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The nucleosome is the basic compacting unit of chromatin, a complex structure that enables
DNA to fit in the eucaryotic cell nucleus. Because many biological processes require free DNA
as a substrate, the nucleosome has to undergo conformational transitions to allow the DNA
target sites to be exposed. To obtain insight into the globaldynamics of the nucleosome, mi-
crosecond timescale coarse-grained molecular dynamics isperformed. Here we report a princi-
pal component analysis (PCA) realised on a 5µs coarse-grained molecular dynamics trajectory
to identify the global motions obtained in the nucleosome.

1 Introduction

In the nucleosome, 147-bp DNA are wrapped almost twice around a protein core consist-
ing of eight histone proteins, one tetramer H3-H4 and two dimers H2A-H2B. The histone
protein core, composed mainly ofα-helices, is very stable in contrast to the non-structured
histone N-terminal tails, that pass between the DNA superhelix turns. Despite the high
number of interactions between nucleosomal DNA and the surface of the protein core,
nucleosomal DNA can become free to be processed by DNA binding proteins involved in
DNA transcription, replication, recombination or repair.The mechanisms underlying DNA
target site exposure are still under debate. One proposed mechanism, based on single-
nucleosome FRET evidence, postulates that significant pieces of nucleosomal DNA (up
to 70 bp) can transiently detach from the protein core1, 2. These reversible conformational
changes, believed to occur on the 50-250 ms timescale, couldbe responsible for the pro-
gressive invasion of the nucleosome by DNA-binding proteins.

To characterize the conformational transitions leading toDNA accessibility, it is im-
portant to understand nucleosome dynamics at equilibrium and on a long timescale. For
this purpose, we performed coarse-grained (CG) molecular dynamics (MD) simulations
using a model specifically developed for the nucleosome3. Classical all-atom MD of large
systems such as the nucleosome is currently limited to about100 nanosecond timescale,
while with the present model of the nucleosome, a one-bead representation together with
the absence of explicit water, MD simulations of the nucleosome can be carried out over
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Figure 1. All-atom and coarse-grained representation of the nucleosome (structure 1KX5). The residues are
represented by single spherical beads centered onα-carbon for amino acids and on phosphorus for nucleic acids.
The histones and the DNA are represented in different colors. The nucleosome is symmetric with respect to the
so-called dyad axis.

several microseconds. In the present proceedings, after briefly presenting the CG model,
we report a principal component analysis (PCA) performed ona 5µs CG MD trajectory
enabling the identification of slow collective motions in the nucleosome.

2 Method

A detailed description of the CG model and its force-field parameterization is reported in
a previous study3. In this CG model, protein residues and DNA nucleotides are repre-
sented as single beads (Figure 1) interacting through harmonic (for neighboring) or Morse
(for nonbonded) potentials which depend on the interbead distances. This model shares
similarity with Gaussian network models (GNM) but, in contrast to GNM, the Morse de-
scription of nonbonded interactions allows realistic anharmonic dynamics of the system.
Force-field parameters were estimated by Boltzmann inversion of the corresponding radial
distribution functions computed from a reference 5-ns all-atom MD simulation and further
refined to obtain agreement with all-atom MD root-mean-square fluctuations (RMSF).

Coarse-grained MD simulations were performed using the DLPOLY package5. The
starting structure used was the 1KX5 structure4 energy-minimized in solvent using the
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Charmm627 all-atom force-field. A Langevin bath was used to account for the frictional
and stochastic effects of the solvent. The reduction of the system allowed us to apply a
20-fs timestep. The simulation was carried out at 300 K during 5µs.

Principal component analysis, also called essential dynamics analysis7, provides a way
to identify the most significant directions of motions in thesystem. The method consists
in diagonalizing the symmetric 3N×3N covariance matrix derived from the MD trajectory,
whose elements are defined asCij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 wherexi andxj are the
Cartesian coordinates of the atomi andj. The resulting eigenvectors give the direction and
their corresponding eigenvalues quantify the magnitude ofthe fluctuations. Eigenvectors
with the highest eigenvalues are called the principal components or principal modes. Here,
PCA was performed with the GROMACS package on a 5-µ CG MD trajectory. The tails
were excluded from the analysis since their high mobility masked the motion of the DNA
and the protein core.

2.1 Results and Discussion

Figure 2. Global motions of the nucleosome. A and a: initial nucleosome 1KX5 structure. B–D and b–d:
nucleosome conformations deformed along the first three modes. Each residue is colored with respect to its root-
mean-squared fluctuation (RMSF) along the mode; blue and redcorrespond to low and high RMSFs, respectively.

Figure 2 shows the directions of the motions for the first three principal components.
Residues are colored with respect to their RMSF along each eigenvector. The ten eigen-
vectors with the largest eigenvalues describe 22 % of the total protein motion, a smaller
fraction than what is usually observed for other systems such as proteins. This result may
be the consequence that important structural transitions in the nucleosome occur on a larger
timescale than 5µs.

The motion along the first mode corresponds to a bending out ofthe plane of the nu-
cleosome that mostly involves i) both extremities (ten basepairs) of the DNA superhelix;
ii) the facing DNA stretches located on the respective opposite turn; and iii) amino acids of
H3, H3’, H4 and H4’ interacting with these regions. Simultaneously to the bending of this
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region, several residues centered around the dyad axis (i.e., ≈10-bp of DNA and residues
from H3 and H3’) translate in the opposite direction to the out-of-plane bending motion.
The most rigid regions along this mode are residues that belong to the histones H2B and
the DNA basepairs interacting with them.

The second principal component describes a rocking motion center of which is located
on the dyad axis. As in the first mode, this mostly involves both extremities of the DNA
superhelix, the facing DNA stretches located on the respective opposite turn, and amino
acids interacting with these regions, while histones H2B and interacting DNA residues
contribute less to this motion.

Finally, the third principal mode, represents a deformation of the nucleosome in the
plane of the nucleosome. In this motion, the DNA superhelix extremities and amino acids
interacting with these regions participate in the stretching of the nucleosome in a direction
perpendicular to the dyad axis while H2B residues and the DNApart interacting with them
contributes to stretching the nucleosome in the direction of the dyad axis.

3 Outlook

Further work is ongoing to investigate, in particular, the spontaneous unwrapping of nu-
cleosomal DNA extremities from the nucleosome protein core. We also plan to study the
interactions between several nucleosomes in a nucleosomalarray within the context of the
chromatin fiber.
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