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Loops are abundant in native RNA structures and prolifeciise to the unfolding transition.
By including a statistical weight- £~ ¢ for loops of length? in the recursion relation for the
partition function, we show that the calculated heat cdpalgpends sensitively on the presence
and value of the exponent even of short tRNA. For homo-RNA we analytically calculéte
critical temperature and critical exponents which extahiton-universal dependence @n

We calculate the partition function of the RNA secondaryature using a formulation
that allows to accurately include the statistics of terriimernal, as well as multi-loop’s.
The statistical weight of a secondary structure depends®frée energy of base pair for-
mation, which has been determined experimentabiyt also on the entropy loss of loop
formation. Polymer theory predicts the configurationalgigtiof a loop consisting of
bases to decay #s © where the exponeiatis universal. The loop exponentdgie., = 3/2
for an ideal polymer andsaw = dv ~ 1.76 for an isolated self avoiding loop. However,
helices which emerge from the loop decrease the number digcoations and conse-
quently increase even furthef For instance, one obtains = 2.06, c; = 2.16 for the
two types of loops which appear in the native structure obytRINA-phe, see Fig. 1b.
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Figure 1. a) Schematic representation of a secondary RNi&state. Solid lines denote the RNA backbone,
broken lines base pairs, and gray lines non-nested backbamés that are counted by the variablé; here

M = 11. b) Experimental heat capacity of the tRNA-phe of yeast faCNconcentration20 mM (triangles)
and 150 mM (squares}. Solid lines show results using Eq. (1) with loop exponents: 3.0, 2.16, 1.76, 0
(from left to right), compared with the results from tkiienna package ° which uses a linearized multi-loop
entropy (dashed curve). The dotted curve is obtained with 3 and the same energy parameter set as for the
solid curves, except for the loop initiation penalty whichsromitted. The inset sketches the low-temperature
secondary RNA structure obtained from Eq. (1) in agreeméthtexperimental crystal-structure studies.
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A valid secondary structure is a list of all base pairs, wheseudo-knofsare not
allowed,i. e. for any two base pair§i,j) and(k,l) with i < j, k < I, andi < k we
have eitheri < k < I < jori < j < k < [. In our notation, the canonical partition
functionQ%— of a sub-strand from bageat the 5’ end through at the 3’ end depends on
the non-nested backbone-length” & see Fig. 1a. The recursion relations for the partition
function read then

J—Nicop
M+1 _ AM M 0
Qi1 =Qi; + Z Qix-1Qk, 41 and (1a)
k=it M+1
(J—k—Nioop)/2 ( : j—k—1—2h QP i
0 _ k,j+1 +1+h,j—
Qkj+1 = > Wik+h,j+1-h) > (m+2)° (1b)
h=1 m=1

Eq. (1a) describes elongation of an RNA structure by eittigliray an unpaired base
(first term) or by adding an arbitrary sub-stra@iﬂl that is terminated by a helix.
Eq. (1b) constructQQJ+1 by closing structures withn non-nested bonds, summed up
in QY145 bY @ helix of lengthh, which is weighted with a sequence dependent
Boltzmann factorw. Nioop = 3 is the minimum number of bases in a terminal loop. The
unrestricted partition function of the entire RNA is given By = >, {)‘fN. We im-

plement the recursion relation, Eq. (1), numerically usirfgee energy parameter efn
Fig. 1b we show the experimental heat capacity of the tRNA-phyeast compared with
our predictions from Eq. (1) using = T9?(kgT In Zy)/0T?. The heat capacity peak
corresponds to the gradual melting of the secondary streicAlthough the RNA consists
of just 76 nucleotides and is therefore far from the thernmaghyic limit where one expects
asymptotic effects to be important, the loop exponehas drastic effects. Increasing
from ¢ = 0 to ¢ = 3 destabilizes the structure and decreases the melting tatmpe by
more than30 K (solid lines). It is difficult to directly compare experimahand theoret-
ical curves as the energy parameters were determined/lalaCl concentratiof) while
experimental data is only available #imM and 150 mM. Current implementations of
secondary structure prediction or partition function aédtion approximate the entropy
for multi-loops by an affine functiom(y* M=) ~ &, 4 6, M.%>° This in principle corre-
sponds to the usage of the loop exponest 0, as is corroborated by the near agreement
of the results from the Vienna pack&geroken line) with the results from Eq. (1) using
¢ = 0. Most strikingly, the melting temperature as well as thettviahd the height of the
peaks depend dramatically on the loop exponent. Similaietthave been carried out for
DNA° where the loop exponent has a much weaker effect on deratucairves.

In a second step, we now consider homo-polymeric RNA, whichtie modeled exper-
imentally by using a synthetic sequence like AUAUAU. .. Tloaljs to extract the critical
asymptotic behavior embodied in Eq. (1) in the thermodygdmiit. We simply give a
statistical weightv = exp[—¢/(kpT)] to each base pair. This renders the system transla-
tionally invariant and allows to writ€);”; as@Q}/ with N = j — i being the total number
of backbone segments of the sub-strand ranging frahtough;. This can be viewed
as a coarse-graining approximation for natural or randorA Rbbve the glass transition.
To proceed, we switch to the grand canonical ensemble wherare able to study the
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Figure 2. a) Phase diagram for three different values of @b kxponent as a function of the base pairing
weightw and force fugacitys. The dots denote the unfolding transition in the absencextefeal force,i. e.

s = 1, which is considered in b) and c): Temperature dependenteedd) specific heat’ and c) fraction of
bound base8 for ¢ = 2.3. The insets show the third derivative¥” = d3C/dT? and¢’”’ = d30/dT which
clearly exhibit singular behavior. Squares denote nurakeealuation of Eq. (2). The leading (solid lines) and
next-leading (dashed line) order of the expansion ardlincare shown, according to which’”” diverges with
the exponeng = 2/3 for ¢ = 2.3 and@’” is characterized by the exponent= 1/3.

thermodynamic limit. The grand canonical partition can alewalated exactly

Z(z,5) = i i Novqu = e ®)
= 1 — szk(2)

wherex(z) is determined by the equatien= 1 + w/kLi.(zk). Lic(z) = Y07, 2™ /n¢
is the polylogarithm. The force fugacityis s = 1 if no force is applied to the ends and
s > 1if the molecule is stretched. In Fig. 2a we show the resultingse diagram of RNA
in terms ofw ands for different values of the loop exponent We observe a very weak
phase transition only < ¢ < ¢* with ¢* ~ 2.479. Forc < 2, the RNA is always in the
folded state, whereas fer> ¢* RNA is always unfolded, irrespective of the temperature.
The critical exponents as well as the order, which is at l&ast of the phase transition
depend on the loop exponenand are calculated exactly.

The conclusion is that while the dependence of critical progs on the loop exponent
c is experimentally and numericalfydifficult to access and therefore largely irrelevant,
the dependence of non-critical propertiescas important.
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