
John von Neumann Institute for Computing

Towards an FPGA Solver for the PageRank
Eigenvector Problem

Séamas McGettrick, Dermot Geraghty, Ciarán McElroy

published in

Parallel Computing: Architectures, Algorithms and Applications ,
C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 793-800, 2007.
Reprinted in: Advances in Parallel Computing, Volume 15,
ISSN 0927-5452, ISBN 978-1-58603-796-3 (IOS Press), 2008.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35010365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Towards an FPGA Solver for the PageRank Eigenvector
Problem

Séamas McGettrick, Dermot Geraghty, and Ciarán McElroy

Dept of Mechanical and Manufacturing Engineering
Trinity College Dublin, Ireland

E-mail: {mcgettrs, tgerghty, ciaran.mcelroy}@tcd.ie

Calculating the Google PageRank eigenvector is a massive computational problem dominated
by Sparse Matrix by Vector Multiplication (SMVM) where the matrix is very sparse, unsym-
metrical and unstructured. The computation presents a serious challenge to general-purpose
processors (GPP) and the result is a very lengthy computation. Other scientific applications
have performance problems with SMVM and FPGA solutions have been proposed. However,
the performance of SMVM architectures is highly dependent on the matrix structure. Archi-
tectures for finite element analysis, for example, may be highly unsuitable for use with Internet
link matrices. An FPGA architecture can bring advantages such as custom numeric units, in-
creased memory bandwidth and parallel processing to bear on a problem and can be deployed
as a coprocessor to a GPP.

In this paper, we investigate the SMVM performance on GPPs for Internet matrices. We eval-
uate the performance of two FPGA based SMVM architectures originally designed for finite
element problems on a Virtex 5 FPGA. We also show the effect of matrix reordering on these
matrices. We then investigate the possibility of outperforming the GPP using parallelization
of processing units, showing that FPGA based SMVM can perform better than SMVM on the
GPP.

A Introduction

The Internet is the world’s largest document collection. As it contains over 25 billion
pages1 to choose from, finding one desired page can seem a daunting task. Search engines
have been designed to wade through the vastness of the Internet and retrieve the most
useful documents for any given query. A search engine has to do much work before it can
return any results. Long before a user submits a query, a search engine crawls the Internet
and gathers information about all the pages that it will later search. These pages are then
indexed, so that a list of related pages can be retrieved when a query is submitted. The
next step is ranking the pages returned for a query. This can be done either at or before
query time. In both cases, this process is handled by a ranking algorithm. Documents with
relevant content get a high rank and irrelevant documents receive low ranking scores. In
response to a query the search engine displays the results of a search in order of rank.

Before the advent of Google, spammers had found ways to manipulate the existing
ranking algorithms. Thus, one often had to search through pages of useless results (Spam)
before finding a page with useful information. Google tended to be immune to spam for
every query. This improved search engine was made possible by a new ranking algorithm
called PageRank. PageRank remains at the heart of the Google search engine to this day2.

PageRank achieved a higher quality result by taking advantage of the hyperlinked struc-
ture of the Internet2. Each hyperlink to a page is counted as a vote for the content of the
page to which the hyperlink leads. The more votes a page gets, the better its content is

793

assumed to be, and thus the higher its ranking. The PageRank calculation has been dubbed
the largest matrix calculation in the world3. The matrix at the centre of the calculation is of
the order of 25 billion rows and columns. It is constantly growing as new pages are added
to the Google index.

In Section B, the PageRank Algorithm is discussed and the algorithm is explained. We
show how the algorithm is essentially a problem in linear algebra. In Section C, some
benchmark data for PCs and custom FPGA architectures, which are used in other scientific
applications, is presented. These tests show the effects of reordering on Internet matri-
ces. These results are then extrapolated to show the performance achievable using multiple
processing units in parallel on a Virtex 5 FPGA. Finally, a reflection on the current work
to implement the PageRank algorithm on FPGA and discussion of future progress is pre-
sented.

B PageRank Algorithm

The PageRank algorithm was developed by Sergey Brin and Lawrence Page in 1998 at
Stanford University4. They later created Google, which is currently the world’s largest
and most used search engine2. PageRank is query independent, which means that page
rankings are calculated prior to query time. This system allows Google to return query
results very quickly. PageRank does not rank in order of relevance to the query, but instead
it ranks by general importance of the page. By definition the rank of a page, r(Pi), is
calculated from the sum of the ranks of those pages, r(Pj), which point to it, moderated
by the number of out-links from each of these pages. Thus,

r(Pi) =
∑

PjεBPi

r(Pj)
|Pj |

(B.1)

where BPi is the set of pages which point to page Pi and |Pj | is the number of out-links
on page Pj . To begin with all pages are assigned an initial PageRank of 1/n where n is
the total number of pages in the network or the indexed part of the network. The equation
above can be written in iterative form, as follows:

rk+1(Pi) =
∑

PjεBPi

rk(Pj)
|Pj |

(B.2)

where rk(Pi) is the PageRank of Pi after k iterations. The equation is such that that after
a series of iterations of this equation, the PageRank will converge to a stationary value.
The PageRank equation for a full system can be more conveniently represented in terms of
vectors and matrices. Thus, the graph of the web is represented by an Internet link matrix,
H , which defines the interconnects between the pages. Each row in H shows the out-links
from a page and each column shows the in-links to a page. When the moderating factor,
|Pj | is applied to a row, a probability vector is obtained. i.e. the elements of a row sum to
one.

Now the PageRank vector, which is a vector, can be defined, where each element is the
rank of the corresponding page, as follows:

π(k+1)T (Pi) = π(k)TH (B.3)

794

Figure 1. Example Internet Matrix (from a crawl of tcd.ie)

This equation is of the form λx = Ax with λ = 1. Therefore, it is an eigenvector problem.
One of the most straightforward ways of solving this system is the power method. In
fact, the above iterative equation is a statement of the power method. The equation clearly
shows that the predominant operation needed to solve this problem is Sparse Matrix by
Vector Multiplication (SMVM) between the Internet link matrix (H) and the PageRank
vector.

C Performance

The matrix used in Google’s PageRank calculations is a very large matrix. It has 25 billion
rows and columns; this number is constantly growing as Google includes more pages in
its search database5. The matrix is also unsymmetrical and very sparse; it has, on average,
about 10 entries per column6. Fig. 1 shows a sample web matrix. Currently PageRank
is calculated on general-purpose processors like the Intel and AMD processors. These
processors often perform poorly with large SMVM problems due to the lack of structure
of the matrix7. An FPGA solution would have a number of advantages over the traditional
processor approach. An FPGA can have more than one memory channel and so can run
the calculation in parallel across multiple processing units. The hardware of the FPGA
can be specially optimized to compute ranking algorithms efficiently. To the best of our
knowledge, no FPGA solution for search algorithms exists. To better understand how the
PageRank algorithm could benefit from being implemented on an FPGA, two FPGA based
architectures designed for use in Finite Element problems were benchmarked against a
GPP. The field of finite element also deals with large sparse matrices. However, Internet
link matrices differ from the matrices used finite element analysis as they are not symmetric
or tightly banded8. The first of the two FPGA-based Finite Element solvers used was the
column based SMVM as described by Taylor et al9. The second FPGA-based solver is
a tile solver. This architecture is patent pending so no details will be given at this time.
Some technical details on the architectures used for these benchmarks are given in Table 1.
The models used to calculate the performance of the two FPGA based architectures were
verified in RTL on a Virtex II device and extrapolated to Virtex 510.

Table 2 details the matrices used. All of these matrices come from the Stanford Web-
Base project11 or the WebGraph datasets12 with the exception of web trinity, which was
generated from a crawl of the Trinity College Website. The matrices vary in size from 2.4

795

CPU/FPGA CLK PEAK
PC Pent. Xeon Woodcrest 3 GHz, 1333 MHz FSB 6 GFLOPs
Column Solver Virtex 5 222 MHz 444 MFLOPs
Tile Solver Virtex 5 444 MHz (2x222 MHz) 888 MFLOPs

Table 1. Benchmark architecture details

Num. Name Nodes No. of Links
1 arabic-2005 5K 500000 9877485
2 cnr-2000 5K 325557 3216152
3 eu-2005 5K 500000 11615380
4 in-2004 5K 500000 5422294
5 indochina-2004 5K 500000 8147699
6 it-2004 5K 500000 9387335
7 sk-2005 4K 400000 13391888
8 uk-2002 5K 500000 6998368
9 uk-2005 5K 500000 11192060

10 web matrix 1-5M 1500000 12392081
11 web matrix 1M 1000000 8686242
12 web standford 281903 2312497
13 web trinity 608358 2424439
14 webbase-2001 5K 500000 4214705

Table 2. Benchmark matrices details

Figure 2. SMVM benchmarks for Internet Link Matrices

million non-zeros to 13.4 million non-zeros. They are much smaller than full size Internet
link matrices but are large enough to test the efficiency of an architecture. The PC bench-
mark was a dual threaded C program. The results of the benchmarking are shown in Fig. 2.

The benchmark tests in Fig. 2 show how a single Processing Element (PE) on the
FPGA-based architectures compare to the 3 GHz Intel Xeon (Woodcrest). PageRank matri-
ces have massive storage requirements. In order to achieve a relatively cheap and scalable
memory DRAM can be used. The two FPGA solvers used for benchmarking can connect
to DDR DRAM. Xilinx have shown that Virtex 5 FPGAs can be connected to DDR2-66713.

796

Figure 3. Web stanford before and after RCM reordering

Figure 4. SMVM Benchmark Performance with RCM reordering

Using DDR2-667 RAM a 64 bit word can be read from memory every 667 MHz clock cy-
cle. Each of the two FPGA solvers used for benchmarking requires a 96 bit word every
clock cycle (64 bit non-zero entry and a 32 bit address). To maximise the memory band-
width being used the FPGA solvers would need to run at 444 MHz, which, is unachievable
with current FPGA technology. The column based architecture therefore uses a more real-
istic 222 MHz clock, thus, using only half the available memory bandwidth. The tile solver
approaches this problem slightly differently. It internally has two MAC units running at
222 MHz in parallel which allows it to effectively run at 444 MHz. A similar system could
be implemented for the column based system. However, to be consistent with Taylor’s
architecture it was decided to use a single MAC unit.

It is interesting to see in Fig. 2 that the FPGA-based tile solver actually outperforms
the PC on two of the matrices (9,14), even though the FPGA clock is running almost 12
times slower. The GPP only achieves between 3% and 6% of its theoretical peak. Matrices
12 and 13 perform poorly on all architectures. These matrices give poor performance for
two reasons. They have very few entries per row and their entries are very scattered. The
left side of Fig. 3 shows a pictorial view of matrix 12. The matrix is so scattered that the
picture of the whole matrix appears dense.

It was decided that some investigation should be done into how a well-known reorder-
ing scheme like Reverse Cuthill McKee (RCM)14 would affect this performance. RCM
reordering is used to reduce the bandwidth of link graphs by renumbering the nodes. Fig. 3
shows the difference in non-zero distribution before and after RCM reordering of test ma-
trix 12. The diagram shows that simply renumbering the nodes decreased the bandwidth
of this matrix dramatically. The matrices were reordered and benchmarked on the three
architectures. The results of the reordering benchmarks are shown in Fig. 4. Fig. 5 shows
the change in performance with reordering. Reordering the matrices caused all 3 archi-

797

Figure 5. % change in performance with RCM reordering

Figure 6. SMVM Benchmark Performance of 3 x PE connected via 3 DDR interfaces

tectures to improve performance on the two poorly performing matrices. Reordering also
caused an increase in performance for a number of the other matrices. It also caused slight
degradation in performance of others. Matrices 12 and 13 were the only matrices that were
not ordered by the spiders that generated them, and thus showed the largest increase in
performance when RCM was applied. This highlights the importance of reordering. The
reordering could be implemented by the spider and so avoiding an extra reordering stage.
The column based FPGA architecture showed a less of an increase in performance with
reordering than the tile solver, which can be attributed to RAW hazards which stalls pro-
cessing15. Since these tests use an adder pipeline 14 cycles long10 and the average column
only contains 10 entries, a large number of RAW hazards occur. There are many different
types of reordering schemes. RCM is expensive to implement and is probably not the best
algorithm for Internet link matrices but it does highlight that reordering is necessary.

D Parallelisation

In the previous section we saw that a single PE could outperform a 3 GHz Pentium Wood-
crest processor when calculating SMVM for some, though not all, Internet link matrices.
Further performance improvements are possible through the use of parallel PEs and by
increasing memory bandwidth by implementing multiple parallel memory ports. In this
section we investigate the performance of a system with three parallel PEs and three mem-
ory ports. As before the tile solver’s PE has a pair of double precision floating point MAC
units operating at 222 MHz for an effective rate of 444 MHz. Both solvers show an increase
in performance.

Fig. 6 shows that the FPGA-based solutions have the ability to outperform the GPP

798

by as much as 3 times. This is due to their ability to take advantage of parallelism in the
computations. Both FPGA-based solvers outperform the 3 GHz Pentium Woodcrest Xeon
for all our test matrices except 12, even though their clock rate is over 13 times slower.
The FPGA-based tile solver is the architecture that shows the best performance with a peak
performance of almost 1450 MFLOPS. The FPGA-based column ordered solver performs
well, but its performance is still badly hampered by RAW hazards as discussed earlier.

E Conclusions

The PageRank eigenvector calculation is a large and computationally intensive matrix
problem. General-Purpose processors only achieve a fraction of their peak performance
when calculating large Sparse Matrix by Vector products16. The GPP has a single pipe
to memory and so cannot exploit parallelisms in its calculations. The large number of IO
pins on modern FPGAs makes it possible to use them to achieve high memory bandwidth
by implementing multiple memory ports and exploiting parallelisms in algorithms. Little
performance data for Internet link matrices exists in the public domain and no co-processor
architectures specialized for Internet link matrices exist to the best of the authors knowl-
edge. Finite Element Analysis uses large sparse matrices and a number of FPGA based
architectures exist for solving these problems. Some of these architectures were bench-
marked against a GPP. The benchmark results show a number of interesting results. The
FE FPGA based solvers were more efficient than the GPP. They achieved approximately
50% FPU utilisation when computing Internet style matrices. The GPP (3 GHz Intel Xeon
(Woodcrest)) only achieved a 3-8% FPU utilisation. This increased efficiency meant that a
single FPGA-based SMVM processing element could out-perform the GPP for SMVM of
some internet link matrix even though the FPGA’s clock rate was over 12 times slower.

A number of the matrices showed very poor performance across the three test archi-
tectures. The NZ elements in these matrices were very scattered. RCM , which is a well
known reordering scheme, was applied to all matrices. RCM improved the performance of
the matrices that performed very poorly by a much as 3 times , but it did not give an across
the board increase in performance. RCM is not the right reordering scheme for Internet
link matrices. These results highlight the need to further investigate reordering. A suitable
reordering scheme has the potential to further increase the performance of an FPGA solver
for the PageRank algorithm.

The large number of pins on the FPGA makes it possible implement multiple, parallel
memory ports. This allows 3 PE to work in parallel and increases the performance of the
FPGA solutions so that they both outperform the GPP for all our test matrices. In one case
the tile solver calculated the solution 3 times quicker than the GPP despite having a clock
rate 13 times slower. The tile solvers peak performance was measured at 1450 MFLOPS.
This superior performance is due to the FPGAs ability to exploit parallelism in the calcu-
lation.

The solvers used in these experiments were designed for use with Finite Element ma-
trices. FE calculations are usually done using IEEE floating-point doubles. It is thought
that Internet link matrix calculations do not need to be calculated using this precision6.
Lower precision number formats would allow for greater parallelism as well as a reduc-
tion in adder and multiplier latencies. Investigating this possibility is the next step towards
designing an architecture for the PageRank eigenvector problem on FPGA. This architec-

799

ture will need access to large banks of memory and will rely greatly on parallelisation to
achieve maximum performance for Internet link matrices.

In this paper we have shown how even FPGA based hardware not optimised for Internet
link matrix SMVM can outperform the GPP ,by up to 3 times using slow but cheap and
scalable DDR memory, and by using parallel processing units.

Acknowledgements

This work has been funded by Enterprise Ireland’s Proof of Concept fund.

References

1. D. Austin, How Google finds your needle in the web’s haystack,
http://www.ams.org/featurecolumn/archive/pagerank.html

2. http://www.google.com/technology/
3. C. Moler, The World’s largest computation, Matlab news and notes, Oct., 12–13,

(2002).
4. S. Brin, L. Page and M. Coudreuse, The anatomy of a large-scale hypertexual web

search engine, Computer Networks and ISDN systems., 33, 107–117, (1998).
5. A. N. Langville and C. D. Meyer, A survey of eigenvector methods for web informa-

tion retrievel, The SIAM Review, 27, 135–161, (2005).
6. A. N. Langville and C. D. Meyer, Google’s PageRank and Beyond, The Science of

Search Engine Rankings, (Princeton University Press, 2006).
7. W. D. Gropp, D. K. Kasushik, D. E. Keyes and B. F. Smith, Towards realistic bounds

for implicit CFD codes, Proceedings of Parallel Computational Fluid Dynamics, ,
241–248, (1999).

8. S. McGettrick, D. Geraghty and C. McElroy, Searching the Web with an FPGA-based
search engine, ARC-2007, LNCS, 4419, 350–357, (2007).

9. V. E. Taylor, Application specific architectures for large finite element applications,
PhD Thesis, Berkeley California, (1991).

10. Xilinx LogiCore, Floating Point Operators V.3, (2005).
http://www.xilinx.com

11. http://dbpubs.stanford.edu:8091/ testbed/doc2/WebBase/
12. P. Boldi and S. Vigna, The WebGraph framework 1: Compression techniques, in:

WWW-2004, pp. 595–601, (ACM Press, 2004).
13. K. Palanisamy and M. George, High-Performance DDR2 SDRAM Interface in Virtex-

5 Devices, Virtex 5 Application notes, XAPP858 (v1.1), (2007).
14. http://people.scs.fsu.edu/ burkardt/f src/rcm/rcm.html
15. C. Mc Sweeney, D. Gregg, C. McElroy, F. O’Connor, S.McGettrick, D. Moloney

and D. Geraghty, FPGA based Sparse Matrix Vector Multiplication using commodity
memory, FPL, (2007).

16. C. Mc Sweeney, An FPGA accelerator for the iterative solution of sparse linear sys-
tems, MSc Thesis, Trinity College Dublin, Ireland, (2006).

800

