to the RMT. A, sham stimulation. B, M1 stimulation. Dose-dependent
iTBS aftereffects seem to be more pronounced at near-threshold stimulation intensities (90%–
110% of the RMT) compared with higher stimulation intensities (120%–150% of the RMT).
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iTBS600 and iTBS1200 (p � 0.390). In the
sham condition, MEPs decreased after
iTBS1800 compared with iTBS1200
( p � 0.023) (Fig. 3). There was no sig-
nificant difference between iTBS600 and
iTBS1200 as well as iTBS1800 after sham
stimulation.

In addition, to test whether increases
in MEP amplitudes after M1 stimulation
were significantly different from baseline,
we computed one-sample t tests on the
respective differences for each stimulation
session. We found that normalized MEP
amplitudes after 600 (p � 0.047) and
1800 (p � 0.013) pulses of iTBS over M1
were significantly higher compared with
baseline and that a strong statistical trend
was evident after 1200 pulses of M1-iTBS
(p � 0.052). When computing t tests on
absolute MEP amplitudes, significant dif-
ferences were also observed between base-
line MEPs and iTBS1800 (p 	 0.01),
whereas differences between baseline and
iTBS600 and iTBS1200 did not pass the
statistical thresholds. This result can be
explained by the large amount of
between-subject variance in absolute
MEP amplitudes at baseline (range: 0.2–
2.2 mV), highlighting the importance of
normalization for detecting stimulation
aftereffects (Huang et al., 2005, 2008;
Gentner et al., 2008).

Averaged R 2 values indicated a good fit
of the stimulus–response curves to the lin-
ear regression models (M1 stimulation:
R 2 � 0.86 � 0.02, sham stimulation: R 2 �
0.87 � 0.03). To test whether stimulation
over M1 altered the steepness of the stim-
ulus–response curves, the slopes of the in-
dividual stimulus–response curves were
entered into a repeated-measures ANOVA.
However, this analysis did not show a sig-
nificant effect of the factor dose (4 levels:
baseline, iTBS600, iTBS1200, and iTBS1800),
indicating that increasing the number of
iTBS pulses had no effect on the slope of
the stimulus–response curves.

Supplemental control experiment
Six subjects, who also participated in the
main experiment, were invited to a second
experiment in which they received only
one iTBS block over M1 followed by two
sham stimulations over the parieto-
occipital vertex (supplemental control experiment; Fig. 1B).
Here, we found a significant increase in MEP amplitudes com-
pared with baseline after the first stimulation block (p � 0.018,
Student’s t test; Fig. 4). Likewise, when replotting data from the
main experiment, MEP amplitudes were significantly increased
after one iTBS block over M1 compared with baseline for the
same subjects (n � 6, p � 0.024). Accordingly, there was no
significant difference between the main experiment and the con-
trol experiment after the first iTBS block (p � 0.445). As ex-

pected, in the control experiment, MEP amplitudes decreased
after the second block of iTBS (now applied over the vertex for
control; p � 0.069, iTBS1200 compared with iTBS600) and were
no longer significantly different from baseline. Still, there was no
significant difference between the main experiment and the con-
trol experiment after two iTBS blocks (p � 0.104). However,
when directly comparing MEP amplitudes after three stimulation
blocks between the main experiment and the control experiment,
we found significantly higher amplitudes after three iTBS blocks
over M1 compared with one iTBS block over M1 followed by two

Figure 3. Main experiment: M1 versus sham stimulation. Changes in MEP amplitudes after M1 (squares) and sham stimulation
(diamonds), normalized to baseline MEP amplitudes. Significant aftereffects after M1-iTBS compared with sham-iTBS or within
stimulation conditions: *p � 0.05 (Student’s t test); **p � 0.001 (Student’s t test). M1-iTBS led to a significant increase in MEP
amplitudes after iTBS600, iTBS1200, and iTBS1800 compared with sham stimulation and baseline. The increase after M1-iTBS1800
was significantly higher than that after M1-iTBS600 and M1-iTBS1200, whereas after sham-iTBS MEP amplitudes significantly
decreased between iTBS1200 and iTBS1800.

Figure 4. Supplemental control experiment: M1 versus supplemental control stimulation. Changes in MEP amplitudes after M1
(squares) and supplemental control stimulation (diamonds), normalized to baseline MEP amplitudes. *Significant aftereffects
after M1-iTBS compared with supplemental control stimulation or baseline ( p � 0.05, Student’s t test). One stimulation over M1
in the supplemental control experiment led to comparable results as obtained after M1-iTBS600 in the main experiment. After
three blocks of iTBS over M1 (M1-iTBS1800), MEP amplitudes were significantly higher compared with one M1 stimulation
followed by two stimulations over the parieto-occipital vertex.
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sham stimulations (p � 0.050). There-
fore, our data suggest that aftereffects after
iTBS1800 over M1 did not result from de-
layed effects induced by the first M1-iTBS
block but indeed reflected additive effects
resulting from repeated M1 stimulation.

iTBS aftereffects on rsFC
Main experiment
The seed-based whole-brain group analy-
sis showed significant positive coupling of
the stimulated M1 with a bihemispheric
motor network comprising M1 and
premotor areas as well as parts of the so-
matosensory and superior parietal cortex.
Baseline measurements were not signifi-
cantly different between M1 and sham
stimulation sessions. Aftereffects of iTBS
on M1 rsFC were tested by subtracting the
individual baseline whole-brain images
from images obtained after 600, 1200, and
1800 pulses. The flexible factorial analysis
revealed that, compared with sham stim-
ulation, iTBS over M1 was associated with
a significantly stronger increase in rsFC
between M1 and various sensorimotor re-
gions. Local maxima were situated in bi-
lateral SMA and dPMC (superior frontal
sulcus) across all iTBS blocks and less con-
sistently in parts of the somatosensory and
superior parietal cortex (p � 0.05, cluster
level FWE-corrected; Fig. 5A). In contrast,
functional connectivity within the visual
network was not influenced by iTBS over
M1 or the vertex for either session. This
finding indicates that iTBS over M1 did
not lead to global (i.e., brainwide) changes
in resting-state connectivity. Rather, stimu-
lation effects remained within the stimu-
lated M1 network.

We next tested for dose-dependent ef-
fects in a priori defined motor ROIs. We
found significant effects for rsFC between
the stimulated M1 and ipsilateral dPMC:
the increase in M1-dPMC connectivity
was significantly higher after iTBS1800
compared with iTBS600 and iTBS1200
(p � 0.05, small-volume FWE-corrected
on the voxel level; Fig. 6). Furthermore,
the increase in rsFC after M1-iTBS1800
was also significantly higher compared with
sham stimulation (iTBS1800 vs iTBS600: p �
0.027,iTBS1800vsiTBS1200:p�0.001small-
volumeFWE-corrected on the voxel level).
No significant difference was found be-
tween iTBS600 and iTBS1200 within and
between stimulation conditions. Hence,
an additional increase in rsFC between
M1 and ipsilateral dPMC was only evident
after iTBS1800 compared with iTBS600
and iTBS1200, but not between iTBS600
and iTBS1200. No dose-dependent changes
were observed for rsFC between the stim-

Figure 5. Changes in rsFC. M1 compared with sham stimulation, normalized to baseline values. Color bar represents t values.
Only clusters surviving a cluster level FWE correction ( p � 0.05) are shown. A, Main experiment. M1-iTBS led to significantly higher
changes in rsFC of M1 with bilateral premotor areas (dPMC, SMA) after all doses as well as with somatosensory and superior parietal
cortex. B, Supplemental control experiment. iTBS1800 over M1 led to significantly higher correlations in the time courses between
M1 and premotor areas (dPMC, SMA) as well as somatosensory/superior parietal cortex compared with a single M1-iTBS applica-
tion followed by two sham stimulations over the vertex (supplemental control stimulation).

Figure 6. ROI analysis. Dose-dependent changes in rsFC. Contrasts between the increase in rsFC compared with baseline
between iTBS1800 and (A) iTBS600 or (B) iTBS1200. Color bar represents t values. The cross indicates the coordinate where
dose-dependent increases were found for ipsilateral dPMC-M1 rsFC. p � 0.05, small-volume FWE-corrected at the voxel level.
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ulated M1 and contralateral dPMC as well as bilateral SMA and
contralateral M1.

Supplemental control experiment
In the supplemental control experiment, six subjects received
only one iTBS block over M1 followed by two sham stimulations
over the parieto-occipital vertex. Here, the whole-brain group
analysis revealed a stronger increase in connectivity between M1
and bilateral SMA, dPMC, and parts of the somatosensory and
superior parietal cortex after 1800 pulses in the main experiment
(3 � M1 stimulation) compared with 1800 pulses in the control
experiment (one iTBS block over M1 followed by two sham stim-
ulations) (p � 0.048, cluster level FWE-corrected; Fig. 5B). There
was no significant difference between the main experiment (re-
plotted data for n � 6) and the control experiment regarding
iTBS600 and iTBS1200. Similar to our findings regarding MEP
data, these results suggest that aftereffects after iTBS1800 over M1
did not result from delayed effects induced by the first M1-iTBS
block but indeed reflected additive effects resulting from repeated
M1 stimulation.

In summary, our data suggest that iTBS applied over M1 in-
duced an increase of rsFC between the stimulated M1 and pre-
motor areas compared with both baseline and sham stimulation.
Furthermore, connectivity between M1 and the ipsilateral dPMC
also depended on the number of stimuli applied.

Correlation between MEP amplitudes and rsFC
Increases in MEP amplitudes observed between M1-iTBS1800
and M1-iTBS600 or M1-iTBS1200 did not correlate with changes
in rsFC within the sensorimotor network (p 
 0.05, FWE-
corrected for each correlation). This implies that changes in
MEPs (representing changes at the local level) were not directly
related to changes in connectivity of interconnected areas at the
systems level after M1-iTBS.

Discussion
Summary of findings
In line with our hypotheses, we found that the application of
three blocks of iTBS over M1 resulted in a significant increase of
cortical excitability (as reflected by MEP amplitudes) compared
with sham stimulation over the vertex. Importantly, an additive
increase in MEP amplitudes was only observed after the third, but
not the second block of iTBS. Furthermore, rsFC increased after
iTBS between the stimulated M1 and premotor areas (i.e., dPMC
and SMA), and with areas of the somatosensory and superior
parietal cortex. Here, our data also revealed dose-specific changes
after three blocks of iTBS between the stimulated M1 and ipsilat-
eral dPMC. However, dose-dependent changes in excitability did
not correlate with changes in motor network rsFC, suggesting
that iTBS-induced aftereffects observed at the electrophysiologi-
cal level and neural network level are based, at least in part, upon
differential neurobiological mechanisms.

iTBS aftereffects on cortical excitability and their
dose dependency
The application of rTMS offers the opportunity to noninvasively
modulate motor– cortical excitability. Huang et al. (2005) intro-
duced the iTBS protocol, which offers the advantage of enhanc-
ing cortical excitability for �20 min using rather low stimulation
intensities applied over a short period of time. Other groups have
already aimed at amplifying iTBS aftereffects by increasing the
number of iTBS stimuli. For example, Gamboa and colleagues

(2010, 2011) doubled the number of pulses (2 � 600) but did not
find a further increase of facilitatory aftereffects across different
intersession intervals (0, 2, 5, 20 min), compared with 600 pulses.
We observed a similar effect in the present study as there was no
additional increase in MEP amplitudes after two blocks of iTBS
(Fig. 3). Importantly, however, a third block of iTBS led to a
further increase in MEP amplitudes. In contrast to earlier studies,
we did not observe decreases in cortical excitability after repeated
application of iTBS (Gamboa et al., 2010, 2011).

Homeostatic metaplasticity
One frequently used model for explaining the aftereffects of
(multiple) rTMS sessions is the Bienenstock-Cooper-Munro
(BCM) theory (Bienenstock et al., 1982). Accordingly, increased
levels of postsynaptic activity (i.e., long-term potentiation [LTP])
after stimulation are assumed to favor the induction of long-term
depression (LTD) by the next stimulation, thereby preventing an
excessive buildup of LTD or LTP. Such activation history-
dependent effects (“homeostatic metaplasticity”) of neuronal en-
sembles might also underlie rTMS/iTBS aftereffects (Ziemann
and Siebner, 2008). Hence, enhancing cortical excitability within
the motor cortex via rTMS/iTBS might cause a concurrent in-
crease in the threshold for inducing further synaptic plasticity
(LTP-like effects). Such metaplastic effects might explain that
two blocks of iTBS did not lead to a further increase of excitability
(as observed in Gamboa et al., 2010, 2011 and also in the present
study). However, the finding that 1800 pulses of iTBS caused an
additional increase in cortical excitability can only be explained
by overcoming the homeostatic threshold for inducing LTP-like
synaptic plasticity after multiple stimulations.

Dose-dependent effects: cellular level
One potential biological mechanism underlying activation
history-dependent effects of iTBS might lie in dose-dependent
modifications of inhibitory systems (Di Lazzaro et al., 2005; Stagg
et al., 2009; Funke and Benali, 2011). Hamada et al. (2013) sug-
gested that individual differences in iTBS-induced plasticity arise
from the distinct recruitment of inhibitory interneurons. Further
support for the involvement of inhibitory cortical systems stems
from animal studies reporting that TBS alters the expression-
patterns of calcium-binding proteins parvalbumin and calbin-
din. The latter are likely to reflect activity changes within
subgroups of GABAergic inhibitory interneurons in the rat cor-
tex (Benali et al., 2011; Funke and Benali, 2011), which can be
induced by iTBS and become most effective 20 – 40 min after
iTBS (Hoppenrath and Funke, 2013). Furthermore, a recent
study reported dose-specific aftereffects of multiple iTBS appli-
cations on the activity of distinct subgroups of interneurons of
the rat cortex (Volz et al., 2013). Interestingly, the largest sub-
group of these interneurons (i.e., parvalbumin-positive neurons)
was significantly affected after �1800 pulses. Thus, a dose-
dependent decrease of inhibitory interneuron activity could un-
derlie the increase in cortical excitability after iTBS1800.
Additionally, compensatory effects evoked by the first block of
iTBS were shown to be attenuated after further stimulation. For
example, the expression of GAD65, a marker reflecting the level
of synaptic GABA secretion (Soghomonian and Martin, 1998),
was initally increased after iTBS600, possibly compensating for
less somatic activity (e.g., decrease of parvalbumin). However,
GAD65 expression did not further increase after additional
blocks of iTBS (Volz et al., 2013). Therefore, further LTP-like
effects of the second iTBS block might have been prevented or
even reversed into LTD-like effects, as suggested by the BCM rule
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for homeostatic plasticity, e.g., resulting from saturation effects
of LTP-promoting mechanisms or changes in inhibitory in-
terneuron activity (e.g., GAD65 expression). Finally, the effects of
a third iTBS block might also still be weakened because of homeo-
static plasticity, but a simultaneous decrease in cortical inhibition
(e.g., parvalbumin expression) might permit a further potentia-
tion of facilitating aftereffects. Given the similarity in stimulation
protocols and intersession interval (compare Figs. 1-3), such ef-
fects would nicely explain the dose-dependent findings of the
present study.

Dose-dependent effects at near-threshold MEPs
Interestingly, we found that dose-dependent effects of iTBS seem
to be more pronounced when evoking MEPs with near-threshold
intensities (i.e., 90%–110%; Fig. 2). At high intensities, TMS di-
rectly activates the axons of corticospinal neurons (Di Lazzaro et
al., 2008). Such “D-waves” are not modified by changes in corti-
cal excitability (Di Lazzaro et al., 2012), explaining the relatively
small effect of iTBS on high-intensity MEPs observed in the present
study. In contrast, near-threshold TMS activates corticospinal neu-
rons transsynaptically via axonal projections of interneurons.
Therefore, a predominant effect of iTBS on near-threshold
MEPs nicely fits our hypothesis on dose-dependent iTBS af-
tereffects possibly resulting from differential effects on dis-
tinct interneurons.

iTBS aftereffects on rsFC
Previous studies combining rTMS with resting-state fMRI al-
ready reported alterations of rsFC between the stimulated region
and other brain regions after rTMS (Vercammen et al., 2010;
Eldaief et al., 2011; van der Werf et al., 2010). Our data show that
iTBS over M1 increases rsFC between the stimulated M1 and
premotor areas (i.e., dPMC and SMA), as well as areas of the
somatosensory and superior parietal cortex (Fig. 5). Importantly,
this finding was specific for the stimulated motor network, as no
changes were found in connectivity of the visual system. A similar
anatomical selectivity has been reported in studies by showing
that lesion-induced connectivity changes in one network do not
spread over to other networks (Nomura et al., 2010; Sharma et al.,
2009).

A possible explanation for iTBS-induced increases in rsFC
might be the simultaneous induction of neural activity in the
entire motor network during stimulation of M1. Previous studies
frequently reported rTMS-induced changes in neural activity to be
not exclusively local, but also to extend to remote, interconnected
areas (Paus and Wolforth, 1998; Siebner et al., 2000; Bestmann et al.,
2003, 2004, 2005; Suppa et al., 2008; Cárdenas-Morales et al.,
2011). Activity changes in connected regions after iTBS might
result from activity conduction by corticocortical fibers. The re-
gions that showed increased M1-rsFC after iTBS (Fig. 5) are
known to be densely connected to M1 (Stepniewska et al., 1993;
Geyer et al., 2000). Such structural connections might facilitate
coactivation of interconnected regions, thereby modulating the
synchronicity of neural activity between interconnected areas.
Support for this hypothesis stems from studies using repetitive
applications of paired-associative stimulation protocols. Here,
consecutive trials of paired-associative stimulation over M1 and
posterior parietal cortex have been shown to increase functional
connectivity between these two stimulation sites (Veniero et al.,
2013). At a functional level, increased coherence of brain activity
may represent an important neurophysiological mechanism en-
forcing communication between two areas that interact via con-
current input and output channels (Fries, 2005). Thus, an

increase in coherence of brain activity after the simultaneous
activation of interconnected brain areas by iTBS might underlie
increased rsFC in our study.

However, our data revealed no direct correlation between in-
dividual changes in cortical excitability and rsFC. Thus, altered
resting-state connectivity of the stimulated area does not seem to
be linked to rTMS/iTBS-induced changes of excitability on the
level of single subjects. The reason for this remains speculative
(e.g., interindividual variability, different sessions, nonlinear af-
tereffects). However, it should be noted that numerous previous
studies have also found absent (or only rather weak) correlations
between rTMS-induced changes in excitability and aftereffects on
the behavioral level (Ragert et al., 2008; Stefan et al., 2008; Zeller
et al., 2012). This implies that, despite significant effects on the
group level, the individual magnitude of aftereffects regarding
cortical excitability cannot be reliably used to predict more “com-
plex” (behavioral) rTMS aftereffects.

Limitations
We can currently only speculate about the cellular mechanisms
underlying dose-dependent aftereffects. In humans, two nonin-
vasive techniques have previously been used to assess cortical
GABAergic inhibition (i.e., cortical GABA concentration via
magnetic resonance spectroscopy) (Stagg et al., 2009) or GABA-
dependent short-interval intracortical inhibition via double-
pulse TMS (Kujirai et al., 1993). However, magnetic resonance
spectroscopy or short-interval intracortical inhibition are not ca-
pable of differentiating between distinct subpopulations of
GABAergic inhibitory interneurons. As outlined above, this in-
formation would be essential as animal studies reported oppos-
ing effects on somatic GABA concentration (e.g., reflected by
decreased GAD67 levels) and synaptic GABA concentration (e.g.,
reflected by increased GAD65 levels) to underlie the evolution of
dose-dependent iTBS effects.

It could well be that functional connectivity in the activated
motor system (i.e., during a motor task) would have been a better
predictor of excitability aftereffects (Cárdenas-Morales et al.,
2013). However, for the scope of the present study (dose-
dependent iTBS effects), resting-state measurements seem to be
better suited as motor activity before iTBS has rather complex
effects on stimulation-induced changes in excitability (Gentner
et al., 2008; Silvanto and Pascual-Leone, 2008), which would have
strongly biased the results.

Conclusions
In conclusion, our data suggest that the efficiency of iTBS in
enhancing cortical excitability can be increased by applying a
higher number of stimuli (i.e., 1800, but not 1200) compared
with the conventional iTBS protocol in healthy subjects. Interest-
ingly, we found that dose-dependent effects of iTBS seem to be
more pronounced when evoking MEPs with near-threshold in-
tensities, supporting the hypothesis of interneuron networks un-
derlying iTBS aftereffects. Furthermore, we observed M1-iTBS to
impact on rsFC within the motor system, i.e., increasing connec-
tivity of the stimulated M1, particularly with premotor areas (i.e.,
dPMC, SMA). Here, rsFC between M1 and ipsilateral dPMC in-
creased dose-dependently (after 1800 pulses). However, the sig-
nificance of dose-dependent rTMS-induced changes in MEPs
and rsFC regarding behavioral rTMS effects remains to be further
elucidated to fully determine the neuromodulatory potential of
iTBS1800 on motor function in health and disease.
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