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Accurate Measurement of Free Energies of
Self-Assembling Systems by Computer Simulation

Marcus Muller and Kostas Ch. Daoulas

Institut fur Theoretische Physik, Georg-August Univessi
Friedrich-Hund-Platz 1, D-37077 Gottingen, Germany
E-mail: mmueller@theorie.physik.uni-goettingen.de

A method for calculating free energy differences betweesordiered and ordered phases of
self-assembling systems is discussed. Applying an extesndering field, we impose a pre-
defined structure onto the fluid in the disordered phase. Trhetsre in the presence of the
external, ordering field closely mimics the structure of dindered phase (in the absence of an
ordering field). Subsequently, we gradually switch off tligeenal, ordering field and, in turn,
increase the control parameter that drives the self-adgerbe free energy difference along
this reversible path connecting the disordered and thereddgtate is obtained via thermody-
namic integration or expanded ensemble simulation teci@sign conjunction with successive
umbrella sampling.

1 Introduction

Computer simulations provide accurate information abbatdtatistical mechanics and
thermodynamics without the need to invoke approximatibasare often required to make
progress in analytical calculations. The measuremeneefdénergies, however, is a chal-
lenge because free energy differences cannot simply be&sgu as functions of the parti-
cles’ coordinates. Special simulation techniques havetddvised in order to extract free
energy differences from particle simulatiohs.

In this report, we present a method that enables us to aetycaticulate the free en-
ergy differences between self-assembled morphologiemphahilic systems. This is a
computationally difficult problem for two reasons: (i) Duethe mismatch of the period-
icity of the self-assembled morphology with the size of tinedation cell, there are strong
finite-size effectg. Calculations with variable box shape can mitigate this [@oiy 4 and
we do not consider this important aspect further here. (iipther problem stems from
the absence of a well-ordered reference state — the anabbgrgétal — for which the free
energy can be accurately calculated. If the absolute fregggrof such a reference state in
the ordered phase was known, one could utilize thermodyniaeigration to calculate the
free energy at different state points (e.g. temperatunes)aacurately map out the phase
diagram without relying on the observation of hysteresis.

Itis interesting to draw a comparison between self-assgmlsdoft matter (e.g., lamel-
lar ordering in a diblock copolymer melt) and crystallipatiin simple, hard condensed
matter systems (e.g., a Lennard-Jones crystal). The ldifatahce of volume fraction,
¢(r), of the two species of the amphiphilic system plays a simidée as the density of
a hard crystal. Its dominant Fourier mode is the order pat@antd the transition. In a
well-ordered, hard crystal, each particle fluctuateseligttound its corresponding crystal
lattice position. Thus, the system resembles an Einstgstal; in which non-interacting
particles are tethered by harmonic springs to their ideéat&positions. Frenkel and Ladd
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have used thermodynamic integration from this Einsteirstedyto the well-ordered solid
for calculating the absolute free energy of a hard crystal.

In a self-assembling soft matter system, the compositisa filictuates little around
the ideally ordered value, however, the molecules are iguadistate, i.e. they diffuse and
are not “tethered” to ideal positions. Therefore, therstsxio well-defined reference state
and previous simulation techniques for calculating thehlis free energy of hard crystals
do not straightforwardly carry over to self-assembling swéditter systems.

In fact, even calculating the free energy of a homogeneoltswitout repulsion be-
tween the two different monomeric species (i;elY = 0), which would be the analog
of an ideal gas in a simple, hard condensed matter systenfprsnéddable task. In a lig-
uid, the (bonded and non-bonded) interactions of a segmiintite surroundings are of
the orderkpT, wherekp andT' are Boltzmann’s constant and temperature, respectively.
Thus, the free energy per molecule is proportionat @' N where N denotes the num-
ber of segments (or coarse-grained interaction centres) malecule is comprised of. In
order to accurately determine the location of phase boueslaralculate the free energy
costs of defects or grain boundaries, and assess the thgnaroét stability of morpholo-
gies, one needs to know the free energy per molecule with @racy ofO(10~3kpT).
Therefore the absolute free energy would be required to bevkiwith a precision of the
order10=3/N ~ 10~5. The free energy difference between the disordered phata an
self-assembled structure, however, is only of the ogd€k 1T ~ kgT'. Thus, itis advan-
tageous to directly calculate the free energy differenteden the disordered and ordered
state rather than to determine it as a difference of two latl®lute free energies.

Here we present a general thermodynamic integration sctiehenables us to calcu-
late the free energgifferencebetween a disordered and a spatially structured phase. We
illustrate the method by studying a symmetric diblock cgpoér melt. We convert the dis-
ordered melt{,is N < xopTN) into the spatially structured phases(uN > xopTN)
via areversible path Our method is inspired by the work of Sheu, Mou and Lovett cal
culating the absolute free energy of a Lennard-Jones®sd®elated reversible integration
paths between a solid and a liquid have been used by éthéws calculating the free
energy difference between a solid and a liquid.

First, as illustrated in Fig. 1, we structure the homogesedisordered melt at low
incompatibility, xi,it N, between the two species by applying an external, orderahdj, fi
h(r), conjugated to the order parameter of the transition. Refei®onstrated that the
optimal choice of this ordering fieldy, is such that the order parametenat;;/V in the
presence of the ordering field closely mimics the order patanat the final self-assembled
state,xana1V, in the absence of the ordering field. The structure formaitioresponse
to the ordering field is completely gradual and free of anyritaynamic singularities.
Second, we gradually reduce the ordering field and, in tunecreiase the incompatibility
between the two species. Optimally, the spatial order patantoes not vary along this
path. The absence of abrupt changes in the order paramétgror any other quantities
indicates the lack of thermodynamical singularities altimg second branch of the path.
Thus, one turns a disordered system into a spatially orderedvithout passing through a
first-order transitiorf.
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Figure 1. Sketch of the reversible path that connects theogemeous, disordered state, the externally ordered
and the self-assembled state. Configuration snapshotyofraetric diblock melt illustrate the different states. In
the snapshots three-dimensional contour plots of the csitimo are shown. Thé-rich component is removed
for clarity and the interface between the different comp®és coloured blueyinit N = 0, xfinal N = 20,

and the maximal strength of the ordering fieldA$V = 20. The linear extension of the simulation cell is
L = 7.77Re, and the lamellar spacing &, = L/(2v/2) = 1.686Reo.

2 Model and Technique

Our thermodynamic integration scheme can be applied teréifit models including
coarse-grained, particle-based models of amphiphilitesys and membrangss well
as field-theoretic representatidfisIt can be implemented in Monte Carlo or Molecular
Dynamics or DPD simulations, as well as Single-Chain-inakté&ield (SCMF) simula-
tions !t 12 field-theoretic simulatiort8, and external potential dynamiést* or dynamic
density functional theor}?

In the following, we consider a liquid of diblock copolymer molecules in a volume,
V. Letthe order parametef(r), denote the difference of the local volume fractions of the
two components, ang N the incompatibility of the two components per molecule. The
energy of the system takes the fot= Hiiq + Hord + Hext.

n N
L w b BSIN-D 2
Hiiq = Hp + Hup  With kBT_;; O [ri(s) —ri(s +1)] 1)

The bonded, intramolecular interactiorfs,,, take the form of a discretized Edwards-
Hamiltonian. The shape of a flexible macromolecule is Gamsand characterized by
its mean squared end-to-end distanBg,. We discretize the contour of the symmetric
diblock copolymer intaV = 16 + 16 coarse-grained segments. The coarse-grained pa-
rameter of relevance for matching our simulation data t@egrpents is the invariant degree
of polymerization V' = (nR2,/N)? = 14 884. This value lies in the typical experimental
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range, and we achieve this large value not by using a paatiguine discretization}V,
along the molecules but rather by increasing the polymesiten /V.

We calculate the coarse-grained compositions from theasd@pic molecular con-
formations,{R;}, using a simple cubic grid with mesh sizA/[, i.e., the grid contains
Neens = V/AL? cells. AL = 0.19875R,,, provides sufficient spatial resolution. The
local compositiong 4 (j), at a grid pointr; = j, X+ 7, ¥ + j-2 (jz, jy, j-, being multiples
of AL, index the grid point and&, y, z denotes the unit cell vectors of the simple cubic
lattice, respectively) is given by (j) = ﬁ > ngl m(r;(s) —rj), and a sim-
ilar expression holds for the local volume fraction of tBecomponent. The assignment
function,m, characterizes the mapping of the continuous, off-lakegment coordinates
onto the coarse-grained grid and we utilize a linear paioesh extrapolatiot?,

The small compressibility of a dense polymer liquid is captuby the non-bonded
interactions of Helfand-typesZ. = £ L5 (6, (j) + ¢5(j) — 1]°. The value
koIN = 50 is sufficient to suppress fluctuations of the total densityhenlength scale of a
small fraction ofR,,.

The incompatibility between unlike segmentisand B, is described by the most sym-
metric choice: 2. = — 28 37 42(j) with 6(j) = 24l)-26U) " |n addition, we apply
an external, ordering fieldy(r) = —AN f.xt(r), that linearly couples to the order param-
eter. It results in an energy contribution of the forft: = — &Y [ d%r fexi(r)¢(r)
whereAN characterizes the strength afgd; the spatial variation of the ordering field.

These interactions define a coarse-grained model that carrpeefficiently studied
by computer simulations because (i) the interactions afte g9 the absence of harsh
excluded volume interactions allows for a high polymer dtgresd an invariant degree of
polymerization that is comparable to experimental valaesl (iii) the calculation of the
non-bonded interactions via a coarse-grained grid spegttseucalculation of the energy
by about two orders of magnitudes in dense systen$ie model is simulated by Single-
Chain-in-Mean (SCMF) simulatio®8*!where the explicit chain conformations evolve in
time via a Smart Monte Carlo algorithii.

For this model, the free energy changes along the two brardggicted in Fig. 1 take
the simple, explicit form

AR, AN 1 N

nkBT - _/Od/\N <Ncclls JZfEXt(J)¢(J)> N (2)
AF, 0 1 o e .

nksT /A](il//\N <Nccu ZJ: oo = ¢2(J))> &

We simulate the systems for different state points alongrttegyration path, measure
the integrands of Egs. (2) and (3), and evaluate the fregggradranges by numerically
evaluating the integrals. This provides a first estimatetierfree energy changes along
the path. Subsequently, we employ an expanded ens&mihere the incompatibility,
x N, and the strength of the external fieklyV, vary along the integration path. Within a
single simulation run the system will visit different stgteints along the integration path.
To this end, the Monte Carlo algorithm comprises additionaves that altex /N and\ V.
The expanded partition function takes the form
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Figure 2. a) Evolution of the ordering field/V, in the course of the expanded ensemble simulation alorfg bot
branches. The “time” is measured in units of the Rouse-tifnth@ macromolecules. The inset presents the

probability distribution,Pexp (XN, AN). b) Changes of the free energy along the two branches of thgration
path.

w XJ\/v7 AN Hiiq + Hora XN + Hex )\N)
Zop= 3 exp {%} /D[{Ri}] exp {— a (k T) i
(XNAN) B o

4)
The pre-weighting factorsw(xN,AN), facilitate transition between different states,
(xNV, AN), along the integration path. The probabili..,, of finding the system in
a state characterized hyN and AN is related to the free energy vid.,(xN,AN) =

% exp {— F(XN’ANIE;;(XN’AN)}. The choicew(x N, AN) ~ F(n,V,T,xN, AN), for the
pre-weighting factors ensures that the different statetpaire sampled with approximately
equal probability. Initial estimates of the pre-weighthagtors are obtained by thermody-
namic integration and successive umbrella samplibgt alternative schem&s?! can be
envisioned. Note that compared to other re-weighting teghes (utilized e.g., to cal-
culate phase diagrams, interface tensions, or potentiaisean force) the free energy
difference along the integration path is larg®10*%k5T'), and a systematic method for

obtaining/improving the pre-weighting factors is reqdire

3 Results

In order to calculate the free energy difference betweenid@rdered stategN = 0, and
the lamellar ordered structure gV = 20, we discretize both branches of the integration
path. The variation of the integrands along both branch#segbath is completely gradual,
indicating the absence of a first-order transition. The abs®f a first-order transition is
corroborated by Fig. 2a, where we show the evolution of trength of the ordering field,
AN, during the course of the expanded ensemble simulationsiidation data presented
correspond to a single configuration that samples all diffeexternal field strengths )V,
of a branch.

The system freely diffuses along théV-axis and there is no “kinetic barrier” between
neighbouring\ N-states. This observation demonstrates that the regioosrdiguration
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space associated with neighbourikdy-values overlap. We also observe that the system
visits all AN-states with roughly equal probability (see inset). Thimdastrates that the
pre-weighting factors are very accurate and the error ifirtdeenergy difference is of the
order of a fewk T which, in turn, is much smaller than the total free energfedénce,
O(104kpT.

The SCMF simulations can be very efficiently implemented qmagallel computer
because we simulate an ensemble of independent molectlestirating fieldst! 12 Even
for the rather small system size considered in this work, @gssors can be used. If
one takes the absence of a free energy barrier along the ddgmamic integration path
for granted, it would be beneficial to subdivide the range>démal field strength and
use a successive umbrella sampling technfdue. this case, the- 400 points along the
two branches can be divided into several sub-brancheséiyiwe use 32) that overlap
at their boundaries. Each sub-branch can be assigned tfeaedif group of processors.
Additionally, we have implemented a parallel-temperingesue to facilitate the relaxation
of the systems by exchanging configurations between diffengb-branches. This allows
us to efficiently employ22 = 1024 processors.

In Fig. 2b, the variation of the free energy along the two bles is presented. Since
we calculate free energy differences, we arbitrarily setftee energy of the initial, dis-
ordered statey(N = 0) to zero, and we have matched the free energy at the end of the
first branch with that of the beginning of the second one. Fitoendata we obtain a free
energy difference oAF/kpT = 11607(10) or AF/nkpT = —0.87659(75) for a lamel-
lar spacing,L, = 1.686R.,. The error estimate refers to the statistical error of tiseilte
but does not include a possible systematic over-estimatidhe free energy because of
the deviation of the lamellar spacing from its equilibriuadue due to the finite size of the
simulation cell.

4  Qutlook

This new simulation technique permits us to accuratelyutate free energy differences

in self-assembling soft matter. Potential applicationeenpass the determination of phase
diagrams and the identification of stable phases. Applegscheme to a perfectly or-
dered system and a system with an interface (e.g., betwdeassembled phases with
different orientations), one can calculate the free enefgyrain boundaries and defects.
The calculation of the free energy of a grain boundary issftlated in Fig. 3. Calcu-
lating the free energy difference between a disorderecesystN = 0, and an or-
dered systemyN = 20 with and without grain boundary we obtain the free energy
differenceAF = 0.032kpT/chain. This value corresponds to an interface free energy,

VRZ,  _ i ic gli i -
T 0.16. This value is slightly smaller than the val0&1 predicted by SCF the

ory.?? This deviation is due to (i) fluctuations that tend to redineeftee energy and (i) the
differences in the models used in SCF theory and SCMF siimakat While SCF theory

assumes zero-ranged interactions, the spatial rangeeoations in the SCMF simulations
is set by the rather coarse grid spacifg,.
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Figure 3. lllustration of the thermodynamic integratiorttpéor calculating the free energy difference of a T-
junction between two lamellar domains of perpendiculaemgtion aty N = 20 and N' = 14884. The
simulation cell of geometryt x 10.2 x 6.8R2_ contains33 848 polymers withNV = 32 segments.
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