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Loops are abundant in native RNA structures and proliferateclose to the unfolding transition.
By including a statistical weight∼ ℓ−c for loops of lengthℓ in the recursion relation for the
partition function, we show that the calculated heat capacity depends sensitively on the presence
and value of the exponentc, even of short tRNA. For homo-RNA we analytically calculatethe
critical temperature and critical exponents which exhibita non-universal dependence onc.

We calculate the partition function of the RNA secondary structure using a formulation
that allows to accurately include the statistics of terminal, internal, as well as multi-loops.1

The statistical weight of a secondary structure depends on the free energy of base pair for-
mation, which has been determined experimentally2, but also on the entropy loss of loop
formation. Polymer theory predicts the configurational weight of a loop consisting ofℓ
bases to decay asℓ−c where the exponentc is universal. The loop exponent iscideal = 3/2
for an ideal polymer andcSAW = dν ≃ 1.76 for an isolated self avoiding loop. However,
helices which emerge from the loop decrease the number of configurations and conse-
quently increasec even further.3 For instance, one obtainsc1 = 2.06, c4 = 2.16 for the
two types of loops which appear in the native structure of yeast tRNA-phe, see Fig. 1b.
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Figure 1. a) Schematic representation of a secondary RNA structure. Solid lines denote the RNA backbone,
broken lines base pairs, and gray lines non-nested backbonebonds that are counted by the variableM ; here
M = 11. b) Experimental heat capacity of the tRNA-phe of yeast for NaCl concentrations20mM (triangles)
and150 mM (squares).4 Solid lines show results using Eq. (1) with loop exponentsc = 3.0, 2.16, 1.76, 0
(from left to right), compared with the results from theVienna package 5 which uses a linearized multi-loop
entropy (dashed curve). The dotted curve is obtained withc = 3 and the same energy parameter set as for the
solid curves, except for the loop initiation penalty which was omitted. The inset sketches the low-temperature
secondary RNA structure obtained from Eq. (1) in agreement with experimental crystal-structure studies.
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A valid secondary structure is a list of all base pairs, wherepseudo-knots6 are not
allowed, i. e. for any two base pairs(i, j) and(k, l) with i < j, k < l, andi < k we
have eitheri < k < l < j or i < j < k < l. In our notation, the canonical partition
functionQMi,j of a sub-strand from basei at the 5’ end throughj at the 3’ end depends on
the non-nested backbone-lengthM ,7, 8 see Fig. 1a. The recursion relations for the partition
function read then

QM+1
i,j+1 = QMi,j +

j−Nloop∑

k=i+M+1

QMi,k−1Q
0
k,j+1 and (1a)

Q0
k,j+1 =

(j−k−Nloop)/2∑

h=1

w
(k,j+1)
(k+h,j+1−h)

j−k−1−2h∑

m=1

Qmk+1+h,j−h
(m+ 2)c

. (1b)

Eq. (1a) describes elongation of an RNA structure by either adding an unpaired base
(first term) or by adding an arbitrary sub-strandQ0

k,j+1 that is terminated by a helix.
Eq. (1b) constructsQ0

k,j+1 by closing structures withm non-nested bonds, summed up
in Qmk+1+h,j−h, by a helix of lengthh, which is weighted with a sequence dependent
Boltzmann factorw. Nloop = 3 is the minimum number of bases in a terminal loop. The
unrestricted partition function of the entire RNA is given by ZN =

∑
M QM0,N . We im-

plement the recursion relation, Eq. (1), numerically usinga free energy parameter set.2 In
Fig. 1b we show the experimental heat capacity of the tRNA-phe of yeast compared with
our predictions from Eq. (1) usingC = T∂2(kBT lnZN )/∂T 2. The heat capacity peak
corresponds to the gradual melting of the secondary structure. Although the RNA consists
of just 76 nucleotides and is therefore far from the thermodynamic limit where one expects
asymptotic effects to be important, the loop exponentc has drastic effects. Increasingc
from c = 0 to c = 3 destabilizes the structure and decreases the melting temperature by
more than30 K (solid lines). It is difficult to directly compare experimental and theoret-
ical curves as the energy parameters were determined at1 M NaCl concentration2, while
experimental data is only available at20 mM and150 mM. Current implementations of
secondary structure prediction or partition function calculation approximate the entropy
for multi-loops by an affine functionln(yMM−c) ≈ δ0 + δ1M .5, 9 This in principle corre-
sponds to the usage of the loop exponentc = 0, as is corroborated by the near agreement
of the results from the Vienna package5 (broken line) with the results from Eq. (1) using
c = 0. Most strikingly, the melting temperature as well as the width and the height of the
peaks depend dramatically on the loop exponent. Similar studies have been carried out for
DNA10 where the loop exponent has a much weaker effect on denaturation curves.

In a second step, we now consider homo-polymeric RNA, which can be modeled exper-
imentally by using a synthetic sequence like AUAUAU. . . The goal is to extract the critical
asymptotic behavior embodied in Eq. (1) in the thermodynamic limit. We simply give a
statistical weightw = exp[−ε/(kBT )] to each base pair. This renders the system transla-
tionally invariant and allows to writeQMi,j asQMN with N = j − i being the total number
of backbone segments of the sub-strand ranging fromi throughj. This can be viewed
as a coarse-graining approximation for natural or random RNA above the glass transition.
To proceed, we switch to the grand canonical ensemble where we are able to study the
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Figure 2. a) Phase diagram for three different values of the loop exponentc as a function of the base pairing
weightw and force fugacitys. The dots denote the unfolding transition in the absence of external force,i. e.
s = 1, which is considered in b) and c): Temperature dependence ofthe b) specific heatC and c) fraction of
bound basesθ for c = 2.3. The insets show the third derivativesC′′′ = d3C/dT 3 andθ′′′ = d3θ/dT 3 which
clearly exhibit singular behavior. Squares denote numerical evaluation of Eq. (2). The leading (solid lines) and
next-leading (dashed line) order of the expansion aroundTcr are shown, according to whichC′′′ diverges with
the exponentχ = 2/3 for c = 2.3 andθ′′′ is characterized by the exponentλ = 1/3.

thermodynamic limit. The grand canonical partition can be calculated exactly

Z(z, s) =

∞∑

N=0

∞∑

M=0

zNsMQMN =
κ(z)

1 − szκ(z)
, (2)

whereκ(z) is determined by the equationκ = 1 + w/κLic(zκ). Lic(x) =
∑∞

n=1 x
n/nc

is the polylogarithm. The force fugacitys is s = 1 if no force is applied to the ends and
s > 1 if the molecule is stretched. In Fig. 2a we show the resultingphase diagram of RNA
in terms ofw ands for different values of the loop exponentc. We observe a very weak
phase transition only if2 < c < c∗ with c∗ ≃ 2.479. Forc < 2, the RNA is always in the
folded state, whereas forc > c∗ RNA is always unfolded, irrespective of the temperature.
The critical exponents as well as the order, which is at leastfour, of the phase transition
depend on the loop exponentc and are calculated exactly.

The conclusion is that while the dependence of critical properties on the loop exponent
c is experimentally and numerically11 difficult to access and therefore largely irrelevant,
the dependence of non-critical properties onc is important.
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