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The Kondo lattice model describes a lattice of magnetic impurities embedded in a metallic host
and is an appropriate starting point for the understanding of so-called heavy fermion systems.
Those systems show a plethora of competing phases: a metallic Fermi-liquid state with effective
mass exceeding by order of magnitudes the bare electron mass, magnetically ordered states
as well as the coexistence of superconductivity and magnetism. Quantum phase transitions
between the above mentioned phases as well as the mechanism triggering superconductivity
remain unresolved issues of great interest in solid state physics. With the use of large scale
numerical simulations in the framework of the Dynamical Cluster Approximation, we have
investigated the evolution of the Fermi surface across the magnetic order-disorder transition.
This is a central issue which lies at the heart of a theoretical understanding of this transition.
Here we summarize our results which show a change in the topology of the Fermi surface across
the transition thus supporting recent Hall effect experiments.

1 Introduction

In the 1960’s the study of localized magnetic moments was placed firmly in the emerging
field of strongly correlated electron systems when Andersonfirst identified interactions
between localized electrons as the driving force for local moment formation1. Early ex-
perimentalists realized that local moment formation on magnetic iron ions dissolved in
non-magnetic metals is dependent on the host2, 3. The magnetic susceptibility of a system
of iron dissolved in a niobium-molybdenum alloy was seen to follow a Curie-Weiss law
for compositions close to molybdenum, indicating the presence of local moments. The low
temperature limit of Curie-Weiss susceptibility is given by the Kondo temperature, the tem-
perature at which the local moment is screened due to the formation of an entangled spin
singlet state of the local moment and surrounding conduction electrons. Kondo physics
lies in direct analogy to the phenomena of asymptotic freedom that governs quark physics.
Like the quark, at high energies the local moment in the metallic host is free, but at energies
below the Kondo temperature, it interacts so strongly with the surrounding electrons that it
becomes screened or confined. The physics of local moment screening, manifests itself in
a variety of properties of correlated electron systems including the Kondo resistivity mini-
mum and also the formation of heavy fermion metals. With the latter, the presence of local
moments greatly changes the metals properties with quasi-particles developing which may
have an effective mass many times larger than the bare electron mass whilst still behaving
as a Fermi liquid at low temperatures.

Such behaviour led Doniach to propose that the huge mass renormalization has its roots
in a lattice version of the Kondo effect and that such heavy fermion systems should be mod-
elled by the Kondo lattice model (KLM)4. The mass renormalization can be attributed to
the coherent superposition of individual Kondo screening clouds and the resulting metallic
state is characterized by a Fermi surface with Luttinger volume (Fermi surface volume)
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containing both conduction and localized electrons. In itssimplest form, the KLM de-
scribes a lattice of spin 1/2 magnetic moments coupled antiferromagnetically via an ex-
change couplingJ to a single band of conduction electrons and is believed to capture the
physics of heavy fermion materials such as CeCu6.

Although the physics of the single impurity Kondo problem iswell understood5 the
KLM still poses a problem half a century since its original conception. The difficulty with
the lattice problem arises due to the presence of two competing energy scales. The first
energy scale, given by the Kondo temperature, is associatedwith the screening of impurity
spins via the Kondo effect. However, in the lattice problem,polarization of the conduction
electron spins around a first magnetic impurity can couple toa second impurity leading
to an effective interaction between impurity spins, the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction6–8, and an associated second energy scale. This RKKY scale dom-
inates at low values of the exchange coupling and is the driving force for the observed
magnetic order-disorder quantum phase transitions in heavy fermion materials. The na-
ture of this phase transition is of current interest following experimental results suggesting
a sudden change in the Fermi surface topology at the quantum critical point (QCP) for
the heavy fermion metal YbRh2Si29. Tuning this system from the non-magnetic heavy
fermion metallic phase to the antiferromagnetic metallic phase causes a rapid change in
the low temperature Hall coefficient which is extrapolated to a sudden jump atT = 0.
Since the low-temperature Hall coefficient is related to theFermi surface volume the re-
sults are interpreted as showing a sudden reordering of the Fermi surface at the QCP from
a largeFermi surface, where the local moment impurity spins are included in the Luttinger
volume, to asmallFermi surface where the impurity spins drop out of the Fermi surface
volume.

This issue forms one of the central issues of our work. In thisarticle we briefly present
this and other recent results of our numerical simulations of the KLM and attempt to high-
light the essential need for high performance computing in this project.

2 Numerical Solution of the Kondo Lattice Model

We take the KLM in two dimensions as our model heavy fermion system with Hamiltonian
given by

H =
∑

k,σ

ǫ(k)c†k,σck,σ + J
∑

i

Sc
i · Sf

i (1)

with c†k,σ creating a conduction electron on an extended orbital with wave vectork and
a z-component of spinσ =↑, ↓. The spin1/2 degrees of freedom, coupled viaJ , are
represented with the aid of the Pauli spin matricesσσσ by Sc

i = 1
2

∑
s,s′ c

†
i,sσσσs,s′ci,s′ or the

equivalent definition forSf
i using the localized orbital creation operatorsf †

i,σ. The KLM
forbids charge fluctuations on thef -orbitals and as such the constraint of one electron per
localized orbital must be included.

A numerical approach to solving the model is advantageous because such an approach
will be non-biased. Due to the sheer size of the electron configuration (Hilbert) space
of even a moderately small lattice of interacting electrons, exact solution methods, for
example exact diagonalization, become impossible in practice. The quantum Monte Carlo
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(QMC) approach stochastically samples the configuration space according to the statistical
weight of a given configuration to arrive at an averaged solution with a statistical error
dependant on the number of samples taken. However a common problem of QMC based
simulations manifests itself as the minus sign problem in which the statistical weight of
a sampled configuration may be negative. For a given algorithm the problem becomes
severe if the average of this sign becomes small since then the number of stochastic samples
required to give decent statistics increases exponentially. Previous QMC calculations of the
KLM have been limited to finite sized lattices and in particular to particle-hole symmetry
(half-filling) due to a severe minus sign problem.

In our project we examine the KLM in the hole-doped regime. Wedo this by employing
the dynamical cluster approximation (DCA) in combination with a QMC algorithm for
solving the model on the cluster.

3 The Dynamical Cluster Approximation with a Quantum Monte
Carlo Cluster Solver

Within the DCA the originalN -site lattice problem is approximated by a finite sized cluster
of Nc sites embedded in a bath of the remaining electrons10, 11. Interactions within the
cluster are calculated exactly, whereas interactions between the cluster and the bath are
accounted for at a mean field level in space coordinates whilst retaining the full dynamics
in imaginary time. The approximation will be particularly valid for systems in which
spatial fluctuations are short-ranged. This equates to assuming only a weak momentum
dependency of correlation functions. In momentum space theBrillouin zone is divided into
Nc patches and strict momentum conservation is relaxed by onlyrequiring conservation for
transfers taking thek-vector out of the patch.

Our implementation of the DCA does not suppress the development of antiferromag-
netic order as is the case with a standard DCA approach. Broken symmetry is taken into
consideration by defining a unit cell of two lattice sites containing, in total, two conduc-
tion electrons and two localized f-electron orbitals. Thisis the smallest cluster, which we
denote byNAF

c = 1, with which we can capture antiferromagnetic ordering and is the
smallest cluster we consider in this article. Fig. 1 defines the basis vectors used, the unit
cell and site indices within a cell. Allowing for antiferromagnetic ordering, translational
symmetry is now only assumed for the new basis vectorsa1 anda2 so that, in momentum
space, the Brillouin zone is reduced to the magnetic Brillouin zone (MBZ). Patching of the
MBZ is demonstrated in Fig. 1 for a cluster of sizeNAF

c = 4. Importantly, the DCA self-
consistent equation for the lattice Green function becomesa matrix equation since each
site of the lattice defined bya1 anda2 is now a unit cell of four orbitals.

A basic requirement for using the DCA is the ability to effectively calculate the quantity
Σc[Ḡ(K, iωn)], the self-energy on the cluster. In our work we achieve this via the QMC
Hirsch-Fye impurity algorithm12 proceeding as in Ref.13.

From a technical point of view the bulk of the numerical effort lies within the calcula-
tion of the self-energy on the cluster via the QMC impurity algorithm. Here the compu-
tational time scales with(βNAF

c )3 whereβ is the inverse temperature. Even for asmall
cluster containing 16 orbitals the computational effort required to obtain decent statistics
is immense. High performance computing is at this stage essential and, since QMC meth-
ods are easily parallelized, highly applicable. Additionally, we note that during a typical
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Figure 1. (a) Definition of the real space basis vectors, unitcell and orbital indices (b) The reduced Brillouin
zone and k-space patching for a cluster withNAF

c = 4

program run 90% of the time within the QMC algorithm is devoted to the calculation of
outer products which may be achieved by using a BLAS library routine. The algorithm
may therefore be highly optimized.

4 Results

As an initial test of our method we have carried out simulations at the particle-hole sym-
metric point (t′/t = 0 and〈nc〉 = 1) and compared the results with previous lattice QMC
simulations13.

Figure 2. Left: DCA results for the staggered magnetizationms and quasi-particle gap∆qp of the KLM at half-
filling. Right: DCA results for the same quantities but now the model includes a next-nearest neighbour hopping
termt′/t = −0.3

As shown in Fig. 2 (left side plot) the result for the staggered magnetization captures the
phase transition from a paramagnetic to an antiferromagnetic phase with decreasingJ/t.
In addition, for smallJ/t the linear dependency of the quasi-particle gap, which appears
in the results of Ref.13, is well reproduced with the DCA results. At half-filling theFermi-
surface exhibits perfect nesting, so to examine the influence of this on the magnetization
and quasi-particle gap we deformed the Fermi-surface by introducing a frustration term
into the Hamiltonian in the form of a nearest-neighbour hopping t′/t = −0.3. The results
(Fig. 2, right) still demonstrate a magnetically ordered phase, now at lower criticalJ/t, but
the linear behaviour of the quasi-particle gap is lost for small J/t and the gap now appears
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Figure 3. The single particle spectral function of the KLM athalf-filling (t′/t = 0 and〈nc〉 = 1) and with
couplingJ/t = 1.2 resulting from (left) a12 × 12-lattice QMC simulation using the projective auxiliary field
algorithm of Ref.13 and (right) the DCA with cluster sizeNAF

c = 1 andβt = 40.0

to follow a Kondo-scale,∆qp/t ∝ e−W/J . This is an important result which concludes
that a linear dependency of the quasi-particle gap is not generic to the system but rather is
a direct consequence of particle-hole symmetry.

Initially remaining at half-filling we are able to show, by comparison of our band struc-
ture results with those of previous QMC calculations, that already a two-site cluster cap-
tures the key elements (Fig. 3). The parameters chosen for the plots are for an antiferro-
magnetic insulating point in the magnetic phase diagram. Although antiferromagnetic, the
spectrum still retains a very flat heavy fermion band. This band, however, is then back-
folded according to the symmetry effects introduced by the reduction of the Brillouin zone
to a magnetic Brillouin zone as a direct result of antiferromagnetic ordering and break-
ing of the original translational symmetry. This behaviouris already well documented in
the half-filled KLM, and the agreement of our results with those of previous studies con-
firms our belief that our DCA variant contains the necessary ingredients to investigate the
delicate interplay between the RKKY interaction and Kondo physics.

In Fig. 4 we map out the ground state magnetic phase diagram ofthe KLM as a function
of couplingJ/t and conduction band hole-doping. Since we are interested inground state
properties the choice for the inverse temperatureβt must be large enough to ensure we are
below the smallest scale in the problem which will either be the coherence temperature or
the RKKY scale. This requirement limits our simulations to the regionJ/t ≥ 0.8 since the
coherence scale decays exponentially withJ/t and the computational time required by the
QMC cluster solver scales as(βNAF

c )3. Quite generally the onset of magnetism at small
values ofJ/t is expected because the RKKY scale, set byJ2χ(q, ω = 0), then dominates
over the Kondo scale given byTK ∼ e−t/J . We note that the sign problem which restricts
pure QMC simulations to the particle-hole symmetric case isnot severe within the DCA
framework.

Having confirmed the existence of an antiferromagneticallyordered metallic phase we
now address the issue of the Fermi surface topology. In Fig. 5we show results for the
single particle energy excitation spectrum for parameter points with constant couplingJ/t
but on either side of the quantum phase transition. The energiesω/t are plotted relative to
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Figure 4. The magnetic phase diagram of the hole-doped KLM showing simulation results for the staggered
magnetizationmf

z (colour-coded circles) as a function of couplingJ/t and conduction electron occupancy〈nc〉.
The shading of the antiferromagnetic and paramagnetic regions is intended only as a guide to the eye. We have
includedt′/t = −0.3 and the calculations are carried out with theNAF

c = 1 cluster.

ω/t

-2 -1  0  1  2  3  4  5  6

(π,π)

(0,0)

(0,π)

(π,π)

ω/t

-2 -1  0  1  2  3  4  5  6

(π,π)

(0,0)

(0,π)

(π,π)

 0.001

 0.01

 0.1

 1

ω/t

A(k,ω)

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

(π,π)

(π/2,π/2)

(0,0)

Figure 5. Left: DCA single particle spectrum for a simulation in the paramagnetic region (J/t = 1.0, 〈nc〉 =
0.855 andβt = 40.0). Centre: The spectrum of an antiferromagnetic point (NAF

c = 4, J/t = 1.0, 〈nc〉 =
0.977 andβt = 40.0) across the phase transition but at the same couplingJ/t. Right: Zoomed section of the
central plot along the path(0, 0) to (π, π) for energies around the Fermi energy

the Fermi energy and by observing where bands cross the Fermienergy we may deduce
the topology of the Fermi surface. Beginning with the paramagnetic point the presence
of very flat bands at the Fermi energy and around(π, π), and therefore a large effective
electron mass, is no surprise since this region of parameterspace can be well understood by
considering a simple large-N mean field approach. The Fermi surface in this case is given
by the left hand plot in Fig. 6 with unoccupied states around(π, π) and equivalent points.
In the antiferromagnetic case we note the continued existence of flat heavy fermion bands
but also that these bands drop below the Fermi energy around(π, π) and give way instead to
pockets of unoccupied states around(π/2, π/2). The resultant Fermi surface is represented
in the right hand plot of Fig. 6. Evidently, the development of antiferromagnetic order is
related to a complete reordering of the Fermi surface. For a more detailed analysis of such
issues as whether the Luttinger volume counts the impurity orbitals in each case and other
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Figure 6. Depiction of the Fermi surface in the paramagneticmetallic state (left) and the antiferromagnetic metal-
lic state (right)

related issues we refer the interested reader to our recent paper14.

5 Conclusions

In this article we have reported on our current progress towards understanding the hole-
doped, two dimensional KLM ground state. The DCA approach isable to capture the
delicate interplay between Kondo screening and magnetic ordering, as demonstrated by
comparison with earlier finite lattice QMC data at half-filling but the DCA has the clear
advantage in the doped region since the sign problem is not severe. The central result
presented here is the change of topology in the Fermi surface— large Fermi surface to
hole pockets — when the system is tuned through the magnetic transition. This result has
profound implications on the theoretical understanding ofthe phase transition. It invali-
dates the generic Hertz-Millis approach which relies of a Fermi surface topology which
remains unchanged through the transition15, 16, and calls for alternative descriptions17, 18.
Clearly to pin down this important aspect, a more detailed investigation of the nature of
the phase transition as well as the transition from one Fermisurface topology to the other
in the region of the phase transition is required and ongoing. In parallel to this we are very
interested in the effect of temperature on the single particle spectrum and work is also cur-
rently in progress to follow the evolution of the single particle excitation spectrum through
different energy scales.

The statistically high quality data required to produce ourcurrent results and to achieve
the above goals in the future, represents a significant investment in terms of computational
cost. This ambitious project, which may be seen as agrand challengein the field of cor-
related electron systems, would not be possible outside of the realms of high performance
computing.

Acknowledgments

We would like to thank the Forschungszentrum Jülich for generous allocation of CPU
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