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Computer Simulation of Biomolecular Systems:
Where Do We Stand?

Wilfred F. van Gunsteren and Daan P. Geerke

Laboratory of Physical Chemistry, Swiss Federal Instituteof Technology, ETH,
8093 Zurich, Switzerland

E-mail: wfvgn@igc.phys.chem.ethz.ch

The four major aspects that determine the quality of the ensemble of molecular conformations
as obtained from biomolecular simulation are reviewed and illustrated with examples.

1 Introduction

Over the past three decades, simulation of the dynamics of biomolecular systems at the
atomic level has developed from short-time simulations of simple molecular models [1, 2]
to orders of magnitude larger simulations based on detailedand much more accurate molec-
ular models [3]. The improved accuracy has turned moleculardynamics (MD) simulation
into a standard method for an atomic interpretation of experimental data on biomolecu-
lar systems [4]. Yet, much progress is still to be made in order to use MD simulation to
accurately predict various properties of biomolecular systems [5].

Figure 1.
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Figure 1 illustrates the four choices to be made when defininga molecular model for
molecular simulation: (1) which degrees of freedom are to beexplicitly simulated; (2)
how are the forces governing the motion along these degrees of freedom calculated in a
necessarily approximative manner; (3) how is the motion of the system propagated in time
such that the relevant configurational space is widely and sufficiently sampled; (4) how
are the spatial and thermodynamic boundary conditions imposed upon the motion of the
system. In this short paper we illustrate the state of the artwith respect to these four aspects
of modelling using examples from our own work.

Figure 2.

2 Choice of Degrees of Freedom

In Figure 2, the importance of explicitly including solventdegrees of freedom is illustrated.
It compares the puckering residence time of theχ2 torsional angle of residues2Pro and
7Pro in the cyclic polypeptide antamanide as obtained from experiment [6] with that as
obtained from simulations using either a mean implicit solvent [7] or explicit water solvent
molecules [8]. Using stochastic dynamics (SD) simulation with a friction coefficient of 19
ps−1, typical for water at room temperature and pressure, the puckering rate is ten times too
high compared to experiment. Using a mean solvation model itcould only be reduced by
either using an artificially high friction coefficient of 1000 ps−1 or by artificially increasing
the torsional barrier by about 2.5 kJ mol−1. These unjustified changes in the molecular
model can, however, be avoided by explicitly simulating thewater degrees of freedom,
which results in the correct puckering rate (see Figure 2).
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Figure 3.

Figure 4.

3 Choice of Interatomic Interactions

In Figure 3, it is illustrated that the free energy of aqueoussolvation of the side chains
of polar amino acid residues is insufficiently negative for some widely used biomolecu-
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lar force fields [9], which would lead to incorrect partitioning between polar and apolar
solvents and would over-stabilize folded protein structure. Therefore, more recent force
fields, such as the GROMOS 53A6 one [10], lead to a better description of the folding
equilibrium [11].

Figure 4 illustrates that inclusion of atomic polarisability will be essential to reach
an improved level of accuracy, i.e. beyond 1 kJ mol−1. The experimentally observed
non-linear behaviour of the free enthalpy of solvation of argon in water-ethylene glycol
mixtures as function of the ethylene glycol mole fraction isonly reproduced in MD sim-
ulations using polarisable molecular models (COS models),whereas a more or less linear
behaviour is obtained when using non-polarisable models [12]. Calculation of the solute-
solvent entropy of solvation shows that the non-linearity is an entropic effect, which cannot
be modelled using a mean or continuum solvent model.

Figure 5.

4 Sufficient Searching and Sampling of Conformational Space

In Figure 5 it is illustrated that even 100 ns of MD simulationof an eight-residueβ-peptide
in methanol at room temperature may be insufficient to find themost stable 2.512-P-helical
fold [13]. Starting the MD simulation at 298 K from this helical structure shows a low
root-mean-square deviation (rmsd) from this fold, whereasstarting at 298 K from an ex-
tended conformation the helical structure is not populated. At 340 K the sampling of
conformational space is much widened: a large number of (un)folding events is observed
and the helical conformation is present 35% of the time. Thisexample illustrates the need
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for search and sampling enhancement techniques, of which Figure 6 classifies the most
important ones [14].

Figure 6.

5 Choice of the Appropriate Thermodynamic State Point

Figure 7 illustrates the effect of pH on the folding equilibrium of a seven residueβ-peptide
in methanol [15]. The only protonisable groups of this peptide with aliphatic side chains
are the amino- and carboxy-termini. The backbone atom-positional root-mean-square de-
viation of the MD trajectory structures from the most stable(both computationally and
experimentally) 314-helical fold shows that only if the protonation state corresponds to the
experimental pH, the helical fold is the most populated one.

6 Conclusion

We have briefly illustrated that the following factors are essential to obtain a high quality
ensemble of molecular conformations in a molecular simulation.

1. Inclusion of the relevant degrees of freedom: solvent andco-solvents.

2. Use of a thermodynamically calibrated force field, with a solvent model that is com-
patible with the solute one, and possibly inclusion of polarisability.

3. Sufficient and Boltzmann-weighted sampling of conformational space.
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Figure 7.

4. Use of the appropriate (experimental) thermodynamic state point and spatial boundary
conditions: temperature, pressure, pH, ionic strength, co-solvents, etc.
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