
John von Neumann Institute for Computing

Compiler Support for Efficient Instrumentation

Oscar Hernandez, Haoqiang Jin, Barbara Chapman

published in

Parallel Computing: Architectures, Algorithms and Applications ,
C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 661-668, 2007.
Reprinted in: Advances in Parallel Computing, Volume 15,
ISSN 0927-5452, ISBN 978-1-58603-796-3 (IOS Press), 2008.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35010348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Compiler Support for Efficient Instrumentation

Oscar Hernandez1, Haoqiang Jin2, and Barbara Chapman1

1 Computer Science Department
University of Houston

501 Phillip G. Hoffman, Houston, Texas
E-mail: {oscar, chapman}@cs.uh.edu

2 NASA Advanced Supercomputing Division, M/S 258-1
NASA Ames Research Center, Moffet Field, CA

E-mail: hjin@nas.nasa.gov

We are developing an integrated environment for application tuning that combines robust, exist-
ing, open source software - the OpenUH compiler and performance tools. The goal of this effort
is to increase user productivity by providing an automated, scalable performance measurement
and optimization system. The software and interfaces that we have created has enabled us to
accomplish a scalable strategy for performance analysis, which is essential if performance tun-
ing tools are to address the needs of emerging very large scale systems. We have discovered
that one of the benefits of using compiler technology in this context is that it can direct the per-
formance tools to decide which regions of code they should measure, selectively considering
both coarse grain and fine grain regions (control flow level) of the code. Using a cost model
embedded in the compiler’s interprocedural analyzer, we can statically assess the importance
of a region via an estimated cost vector that takes its size and the frequency with which it is in-
voked into account. This approach enables us to set different thresholds that determine whether
or not a given region should be instrumented. Our strategy has been shown to significantly
reduce overheads for both profiling and tracing to acceptable levels. In this paper, we show how
the compiler helps identify performance problems by illustrating its use with the NAS parallel
benchmarks and a cloud resolving model code.

1 Introduction

Tracing and profiling play a significant role in supporting attempts to understand the be-
haviour of an application at different levels of detail and abstraction. Both approaches can
be used to measure a variety of different kinds of events, where memory profiling/tracing
are the most expensive. Profiling aggregates the results of event tracking for phases in the
code or for the entire execution of the program, while tracing can keep track of every sin-
gle instance of an event at run time, and captures patterns over time. Tools such as TAU1

support both profiling and tracing. KOJAK2, on the other hand, uses tracing to find perfor-
mance patterns. This can enable the tools to detect communication and synchronizations
problems for both MPI and OpenMP codes, as well as giving support for hardware counter
patterns.

When applications are deployed on systems with thousand of processors, it is critical
to provide scalable strategies for gathering performance data. A suitable approach must
minimize perturbations and reduce the amount of data gathered, while at the same time
providing a significant coverage of the important code regions. Studies have shown that
the overheads of profiling and tracing3 are significant when a shared file system becomes a
contention point. Tracing can lead to very large trace files and may degrade overall system
performance, negatively affecting other applications sharing the same resources.

661



The use of compilers to support instrumentation has been limited because of portability
issues, lack of standard APIs, selective instrumentation and user control. A compiler that
has all the necessary language and target support is desired. PDT4 is a toolkit that was
designed in an attempt to overcome this. It gathers static program information via a parser
and represents it in a portable format suitable for use in source code instrumentation. This
approach does not permit full exploitation of compiler technology; in particular, it does not
provide any insight into the compiler translation, or enable the evaluation of any assump-
tions the compiler makes when deciding to apply a given transformation (which includes
metrics used to evaluate static cost models) that may improve the interpretation of perfor-
mance data. In this paper we show how an open source compiler can be enhanced to enable
it to perform selective instrumentation and, as a result, significantly reduce performance
measurement overheads.

2 Related Work

Programs may be instrumented at different levels of a program’s representation: at the
source code level, at multiple stages during the compiler translation, at object code level,
and embedded within the run time libraries. All of these techniques have inherent ad-
vantages and disadvantages with respect to their ability to perform the instrumentation
efficiently and automatically, the type of regions that can be instrumented, the mapping of
information to the source code, and the support for selective instrumentation. Among the
many performance tools with instrumentation capabilities are KOJAK2 and TAU1, which
relies on PDT4 and OPARI2to perform source code instrumentation, and Dyninst5 which
performs object code instrumentation. Open SpeedShop6 and Paradyn support Dyninst and
DPCL but instrumenting at the object code level implies a loss of the semantics of the pro-
gram like losing loop level information. The EP-Cache project 7 uses the NAG compiler
to support instrumentation at procedure and loop levels, but is a closed and source system
it has not explored ways to improve instrumentation via compiler analysis. Intel’s Thread
Checker8 performs instrumentation to detect semantic problems in an OpenMP application
but it lacks scalability as it heavily instruments memory references and synchronization
points. Other tools like Perfsuite9, Sun Analyzer and Vtune10 rely on sampling to provide
profile data. Although sampling is a low overhead approach it requires extra system re-
sources, in some cases needing extra threads/processors to support processor monitoring
units, and it focuses on low level data gathering.

3 OpenUH

The OpenUH11 compiler is a branch of the open source Open64 compiler suite for C, C++,
and Fortran 95, supporting the IA-64, IA-32e, and Opteron Linux ABI and standards.
OpenUH supports OpenMP 2.5 and provides complete support for OpenMP compilation
and its runtime library. The major functional parts of the compiler are the front ends,
the inter-language interprocedural analyzer (IPA) and the middle-end/back end, which is
further subdivided into the loop nest optimizer, auto-parallelizer (with an OpenMP op-
timization module), global optimizer, and code generator. OpenUH has five levels of a
tree-based intermediate representation (IR) called WHIRL to facilitate the implementation

662



of different analysis and optimization phases. They are classified as being Very High,
High, Mid, Low, and Very Low levels, respectively. Most compiler optimizations are im-
plemented on a specific level of WHIRL, for example interprocedural array region and
dependence analysis analysis is implemented in the high level whirl. Our efforts form
part of the official source code tree of Open64 (http://www.open64.net), which make re-
sults available to the entire community. It is also directly and freely available via the web
(http://www.cs.uh.edu/ openuh).

4 Instrumentation

OpenUH provides a complete compile-time instrumentation module covering different
compilation phases and different program scopes. Advanced feedback-guided analyses and
optimizations are part of the compiler for sequential tuning. We have designed a compiler
instrumentation API that can be used to instrument a program. It is language independent
to enable it to interact with performance tools such as TAU and KOJAK and support the
instrumentation of Fortran, C and C++.

Compile-time instrumentation has several advantages over both source-level and
object-level instrumentation. Compiler analysis can be used to detect regions of interest
before instrumenting and measuring certain events to support different performance met-
rics. Also, the instrumentation can be performed at different compilation phases, allowing
some optimizations to take place before the instrumentation. These capabilities play a sig-
nificant role in the reduction of instrumentation points, improve users’ ability to deal with
program optimizations, and reduce the instrumentation overhead and size of performance
trace files.

The instrumentation module in OpenUH can be invoked at six different phases during
compilation, which come before and after three major stages in the translation: interproce-
dural analysis, loop nest optimizations, and SSA/DataFlow optimizations. Figure 1 shows
the different places in the compilation process where instrumentation can be performed,
along with the corresponding intermediate representation level.

For each phase, the following kinds of user regions can be instrumented: functions,
conditional branches, switch statements, loops, callsites, and individual statements. Each
user-region type is further divided into subcategories when possible. For instance, a loop
may be of type do loop, while loop. Conditional branches may be of type if then, if then
else, true branch, false branch, or select. MPI operations are instrumented via PMPI so
that the compiler does not instrument these callsites. OpenMP constructs are handled via
runtime library instrumentation, where it captures the fork and joint events, implicit and
explicit barriers12. Procedure and control flow instrumentation is essential to relate the
MPI and OpenMP-related output to the execution path of the application, or to understand
how constructs behave inside these regions.

The compiler instrumentation is performed by first traversing the intermediate repre-
sentation of an input program to locate different program constructs. The compiler inserts
instrumentation calls at the start and exit points of constructs such as procedures, branches
and loops. If a region has multiple exit points, they will all be instrumented; for example,
goto, stop or return statements may provide alternate exit points. A brief description of the
API can be found in Ref.13.

663



Figure 1. Multiple stages of compiler instrumentation.

5 Selective Instrumentation Analysis

We take advantage of the interprocedural analysis within the compiler to reduce the number
of instrumentation points. Here the compiler performs inlining analysis, which attempts to
determine where the program will benefit from replacing a procedure call with the actual
code of the called procedure’s body. As part of this, the compiler must determine if a pro-
cedure is invoked frequently and whether the caller and callee meet certain size restrictions
in order to avoid code bloat. We adapted this methodology to enable selective instrumen-
tation, for which we have defined a cost model in the form of scores to evaluate the above
conditions. We avoid instrumenting any procedure that meets the criteria for inlining. We
do instrument procedures that are significant and are infrequently called and have large
bodies. We call a procedure significant if it contains many callsites and is well connected
in the callgraph.

Our cost model consists of three metrics in the form of instrumentation scores. The first
metric computes the weight of the procedure using the compiler’s control flowgraph, which
is defined as PUweight = (5 ∗ total basic blocks) + total statements+ total callsites.
As can be seen, this metric puts emphasis on procedures with multiple basic blocks. If run-
time information is known, the PUweight formula will use the number of times or effective
number of basic blocks, statements and callsites invoked at runtime. The other metric we
use is the frequency with which a procedure is invoked, taking their position within loop
nests into account. The formula used is: PUloop−score = (100− loopnest level) ∗ 2048.
This formula gives higher scores to procedures invoked with fewer nesting levels.
The third metric is a score that quantifies how many calls exist within a procedure.
PUcallsite−score = (callsites in callee) ∗ 20482. This formula gives a small score to
procedures invoked as leaf nodes in the callgraph or that have few calling edges. The
constants of the formulas were determined empirically based on the inlining algorithm of
the compiler which was tunned to avoid under or over inlining. Our assumption here is
that important procedures are connected with others, and thus are associated with several
edges in the callgraph. It is important to note that we will not count callsites to procedures

664



that are not going to be instrumented. The overall score used to decide whether we will
instrument a procedure is as follows:

Instrumentation Score = PUweight + PUloop−score + PUcallsite−score

Our strategy for computing this score means that we will favour procedures with large
bodies, invoked few times and with multiple edges connecting them to other procedures in
the callgraph. We avoid the instrumentation of small procedures invoked at high loopnest
levels and that are leaf nodes in the callgraph.

With this score we then define a threshold that can be changed depending on the size of
the application, in order to avoid over or under-instrumentation. Also, we generalize our
approach to take into consideration the lowest score that a procedure has from its different
callsites. If a score for a procedure is below a pre-defined threshold, the procedure will
not be instrumented.

Instrument Procedure < Threshold < Do not Instrument

Table 1 contains the instrumentation scores for some of the procedures in the BT
OpenMP benchmark from the NAS parallel benchmarks. It shows that procedures cor-
responding to leaf nodes in the callgraph have a low instrumentation score. Heavily con-
nected nodes in the callgraph (those that have several callsites) are among the ones with the
highest score, as is to be expected. If we define a threshold to be 204800 (the score of an
empty procedure with no callsites being invoked outside a loop), then we will not instru-
ment the following procedures: matvecsub, binvchrs, matmul sub, lhsinit, exact solution
and do instrument the following procedures: adi, x solve, y solve, z solve, main.

Table 1. Instrumentation scores for the BT OpenMP benchmark

Proc. Weight Loop Score (level) Callsite Score (sites) Inst. Score
matvecsub 23 198656(3) 0(0) 198679
binvchrs 240 198656(3) 0(0) 198896
binvrhs 115 198656(3) 0(0) 198771

matmul sub 27 198656(3) 0(0) 198683
lhsinit 57 198656(3) 0(0) 198713

exact solution 23 196608(4) 0(0) 196631
adi 45 202752(1) 20971520(5) 21174317

x solve 278 204800(0) 41943040(10) 42148118
y solve 278 204800(0) 41943040(10) 42148118
z solve 278 204800(0) 41943040(10) 42148118
main 459 204800(0) 58720256(14) 58720256

665



Figure 2. Selective instrumentation in the NAS MPI Benchmarks.

6 Experiments

We applied the the selective instrumentation algorithm to six benchmarks from the NAS
parallel benchmarks in both MPI and OpenMP implementations. Our experiments used
the class A problem size and were conducted on an SGI Altix 4000 with 16 Itanium 2, 1.6
Ghz processors, and the NUMAlink interconnect. Figures 2 and 3 shows the overheads
incurred when performing full procedure instrumentation versus performing selective in-
strumentation when using the TAU profiling libraries. For the MPI benchmarks we turned
off TAU throttle. The purpose of THROTTLE is to disable the instrumentation library at
runtime when a procedure reaches a given threshold.

Because of the massive overheads of full instrumentation in the case of OpenMP, we
turned on the TAU THROTTLE for NUMCALLS=300 and PERCALL=300000 environ-
ment variables. Selective instrumentation reduces the overheads by an average of 90 times
in the OpenMP version even when TAU THROTTLE is enabled in full instrumentation.
The FT-OMP benchmark has particularly high overheads compared to the other bench-
marks.

This is because it invokes the procedures fttz2, cfftz a significant number of times. We
note that cfftz calls fttz2. Our selective instrumentation score for cfftz is 202817 and fftz2 is
198772 , which is below our instrumentation threshold. As a result, we also do not instru-
ment the cfftz procedure since it only has one callsite that is not being instrumented. In the
CG benchmark we do not instrument the procedures buts, jaci, blts, jacld and exact which
are leaf nodes in the callgraph that are invoked many times and have small weights. The
higher overheads in OpenMP instrumentation versus MPI are due to memory contentions
and locks on where the performance data is stored and modified. In the Altix this con-
tention becomes a problem due to cache line invalidations and remote memory accesses
due to the cc-NUMA architectures.

666



Figure 3. Selective instrumentation in the NAS OpenMP Benchmarks.

We also applied our algorithm to an MPI implementation of a Cloud-Resolving Model
code14 using a grid size of 104x104x42 and 4 MPI processes for our experiment. Our
selective algorithm determined that we should not instrument three leaf procedures in the
callgraph. We were able to reduce the profiling overhead from 51% to 3% based on this
alone.

7 Conclusions and Future Work

In this paper we have presented a selective instrumentation algorithm that can be imple-
mented in a compiler by adapting a typical strategy for performing inlining analysis. In
the examples presented here, selective instrumentation based upon this algorithm was able
to reduce profiling overheads by 90 times on average in the NAS OpenMP parallel bench-
marks and 17 times for the cloud formation code. Our future work will combine feedback-
directed optimizations and the inlining analysis to further improve selective instrumenta-
tion. We will also continue to explore opportunities to enhance the working of performance
tools via direct compiler support.

8 Acknowledgements

We would like to thank NSF for supporting this worka. We will also want to thank Bob
Hood and Davin Chang from CSC at Nasa Ames for providing us the Altix System to
perform the experiments.

aThis work is supported by the National Science Foundation, under contract CCF-0444468

667



References

1. Allen D. Malony, Sameer Shende, Robert Bell, Kai Li, Li Li and Nick Trebon, Ad-
vances in the TAU performance system, Performance analysis and grid computing,
pp. 129–144, (2004).

2. B. Mohr and F Wolf, KOJAK - a tool set for automatic performance analysis of par-
allel applications, in: Proc. European Conference on Parallel Computing (EuroPar),
pp. 1301–1304, (2003).

3. K. Mohror and K. L. Karavanic, A study of tracing overhead on a high-performance
linux cluster, in: PPoPP ’07: Proc. 12th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 158–159, (ACM Press, New York, 2007).

4. K. A. Lindlan, J. E. Cuny, A. D. Malony, S. Shende, B. Mohr, R. Rivenburgh and
C. Rasmussen, A tool framework for static and dynamic analysis of object-oriented
software with templates, in: Supercomputing, (2000).

5. B. Buck and J. K. Hollingsworth, An API for runtime code patching, in: International
Journal of High Performance Computing Applications, 14, 317–329, (2000).

6. M. Schulz, J. Galarowicz and W. Hachfeld, Open—SpeedShop: open source perfor-
mance analysis for Linux clusters, in: SC ’06: Proc. 2006 ACM/IEEE Conference on
Supercomputing, p. 14, (ACM Press, NY, 2006).

7. E. Kereku and M. Gerndt, Selective instrumentation and monitoring,, in: International
Workshop on Compilers for Parallel Computers, CPC’04, (2004).

8. P. Petersen and S. Shah, OpenMP support in the Intel thread checker, in: WOMPAT,
pp. 1–12, (2003).

9. R. Kufrin, PerfSuite: an accessible, open source, performance analysis environment
for Linux, in: 6th International Conference on Linux Clusters (LCI-2005), Chapel
Hill, NC, (2005).

10. J. H. Wolf, Programming methods for the Pentium III processor’s streaming SIMD
extensions using the VTune performance enhancement environment, Intel Technology
Journal, no. Q2, 11, (1999).

11. C. Liao, O. Hernandez, B. Chapman, W. Chen and W. Zheng, OpenUH: an opti-
mizing, portable OpenMP compiler, in: 12th Workshop on Compilers for Parallel
Computers, (2006).

12. V. Bui, O. Hernandez, B. Chapman, R. Kufrin, D. Tafti and P. Gopalkrishnan, Towards
an implementation of the OpenMP collector API, in: PARCO, (2007).

13. O. Hernandez, F. Song, B. Chapman, J. Dongarra, B. Mohr, S. Moore and F. Wolf,
Instrumentation and compiler optimizations for MPI/OpenMP applications, in: Inter-
national Workshop on OpenMP (IWOMP 2006), (2006).

14. H.-M. H. Juang, W.-K. Tao, X. Zeng, C.-L. Shie, S. Lang and J. Simpson, Imple-
mentation of a message passing interface into a cloud-resolving model for massively
parallel computing, in: Monthly Weather Review., (2004).

668


