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Boundary Effects in Microfluidic Setups

J. Harting and C. Kunert

Institute for Computational Physics, University of Stuttgart
Pfaffenwaldring 27, 70569 Stuttgart, Germany

E-mail: jens@icp.uni-stuttgart.de

Due to large surface to volume ratios in microfluidic setups,the roughness of channel surfaces
must not be neglected since it is not any longer small compared to the length scale of the
system. In addition, the wetting properties of the wall havean important influence on the flow.
Even though these effects are getting more and more important for industrial and scientific
applications, the knowledge about the interplay of surfaceroughness and hydrophobic fluid-
surface interaction is still very limited because these properties cannot be decoupled easily in
experiments. We investigate the problem by means of latticeBoltzmann (LB) simulations of
rough microchannels with tunable fluid-wall interaction. We introduce an “effective no-slip
plane” at an intermediate position between peaks and valleys of the surface and observe how
the position of the wall may change due to surface roughness and hydrophobic interactions.
We find that the position of the effective wall, in the case of aGaussian distributed roughness
depends linearly on the width of the distribution. Further we are able to show that roughness
creates a non-linear effect on the slip length for hydrophobic boundaries.

1 Introduction

The influence of the surface topologies and wetting behaviour of confining geometries in
microfluidic systems is of great importance for the understanding of novel techniques us-
ing micro- or nanoscale geometries. Such systems allow to handle microliter or nanoliter
quantities of liquid for production and analysis processesin the chemical and pharmaceuti-
cal industry, for scientific purposes or medical applications. Due to the small length scales
in the system, the surface to volume ratio becomes more important. Assuming the surfaces
to be perfectly flat and non-interacting is even on molecularscales an invalid assumption
which can lead to large errors in experimental measurements. In this report we utilize
lattice Boltzmann simulations to investigate the combinedinfluence of roughness and wet-
tability on the fluid flow. This leads to the question which boundary condition has to be
applied at a surface in order to treat the surface topology properly. For more than a hundred
years the no-slip boundary condition was successfully applied in engineering applications.
Nevertheless, Navier1 introduced a slip boundary condition

v(x = 0) = β
∂v

∂x

saying that the fluid velocityv at the boundaryx = 0 is proportional to the velocity gradient
∂v
∂x . The constant of proportionality is given by the slip lengthβ. β depends on many
parameters like the wettability, the surface roughness or fluid properties like the viscosity
or molecular interactions. Therefore, it has to be seen as anempirical length that contains
many to some extend unknown interactions. However, for simple liquids the measured slip
lengths are commonly of the order of up to some tens of nanometers.

The influence of surface variations on the slip lengthβ has been investigated by numer-
ous authors. On the one hand roughness leads to higher drag forces and thus to no-slip on
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macroscopic scales. Richardson showed that even if on a rough surface a full-slip boundary
condition is applied, one can determine a flow speed reduction near the boundary resulting
in a macroscopic no-slip assumption2. This was experimentally demonstrated by McHale
and Newton3. On the other hand, roughness can cause pockets to be filled with vapour or
gas nano bubbles leading to apparent slip4. Varnik et al.5 applied the lattice Boltzmann
(LB) method to show that even in small geometries rough channel surfaces can cause flow
to become turbulent. Recently, Sbragaglia et al. applied the LB method to simulate fluids
in the vicinity of microstructured hydrophobic surfaces6. In an approach similar to the one
proposed by us, they modelled a liquid-vapour transition atthe surface utilising the Shan-
Chen multiphase LB model7. The authors were able to reproduce the behaviour of the
capillary pressure as simulated by Cottin-Bizonne et al. using molecular dynamics (MD)
simulations quantitatively8.

During the last two years, we published a number of papers in which we presented a
model to simulate hydrophobic surfaces with a Shan-Chen based fluid-surface interaction
and investigated the behaviour of the slip lengthβ9, 10. We showed that the slip lengthβ
is independent of the shear rate, but depends on the pressureand on the concentration of
surfactant added. Recently, we presented the idea of an effective wall for rough channel
surfaces11 and investigated the influence of different types of roughness on the position
of the effective boundary. Further, we showed how the effective boundary depends on the
distribution of the roughness elements and how roughness and hydrophobicity interact with
each other12. In this report, we revise our previous achievements.

2 Simulation Method

We use a 3D LB model as presented in13, 9 to simulate pressure driven flow between two in-
finite rough walls that might be wetting or non-wetting. Since the method is well described
in the literature we only shortly describe it here.

The lattice Boltzmann equation,

ηi(x + ci, t+ 1)− ηi(x, t) = Ωi, i = 0, 1, . . . , b , (1)

with the componentsi = 0, 1, . . . , b, describes the time evolution of the single-particle
distributionηi(x, t), indicating the amount of quasi particles with velocityci, at sitex on
a 3D lattice of coordination numberb = 19, at time-stept.

We choose the Bhatnagar-Gross-Krook (BGK) collision operator

Ωi = −τ−1(ηi(x, t)− η eq
i (u(x, t), η(x, t))), (2)

with mean collision timeτ and equilibrium distributionηeq
i

14. We use the mid-grid bounce
back boundary condition and chooseτ = 1 in order to recover the no-slip boundary con-
ditions correctly. Interactions between the boundary and the fluid are introduced as mean
field body force between nearest neighbours as it is used by Shan and Chen for the inter-
action between two fluid species7, 9:

Ffluid(x, t) ≡ −ψfluid(x, t)gfluid,wall

∑

x′

ψwall(x′, t)(x′ − x) . (3)

The interaction constantgfluid,wall is set to0.08 if not stated otherwise. The wall properties
are given by the so-called wall densityηwall. This enters directly into the effective mass
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ψi = 1−e−
ηi

η0 , with the normalized massη0 = 1. With such a model we can simulate slip
flow over hydrophobic boundaries with a slip lengthβ of up to5 in lattice units9. It was
shown that this slip length is independent of the shear rate,but depends on the interaction
parameters and on the pressure.

Here, we model Poiseuille flow between two infinite rough boundaries as shown in
Fig. 1. Simulation lattices are 512 lattice units long in flowdirection and the planes are

Figure 1. Poiseuille flow in between infinite rough boundaries. The colouring of the streamlines denotes the
parabolic velocity profile, while close to the boundary the otherwise laminar streamlines become distorted.

separated by 128 sites between the lowest points of the roughness elementshmin. Periodic
boundary conditions are imposed in the remaining directionallowing us to keep the res-
olution as low as 16 lattice units. A pressure gradient is obtained by setting the pressure
to fixed values at the in- and outflow boundary. The highest point of one plane gives the
height ofhmax, while the average roughness is found to beRa (see Fig. 2). In the case of
symmetrical distributionsRa = hmax/2.

The position of the effective boundary can be found by fittingthe parabolic flow profile

vz(x) =
1

2µ

∂P

∂z

[
d2 − x2 − 2dβ

]
(4)

via the distance2d = 2deff . With β set to 0 we obtain the no-slip case. The viscosityµ and
the pressure gradient∂P

∂z are given by the simulation. To obtain an average value fordeff , a
sufficient number of individual profiles at different positionsz are taken into account. The
so founddeff gives the position of the effective boundary and the effective heightheff of
the rough surface is then defined bydmax − deff (see Fig. 2).

3 Flow Along Rough Surfaces

Panzer et al. calculated the slip lengthβ analytically for Poiseuille flow in the case of
small cosine-shaped surface variations15. It is applicable to two infinite planes separated
by a distance2d being much larger than the highest peakshmax. Surface variations are
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Ra

dmax deff

maxh
heff

hmin

Figure 2. The effective boundary heightheff is found between the deepest valley athmin and the highest peak
athmax and corresponds to an effective channel widthdeff . For the utilized geometries the average roughness is
equal to half the maximum heightRa = hmax/2 (from12).

determined by peaks of heighthmax, valleys athmin and given byh(z) = hmax/2 +
hmax/2 cos(qz). Here,q is the wave number. Since the surfaces are separated by a large
distance, the calculated slip length is equal to the negative effective boundaryheff that is
found to be

heff = −β =
hmax

2

(
1 + k

1− 1
4k

2 + 19
64k

4 +O(k6)

1 + k2(1− 1
2k

2) +O(k6)

)
. (5)

The first andk independent term shows the linear behaviour of the effective heightheff on
the average roughnessRa = hmax/2. Higher order terms cannot easily be calculated ana-
lytically and are neglected. Thus, Eq. 5 is valid only fork = qhmax/2≪ 1. However, for
realistic surfaces,k can become substantially larger than1 causing the theoretical approach
to fail. Here, only numerical simulations can be applied to describe arbitrary boundaries.
In Fig. 3 the normalized effective heightheff/Ra obtained from our simulations is plotted
versusk for cosine shaped surfaces withhmax/2 = k = 1, 1

2 ,
1
3 (symbols). The line is

given by the analytical solution of Eq. 5. Fork < 1 the simulated data agrees within 2.5%
with Panzer’s prediction. However, fork = 1 a substantial deviation between numerical
and analytical solutions can be observed because Eq. 5 is valid for small k only. In the
case of largek > 1, the theory is not able to correctly reproduce the increase of β with
increasinghmax anymore. Instead,2β/hmax becomes smaller again due to missing higher
order contributions in Eq. 5. Our simulations do not suffer from such limitations allowing
us to study arbitrarily complex surface geometries11.

We showed that the position of the effective boundary heightis depending on the shape
of the roughness elements, i.e., for strong surface distortions it is between1.69 and1.90
times the average height of the roughnessRa = hmax/2

11. By adding an additional dis-
tance between roughness elements,heff decreases slowly, so that the maximum height is
still the leading parameter. We are also able to simulate flowover surfaces generated from
AFM data of gold coated glass used in microflow experiments byO.I. Vinogradova and
G.E. Yakubov16. We find that the height distribution of such a surface is Gaussian and
that a randomly arranged surface with a similar distribution gives the same result for the
position of the effective boundary although in this case theheights are not correlated. We
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Figure 3. Effective heightheff normalized by the average roughnessRa versusk = hmax/2q for a cosine
geometry. Symbols denote numerical data and the line is given by Eq. 5. Fork > 1 the theory fails simulations
are still valid in this regime (from12).

Figure 4. Simulatedheff versusRa for gold coated glass and a randomly generated surface with Gaussian
distributed heights. The background image shows the gold surface (left) and the artificially generated structure
(right)11.

can set the width of the distributionσ and the average heightRa. By scalingσ withRa we
obtain geometrically similar geometries. This similarityis important because the effective
heightheff scales with the average roughness in the case of geometricalsimilarity11 (see
Fig. 4). As an extension of our previous work, we investigateGaussian distributed heights
with different widthsσ. In Fig. 5 the effective heightheff is plotted over the average height
Ra for 0.054 < σ/Ra < 0.135. The height of the effective wall depends linearly on
σ in the observed range as can be seen in the inset12. The effective heightheff ranges
from 1.15Ra to 1.45Ra. These values are lower than the effective heights for an equally
distributed roughness (1.84Ra).

4 Wettability and Roughness

We also investigate how roughness and the surface wettability act together by performing
simulations with rough channels to which we assign a fluid-wall interaction as given in the
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Figure 5. Effective heightheff over average roughnessRa for Gaussian distributed height elements with different
width of the distributionσ. Symbols are the simulation results, lines are a linear fit tothe data. The inset shows
the linear dependence of the effective height onσ12.

introduction (Eq. 3,ηwall= 0.5, 1, and5). For perfectly smooth surfaces we determineβ
to be0.65, 1.13, and1.3. Fig. 6 depicts the effective height of rough hydrophobic walls
versusRa. ForRa > 4 we find a linear dependence betweenRa andheff . The slope for
differentηwall varies because the fluid-surface interaction does not causea simple offset
on the effective heightheff . Instead, non-linear effects are playing a role.
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Figure 6. Effective heightheff versus average roughnessRa with different fluid-wall interaction constantηwall.
The position of the effective heightheff spreads wider for higherRa, because larger roughness increases the
fluid-wall interaction12.

To decouple the effects of roughness and wettability we determine the slip length by
setting the effective distancedeff in equation (4) to the effective distance for a rough no-slip
wall. We then fit the corresponding velocity profile viaβ. In Fig. 7 we can see that the slip
lengthβ for the strong fluid-wall interaction (ηwall = 5) first decreases with the average
roughness and then rises. For a lower interaction, the slip length is constantly growing
and leads to an increase of the slip length for weak fluid wall interaction (ηwall = 0.5)
by a factor of more than three. There are two counteracting effects in this system and
their interplay can explain the observed behaviour. The decrease of the slip lengthβ is
due to an increased friction near the boundary at moderate roughness. The increase has its
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reason in the reduced pressure near the hydrophobic rough surface, so that the fluid “feels”
a smoothed effective surface. For a more detailed study on superhydrophobic surfaces, the
strong surface variation as well as the liquid-gas transitions have to be taken into account.
This is ongoing work and will be reported on in the future.
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Figure 7. Slip lengthβ over average roughnessRa for equally distributed height elements with different fluid-
wall interactionηwall = 0.5, 1.0, 5.0. The position of the effective heightheff is chosen as the value for
a non-interacting wall. The lines show the slip lengths for smooth boundaries. Error bars show the standard
deviation of results from four different random surfaces12.

5 Conclusion

In this report we summarized our work on fluid flow along rough and hydrophobic surfaces
which has been performed during the last two years. We demonstrated that there is a linear
dependence of the effective height on the average roughnessand that the average height
scales linearly with the width of the distribution of heightsσ. We successfully applied our
simulations to experimental data and showed that neglecting roughness can lead to substan-
tial errors in experimental measurements. Currently, we investigate the interplay between
roughness and hydrophobic fluid-wall interactions and presented preliminary results. They
show that there exist non-linear interactions between roughness and hydrophobicity lead-
ing to an increase of the slip length and eventually to superhydrophobic effects.
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