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Boundary Effects in Microfluidic Setups

J. Harting and C. Kunert

Institute for Computational Physics, University of Stuaitg
Pfaffenwaldring 27, 70569 Stuttgart, Germany
E-mail: jens@icp.uni-stuttgart.de

Due to large surface to volume ratios in microfluidic setups,roughness of channel surfaces
must not be neglected since it is not any longer small condptoethe length scale of the
system. In addition, the wetting properties of the wall hamémportant influence on the flow.
Even though these effects are getting more and more impdidanndustrial and scientific
applications, the knowledge about the interplay of surfaehness and hydrophobic fluid-
surface interaction is still very limited because theseprties cannot be decoupled easily in
experiments. We investigate the problem by means of laBmézmann (LB) simulations of
rough microchannels with tunable fluid-wall interaction.e\itroduce an “effective no-slip
plane” at an intermediate position between peaks and gabliéyhe surface and observe how
the position of the wall may change due to surface roughnedshgdrophobic interactions.
We find that the position of the effective wall, in the case @aussian distributed roughness
depends linearly on the width of the distribution. Further ave able to show that roughness
creates a non-linear effect on the slip length for hydrophbbundaries.

1 Introduction

The influence of the surface topologies and wetting behaxadaonfining geometries in
microfluidic systems is of great importance for the undewditag of novel techniques us-
ing micro- or nanoscale geometries. Such systems allowridlaamicroliter or nanoliter
guantities of liquid for production and analysis processése chemical and pharmaceuti-
cal industry, for scientific purposes or medical applicasioDue to the small length scales
in the system, the surface to volume ratio becomes more it@prssuming the surfaces
to be perfectly flat and non-interacting is even on molecsitales an invalid assumption
which can lead to large errors in experimental measuremdntshis report we utilize
lattice Boltzmann simulations to investigate the combiiméidence of roughness and wet-
tability on the fluid flow. This leads to the question which hdary condition has to be
applied at a surface in order to treat the surface topologygnty. For more than a hundred
years the no-slip boundary condition was successfullyia@jh engineering applications.
Nevertheless, Naviéintroduced a slip boundary condition

v
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saying that the fluid velocity at the boundary = 0 is proportional to the velocity gradient
%. The constant of proportionality is given by the slip length 5 depends on many
parameters like the wettability, the surface roughnessuat firoperties like the viscosity
or molecular interactions. Therefore, it has to be seen &srirical length that contains
many to some extend unknown interactions. However, for Eniguids the measured slip
lengths are commonly of the order of up to some tens of narenset

The influence of surface variations on the slip lengtias been investigated by numer-

ous authors. On the one hand roughness leads to higher dcag fand thus to no-slip on

v(ix=0)=
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macroscopic scales. Richardson showed that even if on &surépce a full-slip boundary
condition is applied, one can determine a flow speed redungar the boundary resulting
in a macroscopic no-slip assumptforThis was experimentally demonstrated by McHale
and NewtoR. On the other hand, roughness can cause pockets to be filledagour or
gas nano bubbles leading to apparent’sligarnik et al® applied the lattice Boltzmann
(LB) method to show that even in small geometries rough cabsurfaces can cause flow
to become turbulent. Recently, Sbragaglia et al. applied.B method to simulate fluids
in the vicinity of microstructured hydrophobic surfaBet an approach similar to the one
proposed by us, they modelled a liquid-vapour transitiothatsurface utilising the Shan-
Chen multiphase LB model The authors were able to reproduce the behaviour of the
capillary pressure as simulated by Cottin-Bizonne et ahgisolecular dynamics (MD)
simulations quantitativefy

During the last two years, we published a number of papershichwwe presented a
model to simulate hydrophobic surfaces with a Shan-Cheedofisid-surface interaction
and investigated the behaviour of the slip lengh'®. We showed that the slip length
is independent of the shear rate, but depends on the presstdiren the concentration of
surfactant added. Recently, we presented the idea of actiefevall for rough channel
surfaced! and investigated the influence of different types of rougsnen the position
of the effective boundary. Further, we showed how the effedtoundary depends on the
distribution of the roughness elements and how roughneblsyadrophobicity interact with
each othéf. In this report, we revise our previous achievements.

2 Simulation Method

We use a 3D LB model as presentetfifito simulate pressure driven flow between two in-
finite rough walls that might be wetting or non-wetting. Siribe method is well described
in the literature we only shortly describe it here.

The lattice Boltzmann equation,

ni(X—FCi,t—i—l)—ﬁi(X,t):Qi,izo,l,...,b, (1)

with the components = 0,1, ...,b, describes the time evolution of the single-particle
distributionn; (x, t), indicating the amount of quasi particles with veloaity at sitex on
a 3D lattice of coordination numbeér= 19, at time-step.

We choose the Bhatnagar-Gross-Krook (BGK) collision ofmera

Q; = _7-71(771' (Xv t) - nicq(u(xv t)v W(Xv t)))v (2)

with mean collision time- and equilibrium distributiom; 1. We use the mid-grid bounce
back boundary condition and choose= 1 in order to recover the no-slip boundary con-
ditions correctly. Interactions between the boundary &ediuid are introduced as mean
field body force between nearest neighbours as it is used ag &hd Chen for the inter-
action between two fluid specfe$

F19(x, 1) = —p™9(x, 1) gania, wan Y ¥V (%, 1) (x = %) . 3)
x/
The interaction constanhiq, wan IS Set t00.08 if not stated otherwise. The wall properties
are given by the so-called wall densify..;;. This enters directly into the effective mass
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P=1- ¢~ 7, with the normalized masg’ = 1. With such a model we can simulate slip
flow over hydrophobic boundaries with a slip lengttof up to5 in lattice unit§. It was
shown that this slip length is independent of the shear batedepends on the interaction
parameters and on the pressure.

Here, we model Poiseuille flow between two infinite rough tarres as shown in
Fig. 1. Simulation lattices are 512 lattice units long in fldiwection and the planes are

| el |

velocity

. 0.00667

0.00500

Figure 1. Poiseuille flow in between infinite rough boundarid@he colouring of the streamlines denotes the
parabolic velocity profile, while close to the boundary thiesowise laminar streamlines become distorted.

separated by 128 sites between the lowest points of the nmsgtelements,,;,,. Periodic
boundary conditions are imposed in the remaining directibowing us to keep the res-
olution as low as 16 lattice units. A pressure gradient isioled by setting the pressure
to fixed values at the in- and outflow boundary. The highesttpafi one plane gives the
height of h,.x, While the average roughness is found toithge(see Fig. 2). In the case of
symmetrical distribution®, = hmpax /2.

The position of the effective boundary can be found by fittimg parabolic flow profile

1 0P, 4
v () = 21 02 [d® — 2* — 2df] 4

via the distanc@d = 2d.g. With 3 set to 0 we obtain the no-slip case. The viscogignd
the pressure gradie%fzi are given by the simulation. To obtain an average valudfgra
sufficient number of individual profiles at different positsz are taken into account. The
so foundd.g gives the position of the effective boundary and the effectieighth.g of
the rough surface is then defined dy.x — d.s (se€ Fig. 2).

3 Flow Along Rough Surfaces
Panzer et al. calculated the slip lengthanalytically for Poiseuille flow in the case of

small cosine-shaped surface variationdt is applicable to two infinite planes separated
by a distanced being much larger than the highest peaks... Surface variations are
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Figure 2. The effective boundary heightg is found between the deepest valleyhat;,, and the highest peak
athmax and corresponds to an effective channel widith. For the utilized geometries the average roughness is
equal to half the maximum heigtit, = hmax/2 (from'?).

determined by peaks of height,.x, valleys ath.,;, and given byh(z) = hmax/2 +
hmax/2 cos(qz). Here,q is the wave number. Since the surfaces are separated byea larg
distance, the calculated slip length is equal to the negatifective boundarji. that is
found to be

(%)

( — 1K+ Bk + O(KS
heH:_g:hmd"(1+/g it gk O )).

1+ k2(1— 3k2) + O(kS)

The first andt independent term shows the linear behaviour of the effett@ighth.¢ on
the average roughness, = h,ax/2. Higher order terms cannot easily be calculated ana-
lytically and are neglected. Thus, Eq. 5 is valid only fo& gh.,.x/2 < 1. However, for
realistic surfaced; can become substantially larger thacausing the theoretical approach
to fail. Here, only numerical simulations can be applied ésatibe arbitrary boundaries.
In Fig. 3 the normalized effective heights /R, obtained from our simulations is plotted
versusk for cosine shaped surfaces with,../2 = k = 1, 3, % (symbols). The line is
given by the analytical solution of Eq. 5. Fbr< 1 the simulated data agrees within 2.5%
with Panzer’s prediction. However, fér= 1 a substantial deviation between numerical
and analytical solutions can be observed because Eq. Sigsfealsmall & only. In the
case of largé: > 1, the theory is not able to correctly reproduce the incredse with
increasingiy,.x anymore. Instea®3/ hmax becomes smaller again due to missing higher
order contributions in Eqg. 5. Our simulations do not suffeni such limitations allowing
us to study arbitrarily complex surface geometfites

We showed that the position of the effective boundary hegtiepending on the shape
of the roughness elements, i.e., for strong surface disterit is betweern .69 and1.90
times the average height of the roughn&ss= h,,../2'*. By adding an additional dis-
tance between roughness elementsg, decreases slowly, so that the maximum height is
still the leading parameter. We are also able to simulate dlesv surfaces generated from
AFM data of gold coated glass used in microflow experiment®©Hy Vinogradova and
G.E. Yakubov®. We find that the height distribution of such a surface is Gmmsand
that a randomly arranged surface with a similar distributjoves the same result for the
position of the effective boundary although in this casettbigihts are not correlated. We
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Figure 3. Effective heighti. normalized by the average roughne3s versusk = hmax/2q for a cosine
geometry. Symbols denote numerical data and the line isigiyeEq. 5. Fork > 1 the theory fails simulations
are still valid in this regime (frof?).
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Figure 4. Simulatech.g versusR, for gold coated glass and a randomly generated surface vatisstan
distributed heights. The background image shows the gofdci(left) and the artificially generated structure
(right)1L.

can set the width of the distributionand the average heigh,. By scalings with R, we
obtain geometrically similar geometries. This similaigymportant because the effective
heighth.g scales with the average roughness in the case of geomesiricisdrity! (see
Fig. 4). As an extension of our previous work, we investigageissian distributed heights
with different widthso. In Fig. 5 the effective height.g is plotted over the average height
R, for 0.054 < o/R, < 0.135. The height of the effective wall depends linearly on
o in the observed range as can be seen in the'thsahe effective height..x ranges
from 1.15R, to 1.45R,,. These values are lower than the effective heights for aalgqu
distributed roughness 84 R,,).

4 Wettability and Roughness

We also investigate how roughness and the surface wetyahdi together by performing
simulations with rough channels to which we assign a fluidl-iwgeraction as given in the
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Figure 5. Effective height.g over average roughnes, for Gaussian distributed height elements with different
width of the distributiono. Symbols are the simulation results, lines are a linear fitéodata. The inset shows
the linear dependence of the effective heightdf

introduction (Eq. 3swan= 0.5, 1, and5). For perfectly smooth surfaces we determihe
to be0.65, 1.13, and1.3. Fig. 6 depicts the effective height of rough hydrophobidisva
versusR,. For R, > 4 we find a linear dependence betweepn andh.g. The slope for

differentn,.n varies because the fluid-surface interaction does not Gasgaple offset

on the effective heighti.g. Instead, non-linear effects are playing a role.
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Figure 6. Effective height.g versus average roughneRs with different fluid-wall interaction constamg..1; -
The position of the effective heiglit. spreads wider for higheR,,, because larger roughness increases the
fluid-wall interactiort?.

To decouple the effects of roughness and wettability werdetes the slip length by
setting the effective distanaky in equation (4) to the effective distance for a rough no-slip
wall. We then fit the corresponding velocity profile yialn Fig. 7 we can see that the slip
length 3 for the strong fluid-wall interaction"*!! = 5) first decreases with the average
roughness and then rises. For a lower interaction, the efigth is constantly growing
and leads to an increase of the slip length for weak fluid waéiraction {y.y = 0.5)
by a factor of more than three. There are two counteractifegesfin this system and
their interplay can explain the observed behaviour. Theeadse of the slip length is
due to an increased friction near the boundary at moderaghreess. The increase has its
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reason in the reduced pressure near the hydrophobic roufglcsuso that the fluid “feels”
a smoothed effective surface. For a more detailed study jperbydrophobic surfaces, the
strong surface variation as well as the liquid-gas tramsitihave to be taken into account.
This is ongoing work and will be reported on in the future.

1.8 T T T T T
L nwallzo'5 —A—
1.6 =1.0 sen@en
Nwall=2-9 > @
14r o Nwa=5-0 —@— 1

12 F b
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slip length B
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Figure 7. Slip length3 over average roughnesg, for equally distributed height elements with different dtui
wall interactionn.;;1 = 0.5, 1.0, 5.0. The position of the effective heiglit. is chosen as the value for
a non-interacting wall. The lines show the slip lengths fmosth boundaries. Error bars show the standard
deviation of results from four different random surfaées

5 Conclusion

In this report we summarized our work on fluid flow along rought ydrophobic surfaces
which has been performed during the last two years. We detnaded that there is a linear
dependence of the effective height on the average rouglamesthat the average height
scales linearly with the width of the distribution of height We successfully applied our
simulations to experimental data and showed that negteatinghness can lead to substan-
tial errors in experimental measurements. Currently, westigate the interplay between
roughness and hydrophobic fluid-wall interactions andgmeed preliminary results. They
show that there exist non-linear interactions betweenoags and hydrophobicity lead-
ing to an increase of the slip length and eventually to suygidphobic effects.
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