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Correlation Effects in Protein-Protein Recognition

Hans Behringer and Friederike Schmid

Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany
E-mail: {behringer, schmid}@physik.uni-bielefeld.de

Correlation effects in the distribution of hydrophobic andpolar residues are investigated within
an idealised coarse-grained model for the recognition of two rigid biomolecules such as pro-
teins. To this end, a two-stage approach is adopted where thebiomolecules are first optimised
with respect to each other and afterwards their selectivityis tested in the presence of other
molecules. Correlations lead to different optimum characteristic lengths of the hydrophobic
and polar patches for the design of the two biomolecules on the one hand and their selectivity
in the presence of other molecules on the other hand.

1 Introduction

Biomolecular recognition, that is the ability of a biomolecule to interact specifically with
another molecule in an heterogeneous environment of structurally similar rival molecules,
is an essential component in biological systems. The recognition process between two
molecules is governed by a complicated interplay of non-covalent interactions of strengths
comparable to the thermal energy1. This implies that the study of idealised models with
methods from statistical physics might lead to valuable insight into this problem.

2 Model and General Approach

In this work we consider protein-protein recognition on a coarse-grained level in the frame-
work of idealised models. The biomolecules are assumed to undergo no refolding during
the association process which is a justified assumption for most protein-protein recognition
processes1. Motivated by the observation that hydrophobicity is the major driving force in
molecular recognition1 we describe the type of the residue at the positioni = 1, . . . , N of
the interface by a binary variableσi ∈ {±1} for the target molecule and byθi ∈ {±1} for
the interaction partner2. We then model the energetics at the two-dimensional interface by

H(σ, θ;S) = −ε
N∑

i=1

1 + Si
2

σiθi (1)

as a direct contact interaction of strengthε. The variableSi takes on the two values±1
and describes the local fit of the shape of the molecules at theinterface resulting from a
rearrangement of the amino acid side chains when the complexis formed1.

To study the recognition process between two rigid biomolecules we adopt a two-stage
approach. For a fixed target sequenceσ(t) = (σ

(t)
1 , . . . , σ

(t)
N ) we first design an ensemble

of probe moleculesθ at a design temperature1/βD leading to the distributionP (θ|σ(t)) =
1
ZD

∑
S exp

(
−βDH(σ(t), θ;S)

)
. In a second step the free energy difference of association

at temperature1/β is calculated for the interaction of the probe ensemble withthe target
moleculeσ(t) and a structurally different rival moleculeσ(r). In this step the free energy of
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the interaction of the moleculeσ(α) with a particular probe sequenceθ has to be averaged
with respect to the distributionP (θ|σ(t)) giving finally the selectivity∆F = Ftarget−Frival.
A negative∆F then signals recognition of the target.

For the majority of real protein-protein complexes the appearance of extended but fairly
small patches of residues of the same type has been reported3. Biomolecular binding seems
also to be strongly influenced by small-scale structures4. We therefore consider molecules
which have correlated recognition sites at the interface with extended patches of residues
of the same type. This can be incorporated into our model by adding additional correlation
terms like

Hcor = −γ
∑

〈i,j〉
θiθj − µ

∑

i

θi. (2)

to the Hamiltonian of the system. The correlation parameters γ andµ (for the differ-
ent types of molecules) are then used to fix the hydrophobicity and correlation length on
the recognition sites. The average extension of the patchesof residues from the same
class is used as a measure for the correlation length of the finite system. Introducing the
complementarity parameterK =

∑
i σiθi which measures the structural fit of the two

biomoleculesσ andθ at the interface, the selectivity averaged over all targetsand rivals
with the same correlation properties turns out to be the negative difference between the
averaged complementarity with the target and the rival molecules, respectively5.

3 Results

In this section molecular recognition for target and rival molecules with a fixed average hy-
drophobicityh = 0.4 per residue and a fixed (to length unity normalised) correlation length
λ = 0.263 is considered within the model discussed above. The selectivity is studied as a
function of the correlation length of the recognition site of the probe molecules. Figure 1
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Figure 1. Distribution of the complementarity of the probe molecules with the target molecules (solid curve) and
the rival molecules (shaded curve) for uncorrelated (left)and correlated probe molecules (with correlation length
λp = 0.25, right).

shows the distributions of the complementarities. For uncorrelated probe molecules the
distribution for the complementarity with the target molecules is clearly separated from
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the one with the rival molecules and shifted to larger values. This indicates the overall
recognition ability of the system. A moderate increase of the correlation length on the
probe molecules shifts the distribution to larger values ofthe complementarity so that an
increased selectivity is expected. The first moments of the distributions are shown in fig-
ure 2. The average complementarity of the probe molecules with the target is always larger
than that of the probe molecules with the rival. In the extreme cases where the correlation
length tends to the minimum and maximum possible values the two averages become iden-
tical indicating that selectivity is lost as the probe molecules are not structured any more
with respect to a particular molecule. The selectivity as shown in figure 2 has an optimum
at a correlation length that is shifted below the value corresponding to the optimum of the
complementarity with the target molecules. A smaller correlation length implies the ap-
pearance of an increased number of smaller patches on the recognition site of the probe
molecule and hence an entropic profit for the interaction with the target due to more possi-
ble ways to align each other favourably. This effect only influences the contributions from
the target-probe interactions due to the optimisation during the design step. The rival-probe
interaction is not optimised and hence it is insensitive to amatching of structure elements.
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Figure 2. Upper part: Complementarity with the target molecules (solid curve) and the rival molecules (dashed
curve) as a function of the (normalised) correlation lengthof the probe molecules (the fixed correlation length of
the target and rival molecules is shown by the circle). Lowerpart: Resulting selectivity of the system.
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