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Lyapunov Instabilities of Extended Systems

Hong-liu Yang and Günter Radons

Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
E-mail: {hongliu.yang, radons}@physik.tu-chemnitz.de

Here we review our current results on Lyapunov spectra and Lyapunov vectors (LVs) of various
extended systems with continuous symmetries. The major part of the article is devoted to the
study of Lennard-Jones fluids in one- and two-dimensional spaces. By using the newly intro-
duced LV correlation functions, we demonstrate that the LVswith λ ≈ 0 are highly dominated
by a few components with low wave numbers, which implies the existence of hydrodynamic
Lyapunov modes in soft-potential systems. Despite the wave-like character of the LVs, no
step-like structure exists in the Lyapunov spectrum of the systems studied here, in contrast to
the hard-core case. Studies on dynamical LV structure factors conclude that HLMs in Lennard-
Jones fluids are propagating. We also briefly outline our current results on the universal features
of HLMs in a class of spatially extended systems with continuous symmetries. HLMs in Hamil-
tonian and dissipative systems are found to differ both in respect of spatial structure and in the
dynamical evolution.

1 Introduction

One of the most successful theories in modern science is statistical mechanics, which al-
lows us to understand the macroscopic (thermodynamic) properties of matter from a sta-
tistical analysis of the microscopic (mechanical) behaviour of the constituent particles. In
spite of this, using certain probabilistic assumptions such as Boltzmann’sStosszahlansatz
causes the lack of a firm foundation of this theory, especially for non-equilibrium statistical
mechanics. Fortunately, the concept of chaotic dynamics developed in the 20th century is
a good candidate for accounting for these difficulties. Instead of the probabilistic assump-
tions, the dynamical instability of trajectories can make available the necessary fast loss
of time correlations, ergodicity, mixing and other dynamical randomness. It is generally
expected that dynamical instability is at the basis of macroscopic transport phenomena and
that one can find certain connections between them. Some beautiful theories in this di-
rection were already developed in the past decade1, where the Lyapunov exponents were
related to certain transport coefficients.

Very recently, molecular dynamics simulations on hard-core systems revealed the ex-
istence of regular collective perturbations corresponding to the smallest positive Lyapunov
exponents (LEs), named hydrodynamic Lyapunov modes2. This provides a new possibil-
ity for the connection between Lyapunov vectors, a quantitycharacterizing the dynamical
instability of trajectories, and macroscopic transport properties. A lot of work3–8 has been
done to identify this phenomenon and to find out its origin. The appearance of these modes
is commonly thought to be due to the conservation of certain quantities in the systems
studied3–7. A natural consequence of this expectation is that the appearance of such modes
might not be an exclusive feature of hard-core systems and might be generic to a large
class of Hamiltonian systems. However, until very recently, these modes have only been
identified in the computer simulations of hard-core systems3, 8.

In this article, we give an overview of our recent results on Lyapunov instabilities
of various extended systems with continuous symmetries, especially on the identification
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and characterization of hydrodynamic Lyapunov modes. The major part of the article is
devoted to the investigation of Lennard-Jones fluids, wherein the HLMs are, for the first
time, identified in systems with soft-potential interactions9, 10. Our new technique, based
on a spectral analysis of LVs, shows strong evidence that hydrodynamic Lyapunov modes
do exist in these cases. In section 6, we will go beyond the many-particle systems and
show some universal features of HLMs in a large class of extended systems. Details of
these investigations can be found in our publications11–13.

2 Numerical Method for Determining Lyapunov Exponents and
Vectors

2.1 Standard Method

The equations of motion for a many-body system may always be written as a set of first
order differential equationṡΓ(t) = F (Γ(t)), whereΓ is a vector in theD-dimensional
phase space. The tangent space dynamics describing infinitesimal perturbations around a
reference trajectoryΓ(t) is given by

δΓ̇ = M(Γ(t)) · δΓ (1)

with the JacobianM = dF
dΓ . The time averaged expansion or contraction rates ofδΓ(t) are

given by the Lyapunov exponents. For aD−dimensional dynamical system there exist in
totalD Lyapunov exponents forD different directions in tangent space. The orientation
vectors of these directions are the Lyapunov vectorse(α)(t), α = 1,· · · ,D.

For the calculation of the Lyapunov exponents and vectors the offset vectors have to be
reorthogonalized periodically, either by means of Gram-Schmidt orthogonalization or QR
decomposition14. To obtain scientifically useful results, one needs large particle numbers
and long integration times for the calculation of certain long time averages. This enforces
the use of parallel implementations of the corresponding algorithms. It turns out that the
repeated reorthogonalization is the most time consuming part of the algorithm.

2.2 Parallel Realization

As parallel reorthogonalization procedures we have realized and tested several parallel
versions of Gram-Schmidt orthogonalization and of QR factorization based on blockwise
Householder reflection. The parallel version of classical Gram-Schmidt (CGS) orthogo-
nalization is enriched by a reorthogonalization test whichavoids a loss of orthogonality
by dynamically using iterated CGS. All parallel proceduresare based on a 2-dimensional
logical processor grid and a corresponding block-cyclic data distribution of the matrix of
offset vectors. Row-cyclic and column-cyclic distributions are included due to parameter-
ized block sizes, which can be chosen appropriately. Special care was also taken to offer
a modular structure and the possibility for including efficient sequential basic operations,
such as those from BLAS, in order to efficiently exploit the processor or node architecture.

Performance tests of parallel algorithms have been done on aBeowulf cluster, a cluster
of dual Xeon nodes, and an IBM Regatta p690+. Results can be found in15.
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3 Correlation Functions for Lyapunov Vectors

In the spirit of molecular hydrodynamics16, we introduced in9, 10 a dynamical variable
calledLV fluctuation density,

u(α)(r, t) =

N∑

j=1

δx
(α)
j (t) · δ(r − rj(t)), (2)

whereδ(z) is Dirac’s delta function,rj(t) is the position coordinate of thej-th particle,

and{δx(α)
j (t)} is the coordinate part of theα-th Lyapunov vector at time t. The spatial

structure of LVs is characterized by thestatic LV structure factordefined as

S(αα)
u (k) =

∫
〈u(α)(r, 0)u(α)(0, 0)〉e−jk·rdr, (3)

which is simply the spatial power spectrum of the LV fluctuation density. Information on
the dynamics of LVs can be extracted via thedynamic LV structure factor, which is defined
as

S(αα)
u (k, ω) =

∫ ∫
〈u(α)(r, t)u(α)(0, 0)〉e−jk·rejωtdrdt. (4)

With the help of these quantities the controversy2, 3 about the existence of hydrodynamic
Lyapunov modes in soft-potential systems has been successfully resolved9.

4 Numerical Results for 1d Lennard-Jones Fluids

4.1 Models

The Lennard-Jones system studied has the HamiltonianH =
∑N

j=1mv
2
i /2+

∑
j<l V (xl−

xj). where the interaction potential among particles isV (r) = 4ǫ
[
(σ

r )12 − (σ
r )6
]
− Vc if

r ≤ rc andV (r) = 0 otherwise withVc = 4ǫ
[
( σ

rc
)12 − ( σ

rc
)6
]
. Here the potential is

truncated in order to lower the computational burden.
The system is integrated using the velocity form of the Verlet algorithm with peri-

odic boundary conditions. The standard method invented by Benettin et al. and Shimada
and Nagashima14 is used to calculate the Lyapunov characteristics of the systems studied.
Other technical details can be found in Ref.9. Throughout this paper, the particle number
is typically denoted byN , the length of the system byL and the temperature byT .

4.2 Smooth Lyapunov Spectrum with Strong Short-Time Fluctuations

The Lyapunov spectrum for the caseN = 100,L = 1000 andT = 0.2 is shown in Fig. 1.
Only half of the spectrum is shown here, since all LEs of Hamiltonian systems come in
pairs according to the conjugate-pairing rule. In the enlargement shown in the inset of
Fig. 1 for the part nearλ(α) ≈ 0, one can not see any step-wise structure in the Lyapunov
spectrum, in contrast to the case of hard-core systems3. This is the typical result obtained
for our soft potential system.
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Figure 1. Left: Lyapunov spectrum. Right: Distribution of the finite-time Lyapunov exponentλ(α)
τ whereτ is

equal to the period of re-orthonormalization.

The fluctuations in local instabilities of trajectories is demonstrated by means of the
distribution of finite-time LEs. By definition, finite-time Lyapunov exponentsλτ measure
the expansion rate of trajectory segments of the durationτ . In Fig. 1, such distributions
are presented for some LEs in the regimeλ ≈ 0. Fluctuations of the finite time Lya-
punov exponents are quite large compared to the difference between their mean values,

i.e.,σ(λ
(α)
τ ) ≡

√
〈λ(α)

τ

2
〉 − 〈λ(α)

τ 〉
2
≫ |λ(α) − λ(α+1)|. Here,〈· · · 〉means time average.

The strong fluctuations in local instabilities constitute one of the possible reasons for the
disappearance of the step-wise structures in the Lyapunov spectra. They could also cause
the mixing of nearby Lyapunov vectors. The mixing may be at the basis of the intermit-
tency observed in the time evolution of the spatial Fourier transformation of LVs (see Sect.
4.2.1).

4.2.1 Intermittency in Time Evolution of Instantaneous Static LV Structure Factors

Based on the spatial Fourier transformation ofu(α)(x, t)

ũ
(α)
k (t) =

∫
u(α)(x, t) exp(−ikx)dx =

N∑

j=1

δx
(α)
j · exp[−ik · xj(t)] (5)

we introduce a quantity calledinstantaneous static LV structure factor, which reads

s(α)
uu (k, t) ≡ |ũ(α)

k (t)|2. (6)

It is nothing but the instantaneous spatial power spectrum of u(α)(x, t).

The time evolution of the instantaneous static LV structurefactors(95)uu (k, t) for Lya-
punov vector No.95 is shown in Fig. 2 as an example. Two quantities are recorded as
time goes on. One is the peak wave-numberk∗, which marks the position of the highest
peak in the spectrums(α)

uu (k, t) (see Fig. 2). The other is the spectral entropyHs(t), which

measures the distribution property of the spectrums
(α)
uu (k, t). It is defined as:

Hs(t) = −
∑

ki

s(α)
uu (ki, t) ln s(α)

uu (ki, t). (7)

352



0 10000 20000 30000 40000
0

0.02

0.04

0.06

0.08

0.1

k */2
π

0 10000 20000 30000 40000
time

0

2

4

6

8

10

H
s(t

)

0 200 400 600 800 1000
x

-0.2

-0.1

0

0.1

0.2

δx

0 200 400 600 800 1000
x

-0.3

0

0.3

0 0.02 0.04 0.06 0.08 0.1
k/2π

0

10

20

30

s uu

(α
) (k

,t)

0 0.02 0.04 0.06 0.08 0.1
k/2π

0

10

20

30

0 400 800 1200 1600
time

0
0.04
0.08

k */2
π

Off State (t=44) On State (t=176)

k
*
/2π

k
*
/2π

a)

b) c)

d) e)

Figure 2. Left: Intermittent behaviours of the peak wave-numberk∗ and spectral entropyHs(t) for the spatial
Fourier spectrum ofu(95)(x, t). Right: a) Variation of the peak wave numberk∗ with time. b),c) Two typical
snapshots ofLV95, off andon state att = 44 and176 respectively. d),e) their spatial Fourier transform.

A smaller value ofHs(t) means that the spectrums(α)
uu (k, t) is highly concentrated on a

few values ofk, i.e., these components dominate the behaviour of the LV. Both of these
quantities behave intermittently, as shown in Fig. 2. Largeintervals of nearly constant low
values (off state) are interrupted by short period of bursts (on state) where they have large
values. Details of typicalon andoff states are shown in the right part of Fig. 2. One can
see that the off state is dominated by low wave-number components (see the sharp peak at
low wave-numberk∗), while the on state is more noisy and there are no significantdom-
inant components. This intermittency in the time evolutionof the instantaneous static LV
structure factors is a typical feature of soft potential systems. It is conjectured that this is a
consequence of the mixing of nearby LVs caused by the wild fluctuations of local instabil-
ities. Due to the mutual interaction among modes, the hydrodynamic Lyapunov modes in
the soft potential systems are only of finite life-time. In the dynamic Lyapunov structure
function estimated, the peak representing the propagating(or oscillating) Lyapunov modes
is of finite width. This is support for our conjecture that thehydrodynamic Lyapunov
modes are of finite life-time.

4.2.2 Dispersion Relation of Hydrodynamic Lyapunov Modes

Now, we consider the static LV structure factorS(α)
uu (k), which is the long-time average of

the instantaneous quantitys(α)
uu (k). Two cases withL = 1000 and2000 are shown in Fig. 3.

It is not hard to recognize the sharp peak atλ ≈ 0 in the contour plot of the spectrum. With
increasing Lyapunov exponents, the peak shifts to the larger wave number side. A dashed
line is plotted to make clear how the wave number of the peakkmax changes withλ(α).

All of our results shown above provide strong evidence of thefact that the Lyapunov
vectors corresponding to the smallest positive LEs in our 1dLennard-Jones system are
highly dominated by a few components with small wave numbers, i.e, they are similar to
the Hydrodynamic Lyapunov modes found in hard-core systems. The wave-like character
becomes weaker and weaker as the value of the LE is increased gradually from zero.
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4.3 Dynamic LV Structure Factors

More detailed information about the dynamical evolution ofLyapunov vectors can be ob-
tained from the dynamic LV structure factorsS(αα)

u (k, ω), which encode in addition to
the structural also the temporal correlations. In Fig. 4 we show a typical example for
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S
(αα)
u (k, ω). It consist of a central “quasi-elastic” peak with shoulders resulting from dy-

namical excitations quite similar to the dynamic structurefactorS(k, ω) of fluids16. In

order to extract the dynamical information we use a 3-pole approximation forS(αα)
u (k, ω),

which amounts to fitting the latter by a superposition of three Lorentzians, one central peak
atω = 0 and two symmetric peaks located atω = ±ωu(k). The fits are also shown in the

figure. They describe the frequency dependence ofS
(αα)
u (k, ω) quite well. These fits al-

low us to extract the dispersion relationsω(α)(k) for each of the hydrodynamic Lyapunov
modes with indexα. The results are shown in Fig. 4 for several of the Lyapunov modes.
Clearly, this tells us that a Lyapunov mode corresponding toexponentλ is characterized,
apart from the dominating wave numberk(λ), by a typical frequencyω(k(λ)). Because
dω
dk is non-vanishing, this implies propagating wave-like excitations. The full LV dynamics
of the soft-potential system treated here, however, is morecomplex than that of the hard-
core systems. For instance, the peaks inS

(αα)
u (k, ω) are of finite width (see Fig. 4). This

fact is consistent with our observation that several quantities characterizing the dynamical
aspect of Lyapunov vectors evolve erratically in time (see Sec. 4.2.1).

5 Lyapunov Modes in 2d Lennard-Jones Fluids

In isotropic fluids withd > 1 the static LV structure factorS(αα)
u (~k) becomes a sec-

ond rank tensor. Cartesian componentsS
(αα)
µν (~k) of S(αα)

u (~k) can be expressed in terms
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S
(αα)
u (k, ω) for a) coupled standard maps, Eq.(8) withǫ = 1.3; b) coupled circle maps, Eq.(10) withǫ = 1.3.

of longitudinal and transverse correlation functionsS(αα)
L and S(αα)

T as S(αα)
µν (~k) =

k̂µk̂νS
(αα)
L (k) + (δµν − k̂µk̂ν)S

(αα)
T (k) with k̂µ = (~k/k)µ. As an example, we presented

in Fig. 5 the contour plot of the two correlation functionsSL andST for LV No. 140 of a
two-dimensional Lennard-Jones system withN = 100, T = 0.8 andLx × Ly = 20× 20.
The difference between the two components is quite obvious.However, as can be seen
from Fig. 6,S(αα)

L (k) andS(αα)
T (k) for two-dimensional cases behave similar to the one-

dimensional case shown in Fig. 3. This fact implies the existence of hydrodynamic Lya-
punov modes also in two-dimensional cases. In addition, both the longitudinal and trans-
verse components are characterized by a linear dispersion relation, which has been found
to be typical of Hamiltonian systems12, 13. Further numerical simulations show that the
transverse modes are non-propagating , in contrast to the longitudinal components.

6 Universal Features of Lyapunov Modes in Spatially Extended
Systems with Continuous Symmetries

Relying on the LV correlation function method, we have up to now successfully identified
the existence of HLMs in the following spatially extended systems:
Coupled map lattices (CMLs)with either Hamiltonian or dissipative local dynamics

vl
t+1 = (1− γ)vl

t + ǫ[f(ul+1
t − ul

t)− f(ul
t − ul−1

t )] (8)

ul
t+1 = ul

t + vl
t+1 (9)
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and

ul
t+1 = ul

t + ǫ[f(ul+1
t − ul

t)− f(ul
t − ul−1

t )]. (10)

Dynamic XY modelwith the Hamiltonian

H =
∑

i

θ̇i + ǫ
∑

ij

[1− cos(θj − θi)]. (11)

Kuramoto-Sivashinsky equation

ht = −hxx − hxxxx − h2
x. (12)

A common feature of these systems is that they all hold certain continuous symme-
tries and conserved quantities, which have been shown to be essential for the occurrence
of Lyapunov modes12. Our numerical simulations and analytical calculations indicate that
these systems fall into two groups with respect to the natureof hydrodynamic Lyapunov
modes. To be precise, the dispersion relations are characterized byλ ∼ k andλ ∼ k2 in
Hamiltonian and dissipative systems respectively, as Fig.7 indicates. Moreover, the HLMs
in Hamiltonian systems are propagating, whereas those in dissipative systems show only
diffusive motion. Examples of dynamic LV structure factorsfor two CMLs are presented
in the right row of Fig. 7. In a), each spectrum has two sharp symmetric side-peaks located
at±ωu. Furthermore,ωu ≃ ±cuk for k ≥ 2π/L. These facts suggest that the HLMs in
coupled standard maps are propagating. The spectrum of coupled circle maps in b) has
only a single central peak and can be well approximated by a Lorentzian curve12, which
implies that the HLMs in this system fluctuate diffusively. In addition, no step structures
in Lyapunov spectra have been found in contrast to the hard-core systems. The quanti-
ties characterizing the dynamical evolutions of LVs in these systems exhibit intermittent
behaviour.

7 Conclusion and Discussion

We have presented numerical results for the Lyapunov instability of Lennard-Jones sys-
tems. Our simulations show that the step-wise structures found in the Lyapunov spectrum
of hard-core systems disappear completely here. This is presumed to be the result of the
strong fluctuations in the finite-time LEs3. A new technique based on the spatial Fourier
spectral analysis is employed to reveal the vague long wave-length structure hidden in LVs.
In the resulting spatial Fourier spectrum of LVs withλ ≃ 0, a significantly sharp peak with
low wave-number is found. This serves a strong evidence of the existence of hydrodynamic
Lyapunov modes in soft-potential systems18. The disappearance of the step-structures and
the survival of the hydrodynamic Lyapunov modes show that the latter are more robust and
essential than the former. Studies on dynamical LV structure factors provide evidence that
longitudinal HLMs in Lennard-Jones fluids are propagating.Going beyond many-particle
systems, we have shown that, for a large class of extended systems, HLMs of Hamiltonian
and dissipative cases are different both in respect of spatial structure and in the dynamical
evolution.
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