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Accurate Measurement of Free Energies of
Self-Assembling Systems by Computer Simulation
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Institut für Theoretische Physik, Georg-August Universität
Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
E-mail: mmueller@theorie.physik.uni-goettingen.de

A method for calculating free energy differences between disordered and ordered phases of
self-assembling systems is discussed. Applying an external, ordering field, we impose a pre-
defined structure onto the fluid in the disordered phase. The structure in the presence of the
external, ordering field closely mimics the structure of theordered phase (in the absence of an
ordering field). Subsequently, we gradually switch off the external, ordering field and, in turn,
increase the control parameter that drives the self-assembly. The free energy difference along
this reversible path connecting the disordered and the ordered state is obtained via thermody-
namic integration or expanded ensemble simulation techniques in conjunction with successive
umbrella sampling.

1 Introduction

Computer simulations provide accurate information about the statistical mechanics and
thermodynamics without the need to invoke approximations that are often required to make
progress in analytical calculations. The measurement of free energies, however, is a chal-
lenge because free energy differences cannot simply be expressed as functions of the parti-
cles’ coordinates. Special simulation techniques have to be devised in order to extract free
energy differences from particle simulations.1

In this report, we present a method that enables us to accurately calculate the free en-
ergy differences between self-assembled morphologies in amphiphilic systems. This is a
computationally difficult problem for two reasons: (i) Due to the mismatch of the period-
icity of the self-assembled morphology with the size of the simulation cell, there are strong
finite-size effects.2 Calculations with variable box shape can mitigate this problem,3, 4 and
we do not consider this important aspect further here. (ii) Another problem stems from
the absence of a well-ordered reference state – the analog ofa crystal – for which the free
energy can be accurately calculated. If the absolute free energy of such a reference state in
the ordered phase was known, one could utilize thermodynamic integration to calculate the
free energy at different state points (e.g. temperatures) and accurately map out the phase
diagram without relying on the observation of hysteresis.

It is interesting to draw a comparison between self-assembly in soft matter (e.g., lamel-
lar ordering in a diblock copolymer melt) and crystallization in simple, hard condensed
matter systems (e.g., a Lennard-Jones crystal). The local difference of volume fraction,
φ(r), of the two species of the amphiphilic system plays a similarrole as the density of
a hard crystal. Its dominant Fourier mode is the order parameter of the transition. In a
well-ordered, hard crystal, each particle fluctuates little around its corresponding crystal
lattice position. Thus, the system resembles an Einstein crystal, in which non-interacting
particles are tethered by harmonic springs to their ideal lattice positions. Frenkel and Ladd

255



have used thermodynamic integration from this Einstein crystal to the well-ordered solid
for calculating the absolute free energy of a hard crystal.5

In a self-assembling soft matter system, the composition also fluctuates little around
the ideally ordered value, however, the molecules are in a liquid state, i.e. they diffuse and
are not “tethered” to ideal positions. Therefore, there exists no well-defined reference state
and previous simulation techniques for calculating the absolute free energy of hard crystals
do not straightforwardly carry over to self-assembling soft matter systems.

In fact, even calculating the free energy of a homogeneous melt without repulsion be-
tween the two different monomeric species (i.e.,χN = 0), which would be the analog
of an ideal gas in a simple, hard condensed matter system, is aformidable task. In a liq-
uid, the (bonded and non-bonded) interactions of a segment with its surroundings are of
the orderkBT , wherekB andT are Boltzmann’s constant and temperature, respectively.
Thus, the free energy per molecule is proportional tokBTN whereN denotes the num-
ber of segments (or coarse-grained interaction centres) each molecule is comprised of. In
order to accurately determine the location of phase boundaries, calculate the free energy
costs of defects or grain boundaries, and assess the thermodynamic stability of morpholo-
gies, one needs to know the free energy per molecule with an accuracy ofO(10−3kBT ).
Therefore the absolute free energy would be required to be known with a precision of the
order10−3/N ≈ 10−5. The free energy difference between the disordered phase and a
self-assembled structure, however, is only of the orderχNkBT ∼ kBT . Thus, it is advan-
tageous to directly calculate the free energy difference between the disordered and ordered
state rather than to determine it as a difference of two largeabsolute free energies.

Here we present a general thermodynamic integration schemethat enables us to calcu-
late the free energydifferencebetween a disordered and a spatially structured phase. We
illustrate the method by studying a symmetric diblock copolymer melt. We convert the dis-
ordered melt (χinitN < χODTN ) into the spatially structured phase (χfinalN > χODTN )
via a reversible path. Our method is inspired by the work of Sheu, Mou and Lovett cal-
culating the absolute free energy of a Lennard-Jones solid6. Related reversible integration
paths between a solid and a liquid have been used by others7, 8 for calculating the free
energy difference between a solid and a liquid.

First, as illustrated in Fig. 1, we structure the homogeneous, disordered melt at low
incompatibility,χinitN , between the two species by applying an external, ordering field,
h(r), conjugated to the order parameter of the transition. Ref. 6demonstrated that the
optimal choice of this ordering field,h, is such that the order parameter atχinitN in the
presence of the ordering field closely mimics the order parameter at the final self-assembled
state,χfinalN , in the absence of the ordering field. The structure formation in response
to the ordering field is completely gradual and free of any thermodynamic singularities.
Second, we gradually reduce the ordering field and, in turn, increase the incompatibility
between the two species. Optimally, the spatial order parameter does not vary along this
path. The absence of abrupt changes in the order parameter,φ(r), or any other quantities
indicates the lack of thermodynamical singularities alongthe second branch of the path.
Thus, one turns a disordered system into a spatially orderedone without passing through a
first-order transition.6
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Figure 1. Sketch of the reversible path that connects the homogeneous, disordered state, the externally ordered
and the self-assembled state. Configuration snapshots of a symmetric diblock melt illustrate the different states. In
the snapshots three-dimensional contour plots of the composition are shown. TheB-rich component is removed
for clarity and the interface between the different components is coloured blue.χinitN = 0, χfinalN = 20,
and the maximal strength of the ordering field isΛN = 20. The linear extension of the simulation cell is
L = 7.77Reo and the lamellar spacing isLo = L/(2

√
2) = 1.686Reo.

2 Model and Technique

Our thermodynamic integration scheme can be applied to different models including
coarse-grained, particle-based models of amphiphilic systems and membranes9 as well
as field-theoretic representations10. It can be implemented in Monte Carlo or Molecular
Dynamics or DPD simulations, as well as Single-Chain-in-Mean-Field (SCMF) simula-
tions,11, 12 field-theoretic simulations10, and external potential dynamics13, 14 or dynamic
density functional theory.15

In the following, we consider a liquid ofn diblock copolymer molecules in a volume,
V . Let the order parameter,φ(r), denote the difference of the local volume fractions of the
two components, andχN the incompatibility of the two components per molecule. The
energy of the system takes the formH = Hliq +Hord +Hext.

Hliq = Hb +Hnb with
Hb

kBT
=

n∑

i=1

N∑

s=1

3(N − 1)

2Reo
2 [ri(s)− ri(s+ 1)]2 (1)

The bonded, intramolecular interactions,Hb, take the form of a discretized Edwards-
Hamiltonian. The shape of a flexible macromolecule is Gaussian and characterized by
its mean squared end-to-end distance,Reo. We discretize the contour of the symmetric
diblock copolymer intoN = 16 + 16 coarse-grained segments. The coarse-grained pa-
rameter of relevance for matching our simulation data to experiments is the invariant degree
of polymerization,N̄ = (nR3

eo/N)2 = 14 884. This value lies in the typical experimental
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range, and we achieve this large value not by using a particularly fine discretization,N ,
along the molecules but rather by increasing the polymer density,n/V .

We calculate the coarse-grained compositions from the microscopic molecular con-
formations,{Ri}, using a simple cubic grid with mesh size,∆L, i.e., the grid contains
Ncells = V/∆L3 cells. ∆L = 0.19875Reo provides sufficient spatial resolution. The
local composition,φA(j), at a grid point,rj = jxx̂+ jyŷ+ jzẑ (jx, jy, jz , being multiples
of ∆L, index the grid point and̂x, ŷ, ẑ denotes the unit cell vectors of the simple cubic
lattice, respectively) is given byφA(j) = V

nN∆L3

∑n
i=1

∑fN
s=1m(ri(s) − rj), and a sim-

ilar expression holds for the local volume fraction of theB component. The assignment
function,m, characterizes the mapping of the continuous, off-latticesegment coordinates
onto the coarse-grained grid and we utilize a linear particle-mesh extrapolation.16

The small compressibility of a dense polymer liquid is captured by the non-bonded
interactions of Helfand-type:Hnb

nkBT = κoN
2

1
Ncells

∑
j [φA(j) + φB(j)− 1]2. The value

κoN = 50 is sufficient to suppress fluctuations of the total density onthe length scale of a
small fraction ofReo.

The incompatibility between unlike segments,A andB, is described by the most sym-
metric choice: Hord

nkBT = − χN
Ncells

∑
j φ

2(j) with φ(j) = φA(j)−φB(j)
2 . In addition, we apply

an external, ordering field,h(r) = −λNfext(r), that linearly couples to the order param-
eter. It results in an energy contribution of the formHext

nkBT = −λN
V

∫
V d3r fext(r)φ(r)

whereλN characterizes the strength andfext the spatial variation of the ordering field.
These interactions define a coarse-grained model that can bevery efficiently studied

by computer simulations because (i) the interactions are soft, (ii) the absence of harsh
excluded volume interactions allows for a high polymer density and an invariant degree of
polymerization that is comparable to experimental values,and (iii) the calculation of the
non-bonded interactions via a coarse-grained grid speeds up the calculation of the energy
by about two orders of magnitudes in dense systems.12 The model is simulated by Single-
Chain-in-Mean (SCMF) simulations12, 11where the explicit chain conformations evolve in
time via a Smart Monte Carlo algorithm.17

For this model, the free energy changes along the two branches depicted in Fig. 1 take
the simple, explicit form

∆F1

nkBT
= −

∫ ΛN

0

dλN

〈
1

Ncells

∑

j

fext(j)φ(j)

〉∣∣∣∣∣∣
χinitN

(2)

∆F2

nkBT
= −

∫ 0

ΛN

dλN

〈
1

Ncell

∑

j

(
fext(j)φ(j) − φ2(j)

)
〉

(3)

We simulate the systems for different state points along theintegration path, measure
the integrands of Eqs. (2) and (3), and evaluate the free energy changes by numerically
evaluating the integrals. This provides a first estimate forthe free energy changes along
the path. Subsequently, we employ an expanded ensemble18 where the incompatibility,
χN , and the strength of the external field,λN , vary along the integration path. Within a
single simulation run the system will visit different statepoints along the integration path.
To this end, the Monte Carlo algorithm comprises additionalmoves that alterχN andλN .
The expanded partition function takes the form
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Figure 2. a) Evolution of the ordering field,λN , in the course of the expanded ensemble simulation along both
branches. The “time” is measured in units of the Rouse-time of the macromolecules. The inset presents the
probability distribution,Pexp(χN, λN). b) Changes of the free energy along the two branches of the integration
path.

Zexp =
∑

(χN,λN)

exp

[
w(χN, λN)

kBT

] ∫
D[{Ri}] exp

[
−Hliq +Hord(χN) +Hext(λN)

kBT

]

(4)
The pre-weighting factors,w(χN, λN), facilitate transition between different states,
(χN, λN), along the integration path. The probability,Pexp, of finding the system in
a state characterized byχN andλN is related to the free energy viaPexp(χN, λN) =
1
Z exp

[
−F (χN,λN)−w(χN,λN)

kBT

]
. The choice,w(χN, λN) ≈ F (n, V, T, χN, λN), for the

pre-weighting factors ensures that the different state points are sampled with approximately
equal probability. Initial estimates of the pre-weightingfactors are obtained by thermody-
namic integration and successive umbrella sampling19 but alternative schemes20, 21 can be
envisioned. Note that compared to other re-weighting techniques (utilized e.g., to cal-
culate phase diagrams, interface tensions, or potentials of mean force)1 the free energy
difference along the integration path is large,O(104kBT ), and a systematic method for
obtaining/improving the pre-weighting factors is required.

3 Results

In order to calculate the free energy difference between thedisordered state,χN = 0, and
the lamellar ordered structure atχN = 20, we discretize both branches of the integration
path. The variation of the integrands along both branches ofthe path is completely gradual,
indicating the absence of a first-order transition. The absence of a first-order transition is
corroborated by Fig. 2a, where we show the evolution of the strength of the ordering field,
λN , during the course of the expanded ensemble simulation. Thesimulation data presented
correspond to a single configuration that samples all different external field strengths,λN ,
of a branch.

The system freely diffuses along theλN -axis and there is no “kinetic barrier” between
neighbouringλN -states. This observation demonstrates that the regions ofconfiguration
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space associated with neighbouringλN -values overlap. We also observe that the system
visits allλN -states with roughly equal probability (see inset). This demonstrates that the
pre-weighting factors are very accurate and the error in thefree energy difference is of the
order of a fewkBT which, in turn, is much smaller than the total free energy difference,
O(104)kBT .

The SCMF simulations can be very efficiently implemented on aparallel computer
because we simulate an ensemble of independent molecules influctuating fields.11, 12 Even
for the rather small system size considered in this work, 32 processors can be used. If
one takes the absence of a free energy barrier along the thermodynamic integration path
for granted, it would be beneficial to subdivide the range of external field strength and
use a successive umbrella sampling technique.19 In this case, the∼ 400 points along the
two branches can be divided into several sub-branches (typically, we use 32) that overlap
at their boundaries. Each sub-branch can be assigned to a different group of processors.
Additionally, we have implemented a parallel-tempering scheme to facilitate the relaxation
of the systems by exchanging configurations between different sub-branches. This allows
us to efficiently employ322 = 1024 processors.

In Fig. 2b, the variation of the free energy along the two branches is presented. Since
we calculate free energy differences, we arbitrarily set the free energy of the initial, dis-
ordered state (χN = 0) to zero, and we have matched the free energy at the end of the
first branch with that of the beginning of the second one. Fromthe data we obtain a free
energy difference of∆F/kBT = 11607(10) or ∆F/nkBT = −0.87659(75) for a lamel-
lar spacing,Lo = 1.686Reo. The error estimate refers to the statistical error of the result
but does not include a possible systematic over-estimationof the free energy because of
the deviation of the lamellar spacing from its equilibrium value due to the finite size of the
simulation cell.

4 Outlook

This new simulation technique permits us to accurately calculate free energy differences
in self-assembling soft matter. Potential application encompass the determination of phase
diagrams and the identification of stable phases. Applying the scheme to a perfectly or-
dered system and a system with an interface (e.g., between self-assembled phases with
different orientations), one can calculate the free energyof grain boundaries and defects.
The calculation of the free energy of a grain boundary is illustrated in Fig. 3. Calcu-
lating the free energy difference between a disordered system, χN = 0, and an or-
dered system,χN = 20 with and without grain boundary we obtain the free energy
difference∆F = 0.032kBT /chain. This value corresponds to an interface free energy,

γR2
eo

kBT
√
N̄ = 0.16. This value is slightly smaller than the value0.21 predicted by SCF the-

ory.22 This deviation is due to (i) fluctuations that tend to reduce the free energy and (ii) the
differences in the models used in SCF theory and SCMF simulations. While SCF theory
assumes zero-ranged interactions, the spatial range of interactions in the SCMF simulations
is set by the rather coarse grid spacing,∆L.
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Figure 3. Illustration of the thermodynamic integration path for calculating the free energy difference of a T-
junction between two lamellar domains of perpendicular orientation atχN = 20 and N̄ = 14 884. The
simulation cell of geometry4× 10.2× 6.8R3

eo contains33 848 polymers withN = 32 segments.

Acknowledgments

It is a great pleasure to thank M.P. Allen, K. Binder, G.H. Fredrickson, and M.W. Mat-
sen for fruitful discussions. Financial support was provided by the DFG priority pro-
gram ”Nano- and Microfluidics” under grant Mu 1674/3-2 and the Volkswagen foundation.
Computing time at the John von Neumann Institute for Computing (NIC) is gratefully ac-
knowledged.

References

1. M. Müller and J. J. de Pablo,Simulation techniques for calculating free energies, Lec.
Notes Phys.,703, 67–122, 2006.

2. U. Micka and K. Binder,Unusual Finite-Size Effects in the Monte-Carlo Simulation
of Microphase Formation of Block-Copolymer Melts, Macromolecular Theory and
Simulations,4, 419–447, 1995.

3. M. Murat, G. S. Grest, and K. Kremer,Statics and Dynamics of Symmetric Diblock
Copolymers: a Molecular Dynamics Study, Macromolecules,32, 595–609, 1999.

4. C. A. Tyler and D. C. Morse,Stress in Self-Consistent-Field Theory, Macromolecules,
36, 8184–8188, 2003.

5. D. Frenkel and A. J. C. Ladd,New Monte Carlo Method to Compute the Free Energy
of Arbitrary Solids. Application to the FCC and HCP Phases ofHard Spheres, J.
Chem. Phys.,81, 3188–3193, 1984.

6. S. Y. Sheu, C. Y. Mou, and R. Lovett,How a solid can be turned into a gas without

261



passing through a first-order phase-transformation, Phys. Rev. E,51, R3795–R3798,
1995.

7. G. Grochola,Constrained fluidλ-integration: constructing a reversible thermody-
namic path between the solid and liquid state, J. Chem. Phys.,120, 2122–2126,
2004.

8. D. M. Eike, J. F. Brennecke, and E. J. Maginn,Toward a Robust and General Molecu-
lar Simulation Method for Computing Solid-Liquid Coexistence, J. Chem. Phys.,122,
014115, 2005.

9. M. Müller, K. Katsov, and M. Schick,Biological and Synthetic Membranes: What
Can Be Learned From a Coarse-Grained Description?, Physics Reports,434, 113–
176, 2006.

10. G. H. Fredrickson, V. Ganesan, and F. Drolet,Field-Theoretic Computer Simulation
Methods for Polymers and Complex Fluids, Macromolecules,35, 16–39, 2002.

11. M. Müller and G. D. Smith,Phase Separation in Binary Mixtures containing Poly-
mers: a Quantitative Comparison of Single-Chain-in-Mean-Field Simulations and
Computer Simulations of the Corresponding Multichain Systems, J. Polym. Sci. B:
Polymer Physics,43, 934–958, 2005.

12. K. Ch. Daoulas and M. Müller,Single Chain in Mean Field Simulations: Quasi-
Instantaneous Field Approximation and Quantitative Comparison With Monte Carlo
Simulations, J. Chem. Phys.,125, 184904, 2006.

13. N. M. Maurits and J. G. E. M. Fraaije,Mesoscopic Dynamics of Copolymer Melts:
From Density Dynamics To External Potential Dynamics UsingNonlocal Kinetic
Coupling, J. Chem. Phys.,107, 5879–5889, 1997.

14. E. Reister, M. Müller, and K. Binder,Spinodal Decomposition in a Binary Polymer
Mixture: Dynamic Self-Consistent-Field Theory and Monte Carlo Simulations, Phys.
Rev. E,64, 041804, 2001.

15. J. G. E. M. Fraaije,Dynamic Density-Functional Theory for Microphase Separation
Kinetics of Block-Copolymer Melts, J. Chem. Phys.,99, 9202–9212, 1993.

16. J. W. Eastwood, R. W. Hockney, and D. N. Lawrence,P3m3dp - The 3-Dimensional
Periodic Particle-Particle-Particle-Mesh Program, Computer Physics Communica-
tions,19, 215–261, 1980.

17. P. J. Rossky, J. D. Doll, and H. L. Friedman,Brownian Dynamics As Smart Monte-
Carlo Simulation, J. Chem. Phys.,69, 4628–4633, 1978.

18. A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P. N. Vorontsov-
Velyaminov,New approach to Monte-Carlo calculation of the free-energy– Method
of expanded ensembles, J. Chem. Phys.,96, 1776–1783, 1992.

19. P. Virnau and M. Müller,Calculation of Free Energy Through Successive Umbrella
Sampling, J. Chem. Phys.,120, 10925–10930, 2004.

20. B. A. Berg,Multicanonical recursions, J. Stat. Phys.,82, 323, 1996.
21. F. G. Wang and D. P. Landau,Efficient Multiple-Range Random Walk Algorithm to

Calculate the Density of States, Phys. Rev. Lett.,86, 2050–2053, 2001.
22. D. Duque, K. Katsov, and M. Schick,Theory Of T Junctions And Symmetric Tilt

Grain Boundaries In Pure And Mixed Polymer Systems, J. Chem. Phys.,117, 10315–
10320, 2002.

262


