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Abstract

This paper presents some scalability studies of the performance analysis tools Vampir and
VampirTrace. The usability is analyzed with data collected from real applications, i.e. the
thirteen applications contained in the SPEC MPI 1.0 benchmark suite. The analysis covers
all phases of performance analysis: instrumenting the application, collecting the perfor-
mance data, and finally viewing and analyzing the data. The aspects examined include
instrumenting effort, monitoring overhead, trace file sizes, load time and response time
during analysis.

1 Introduction

With (almost) petaflop systems consisting of hundreds of thousands of processors at the
high end and multi-core CPUs entering the market at the low end application developers
face the challenge to exploit this vast range of parallelism by writing scalable applications.
Any performance analysis tool targeting this audience has to provide the same scalabil-
ity. Even more so, as many performance problems and limitations are only revealed at
high processors counts. Furthermore, massively parallel applications tend to be especially
performance critical – otherwise they would not employ so many resources.

The remainder of this paper is organized as follows: Section 2 provides background
information for the Vampir family of performance analysis tools. The next Sections 3 and
4 look at the overhead involved in the performance analysis process. Firstly, at tracing time
to estimate the impact of the measurement infrastructure onto the dynamic behaviour of
parallel programs. Secondly, at analysis time when interactive visualization for very huge
amounts of data is required to allow a convenient work flow. Section 5 gives a summary
and an outlook on future features of scalable performance analysis tools.

2 Description of Vampir and VampirTrace

For the analysis of MPI parallel applications there are a number of performance analysis
tools available1. Vampir, which is being developed at ZIH, TU Dresden, is well known
in the HPC community. Today, there are two versions of Vampir. Firstly, the workstation
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based classical application with a development history of more than 10 years2. Secondly,
the more scalable distributed version called VampirServer3, 4.

In addition there is the instrumentation and measurement software VampirTrace. Al-
though not exclusively bundled to Vampir and VampirServer, this is the preferred way to
collect the input data for both analysis tools.

2.1 Vampir

Vampir2, 5 is a performance analysis tool that allows the graphical display and analysis of
program state changes, point-to-point messages, collective operations and hardware per-
formance counters together with appropriate statistical summaries. It is designed to be an
easy to use tool, which enables developers to quickly display program behaviour at any
level of detail. Different timeline displays show application activities and communication
along a time axis, which can be zoomed and scrolled. Statistical displays provide quantita-
tive results for arbitrary portions of the timelines. Powerful zooming and scrolling allows
to pinpoint the real cause of performance problems. Most displays have context-sensitive
menus which provide additional information and customization options. Extensive filtering
capabilities for processes, functions, messages or collective operations help to reduce the
information to the interesting spots. The implementation is based on standard X-Windows
and Motif and works on desktop workstations as well as on parallel production systems.
It is available for nearly all 32- and 64-bit platforms like Linux-based PCs and Clusters,
IBM, SGI, SUN, and Apple.

2.2 VampirServer

VampirServer3, 4 is the next generation, parallel implementation of Vampir with much
higher scalability. It implements a client/server architecture. The server is a parallel pro-
gram which uses standard communication methods such as MPI, pthreads, and sockets.
The complex preparation of performance data is carried out by the server component. The
server itself consists of one master process and a variable number of worker processes. The
visualization of performance results is done by a small client program connecting to the
server, more precisely to its master process3.

VampirServer implements parallelized event analysis algorithms and customizable dis-
plays which enable fast and interactive rendering of very complex performance monitoring
data. Trace information are kept in distributed memory on the parallel analysis machine.
Therefore, ultra large data volumes can be analyzed without copying huge amount of data.
Visualization can be carried out from any laptop or desktop PC connected to the Internet.

The implementation is based on standard MPI and X-Windows and works on most
parallel production systems (server) and desktop Unix workstations (client). Currently, the
list of supported vendor platforms includes: IBM, SGI, SUN, NEC, HP, and Apple. The
current version 1.7 was used for all experiments shown below.

2.3 VampirTrace

VampirTrace provides a convenient measurement infrastructure for collecting performance
data. VampirTrace supports the developer with instrumentation and tracing facilities tai-
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lored towards HPC applications. It covers MPI and OpenMP as well as user code. In-
strumentation modifies a target application in order to detect and record run-time events of
interest, for example a MPI communication operation or a certain function call. This can
be done at source code level, during compilation or at link time with various techniques.
The VampirTrace library takes care of data collection within all processes. This includes
user events, MPI events, OpenMP events as well as timing information and location (Clus-
ter node, MPI rank, Thread, etc.). Furthermore, it queries selected hardware performance
counters available on all platforms supported by PAPI6.

Automatic instrumentation of the source code using the compiler is available with com-
pilers from GNU, Intel (version 10), IBM, PGI and SUN (Fortran only). Binary instrumen-
tation is performed with DynInst7. An analysis of the MPI calls made by the application is
made using the so called profile interface of the MPI library.

The collected performance data is written to file using the Open Trace Format (OTF).
OTF9 is a fast and efficient trace format library with special support for parallel I/O. It
provides a convenient interface and is designed to achieve good performance on single
processor workstations as well as on massive parallel super computers. Transparent block-
wise ZLib compression allows to reduce storage size.

VampirTrace is available at http://www.tu-dresden.de/zih/vampirtrace under BSD
Open Source license for various platforms, e.g. Linux, IBM, SGI, SUN. The implementa-
tion is based on the Kojak tool-set8. Development is done at ZIH, TU Dresden, Germany in
cooperation with ZAM, Research Center Jülich, Germany, and the Innovative Computing
Laboratory at University of Tennessee, US. The current version is 5.3 which was used for
the experiments below.

3 Overhead of Instrumentation

The data collection and measurement phase is the first occasion where additional overhead
is introduced by the tracing infrastructure. There are two parts involved: instrumentation
before execution and measurement during run-time. However, the former has no significant
impact at all, because instrumentation does not depend on the number of processes or run
time. Yet, the latter imposes notable overhead during run-time. There are four individual
contributions:

• initialization at program start-up

• per-event overhead (in event handlers)

• storage of trace data to disk

• finalization

The initialization sets up internal data structures, get symbol information etc. and nor-
mally does not add noticeable overhead to the program start-up. Instead, calling event
handlers contributes the most part of the critical overhead of tracing. The per-event over-
head does not depend on the duration of the recorded event, thus significant overhead is
produced for very frequent events, especially frequent short function calls.

Storing trace data on disk produces considerable overhead as well. Therefore, the trace
data is first written to memory buffers and afterwards flushed to permanent storage. If

639



Code LOC Language MPI MPI Area
call sites calls

104.milc 17987 C 51 18 Lattice QCD
107.leslie3d 10503 F77,F90 43 13 Combustion
113.GemsFDTD 21858 F90 237 16 Electrodynamic simulation
115.fds4 44524 F90,C 239 15 CFD
121.pop2 69203 F90 158 17 Geophysical fluid dynamics
122.tachyon 15512 C 17 16 Ray tracing
126.lammps 6796 C++ 625 25 Molecular dynamics
127.wrf2 163462 F90,C 132 23 Weather forecast
128.GAPgeofem 30935 F77,C 58 18 Geophysical FEM
129.tera tf 6468 F90 42 13 Eulerian hydrodynamics
130.socorro 91585 F90 155 20 density-functional theory
132.zeusmp2 44441 C,F90 639 21 Astrophysical CFD
137.lu 5671 F90 72 13 SSOR

Table 1. Size of Applications (measured in Lines of Code) and programming language

possible, VampirTrace tries to flush only at the finalization phase. In this case there is
no interference with the timing of events. Otherwise, the program execution needs to be
interrupted eventually. This is marked within the trace but nevertheless it is a severe per-
turbation. During the finalization phase some post-processing of the trace data is required.
This costs additional effort (in computation and I/O) but does not influence the quality of
the measurement.

In the following, the overhead will be measured with several experiments on a SGI
Altix 4700 machine with 384 Intel Itanium II Montecito cores (1.6 GHz) and 512 GB
memory. As a first approach we measured the overhead of instrumenting a function call
with a simple test program that calculates π and calls a simple function ten million times.
We measured an overhead for each function call of 0.89µs using source code instrumen-
tation and 1.12µs using binary instrumentation. The overhead increases to 4.6µs when
hardware performance counters are captured.

For a thorough analysis how this overhead affects the analysis of real applications we
instrumented the thirteen applications of the SPEC MPI2007 benchmark10. Table 1 con-
tains a short description of the all codes. The analysis consists of two scenarios: first we do
full source code instrumentation capturing each function call using a smaller dataset (the
so called train data set) with 32 CPUs. Second, we do an analysis of the MPI behaviour,
capturing only MPI calls made by the application using a large production like data set
(called mref ) with 256 CPUs10.

In order to get useful performance measurements the overhead introduced by the mon-
itoring must not be too high. In Table 2 the two main contributions to the overhead are
distinguished if possible. The overhead during tracing (trace) dominates the total over-
head, while the overhead from writing trace data to disk (flush) after tracing is smaller. In
some cases, intermediate flusing occurs. Then, the most part of the flushing overhead is
brought forward to the tracing phase and is indistinguishable. The missing entries show
where no valid trace could be created. For this cases only the sum is given Table 2. Note,
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original Fully instrumented original MPI instrumented
Code (train) (mref)

32 CPUs trace flush 256 CPUs trace flush
104.milc 9.1s 1081s 267s 265.9s 8.2s
107.leslie3d 24.5s 57.0s 43.0s 192s 192.2s 17.7s
113.GemsFDTD 88.9s - - 1281s 1259s 32s
115.fds4 18.7s 34.6s 20.7s 605s 597s 21s
121.pop2 57.2s - - 444s 5598s
122.tachyon 12.7s 2595s 264s 271.3s 13.5s
126.lammps 36.1s (?) 15.6s - 493s 498s 13s
127.wrf2 24.3s 992s 331s 343s 20s
128.GAPgeofem 4.3s - - 106s - -
129.tera tf 89.1s 169.8s 56.1s 290s 287.1s 18s
130.socorro 29.3s 1755s 195s (?) 177.4s 19s
132.zeusmp2 25.7s 26.0s 3.9s 160s 160.8s 17s
137.lu 12.4s 15.7s 6.4s 92s 96.4s 18.5s

Table 2. Runtime and overhead of fully instrumented and MPI instrumented codes. The overhead is divided in
trace overhead and overhead from flush operations. Entries marked with only on number for both suffer from
very large trace sizes that cause intermediate flushing. Entries marked with (?) show reproducible inconsistent
results. Missing entries indicate erroneous behaviour where no valid trace could be generated.

that this happens mostly for full traces but only once for MPI-only tracesa.
Figure 1 shows that this effect is directly coupled with total trace volumes. Here, the

size occupied in internal buffers is essential. This is not equal to the trace file sizes but
proportional. In the same way, different file formats show proportional trace sizes.

As soon as memory buffers are exceeded, flushing becomes inevitable, triggering the
unsatisfactory outcome. The memory buffer size is limited by the available memory and by
the application’s consumption. Only their difference is available for VampirTrace. Here, a
quite comfortable buffer size of 2 GB per process was allowed.

In real world performance analysis, intermediate flushing should be avoided by all
means! There are two standard solutions which can also be combined: Firstly, limited
tracing, i.e. tracing a selected time interval of a subset of all processes only. Secondly,
filtering of symbols, i.e. omitting certain functions from tracing.

4 Scalability of Performance Analysis

Once performance data is available from a large scale parallel test-run, one wants to ana-
lyze it in order to unveil performance flaws. There are several approaches for automatic,
semi-automatic or manual analysis1 complementing each other. Vampir and VampirServer
provide an interactive visualization of dynamic program behaviour. Therefore, the main
challenges are firstly, coping with huge amounts of trace data and secondly, accomplishing
quick responses to user interactions. Both is vital for a convenient work flow.

Vampir and VampirServer rely on loading the trace data to main memory completely.
This is the only way to achieve a quick evaluation on user requests. As a rule of thumb,

aIn this example there is a tremendous point to point message rate of up to 3 million per second.
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VampirServer needs about the memory size of the uncompressed OTF trace. For the Vam-
pirServer distributed main memory is good enough, thus, the memory requirements can be
satisfied by just using enough distributed peers with local memory capacity each.

In the beginning of a performance analysis session, the trace data needs to be loaded
into memory. The distribution across multiple files (i.e. OTF streams) enables parallel
reading. This is another important advantage over the sequential counterpart. So, the input
speed is only limited by the parallel file system and the storage network. Still, reading
rather large amounts of trace data requires some time, compare Fig. 1.

However, this is required only once at the beginning and allows quicker responses
during the whole performance analysis session. See first column of Table 3 for the times
VampirServer requires to load the SpecMPI traces with 256 streams – corresponding to
the number of MPI processes writing their own streams. The first row of Table 4 shows
how load time decreases with a growing number of worker nodes for VampirServer with
another example. This shows almost perfectly linear scaling.

After loading, the user wants to browse the data with various timeline displays and
statistics windows using zooming, unzooming and scrolling. Table 3 shows that this is
quite fast for all examples of the SpecMPI MPI-only traces, with the exception of 121.pop2
and 128.GAPgeofem due to the extremely huge volume. All response times are ≤ 5s
except for the call tree computation, which needed up to 14s for some larger traces. The
experiments have been performed with 32+1 VampirServer nodes, i.e. 32 workers plus one
master, running on an SGI Altix 4700 with a maximum I/O rate of 2 GB/s.

More detailed experiments are shown in Table 4 for varying numbers of nodes. It
reveals that some tasks are always fast regardless of the number of nodes, for example the
timeline and the summary timeline. At the same time, these are the most frequently used
ones. The timeline unzoom is always fast because it uses internal caching, i.e. it requires no
re-computation. For some tasks there is a notable increase in response time as the number
of nodes becomes too small (4+1), in particular for the counter timeline. However, with
enough analysis nodes, there is a sufficient responsiveness for all tasks.

So the evaluation and visualization with VampirServer looks quite promising. Provided
enough distributed memory, i.e. distributed worker nodes, it allows a truly interactive work
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Figure 1. Filesize of the fully instrumented runs with different compressed and uncompressed trace formats.
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code startup Timeline Process Summary Counter Message Call Trace
& load TL TL TL Statistics Tree Size

104 5s 1s 2s 0s 1s 0s 0s 190 MB
107 29s 1s 1s 1s 4s 1s 2s 1.7 GB
113 10s 2s 1s 1s 9s 0s 1s 348 MB
115 7s 1s 1s 1s 3s 0s 0s 67 MB
121 128 GB
122 7s 3s 1s 3s 8s 0s 0s 1.6 MB
126 7s 2s 1s 1s 10s 0s 0s 64 MB
127 68s 4s 1s 4s 14s 1s 6s 4.1 GB
128
129 14s 5s 2s 4s 9s 2s 2s 710 MB
130 43s 5s 1s 5s 5s 2s 3s 1.4 GB
132 12s 3s 1s 3s 3s 1s 1s 419 MB
137 79s 3s 2s 2s 4s 2s 4s 3.1 GB

Table 3. Vampir Server response times for MPI-only traces of the SpecMPI benchmarks with 32+1 processes.

CPUs for Load Timeline TL TL Summary Counter Message Call
Analysis (TL) Zoom Unzoom TL TL Statist. Tree
1+1 957 ≤ 1 5 ≤ 1 ≤ 1 29 ≤ 1 148
4+1 217 ≤ 1 2 ≤ 1 ≤ 1 8 ≤ 1 43
16+1 58 ≤ 1 ≤ 1 ≤ 1 ≤ 1 2 ≤ 1 12
32+1 29 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 7

Table 4. Response times for the 107.leslie3d full trace (3.2 GB compressed / 13.6 GB uncompressed in OTF).

flow even for huge traces. The software architecture is suitable for distributed memory
platforms, which are most common today and allows quite easy extensibility.

5 Summary and Conclusion

We examined the scalability for the Vampir tools family with an extensive set of example
applications from the SpecMPI benchmark suite. The experiments for tracing overhead
showed reasonable overhead for most cases but also quite substantial overhead for very
large traces. The solution is twofold: Either to reduce trace size with existing methods. Or
to extend the tracing infrastructure for even lower disturbance with huge traces in the fu-
ture. The analysis of the resulting traces with VampirServer turned out to be very reliable.
Most traces can be visualized and analyzed with reasonable hardware resources in an inter-
active and convenient way. Only very few gigantic traces were critical. Instead of investing
more and more resources for them (and even larger ones in the future) alternative methods
might be better suited, which do not require main memory in the order of magnitude of
the trace size11. Another promising project is to add existing and newly developed evalua-
tion procedures into the existing VampirServer framework. Especially semi-automatic and
fully-automatic evaluation may support the user in finding the actual spots that need close
manual inspection. Hopefully, those can profit from VampirServer’s scalable architecture
as much as the ones examined in this paper.
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