
John von Neumann Institute for Computing

Scalable, Automated Performance Analysis with
TAU and PerfExplorer

Kevin A. Huck, Allen D. Malony, Sameer Shende
and Alan Morris

published in

Parallel Computing: Architectures, Algorithms and Applications ,
C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 629-636, 2007.
Reprinted in: Advances in Parallel Computing, Volume 15,
ISSN 0927-5452, ISBN 978-1-58603-796-3 (IOS Press), 2008.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35010345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Scalable, Automated Performance Analysis
with TAU and PerfExplorer

Kevin A. Huck, Allen D. Malony, Sameer Shende and Alan Morris

Performance Research Laboratory
Computer and Information Science Department

University of Oregon, Eugene, OR, USA
E-mail: {khuck, malony, sameer, amorris}@cs.uoregon.edu

Scalable performance analysis is a challenge for parallel development tools. The potential size
of data sets and the need to compare results from multiple experiments presents a challenge
to manage and process the information, and to characterize the performance of parallel appli-
cations running on potentially hundreds of thousands of processor cores. In addition, many
exploratory analysis processes represent potentially repeatable processes which can and should
be automated. In this paper, we will discuss the current version of PerfExplorer, a performance
analysis framework which provides dimension reduction, clustering and correlation analysis of
individual trails of large dimensions, and can perform relative performance analysis between
multiple application executions. PerfExplorer analysis processes can be captured in the form
of Python scripts, automating what would otherwise be time-consuming tasks. We will give
examples of large-scale analysis results, and discuss the future development of the framework,
including the encoding and processing of expert performance rules, and the increasing use of
performance metadata.

1 Introduction
Parallel applications running on high-end computer systems manifest a complexity of per-
formance phenomena. Tools to observe parallel performance attempt to capture these phe-
nomena in measurement datasets rich with information relating multiple performance met-
rics to execution dynamics and parameters specific to the application-system experiment.
However, the potential size of datasets and the need to assimilate results from multiple
experiments makes it a daunting challenge to not only process the information, but dis-
cover and understand performance insights. In order to perform analysis on these large
collections of performance experiment data, we developed PerfExplorer1, a framework for
parallel performance data mining and knowledge discovery. The framework architecture
enables the development and integration of data mining operations that can be applied
to large-scale parallel performance profiles. PerfExplorer is built on a performance data
management framework called PerfDMF2, which provides a library to access the parallel
profiles and save analysis results in a relational database.

A performance data mining framework should support both advanced analysis tech-
niques as well as extensible meta analysis of performance results. The use of process con-
trol for analysis scripting, persistence and provenance mechanisms for retaining analysis
results and history, metadata for encoding experiment context, and support for reasoning
about relationships between performance characteristics and behavior all are important for
productive performance analytics. However, the framework must also be concerned about
how to interface with application developers in the performance discovery process. The
ability to engage in process programming, knowledge engineering (metadata and infer-
ence rules), and results management opens the framework toolset for creating data mining

629



environments specific to the developer’s concerns.
We have re-engineered our integrated framework for performing meta analysis to in-

corporate parallel performance data, performance context metadata, expert knowledge, and
intermediate analysis results. New methods were needed for correlating context meta-
data with the performance data and the analysis results, in order to provide the capabil-
ity to generate desired empirical performance results from accurate suggestions on how
to improve performance. Constructing this framework also required methods for encod-
ing expert knowledge to be included in the analysis of performance data from parametric
experiments. Knowledge about subjects such as hardware configurations, libraries, com-
ponents, input data, algorithmic choices, runtime configurations, compiler choices, and
code changes will augment direct performance measurements to make additional analyses
possible.

The remainder of the paper is as follows. We discuss our analysis approach for the
framework and our prototype implementation in Section 2. We will present some recent
analysis examples which demonstrate some new PerfExplorer features in Section 3 and
present future work and concluding remarks in Section 4.

2 PerfExplorer Design
PerfExplorer2 is a Java application developed for performing data mining analyses on
multi-experiment parallel performance profiles. Its capabilities include general statisti-
cal analysis of performance data, dimension reduction, clustering, and correlation of per-
formance data, and multi-experiment data query and management. These functions were
provided, in part, by the existing analysis toolkits (R3 and Weka4), and our profile database
system PerfDMF2.

While PerfExplorer is a step forward in the ability to automatically process complex
statistical functions on large amounts of multi-dimensional parallel performance data, its
functionality was limited in two respects. First, the tool only allows a user to select single
analysis operations via a graphical user interface. Multi-step analysis processes are not
possible. Second, PerfExplorer only provides new descriptions of the data – it does not
explain the performance characteristics or behavior observed (i.e., meta analysis). Script-
ing and support for retaining intermediate results can help to address the first shortcoming.
The second is more challenging.

For example, an analyst can determine that on average, application X spent 30% of
its total execution time in function foo(), and that when the number of processors is
increased, the percentage of time may go up or down, and so on. However, PerfExplorer
did not have the capability to explain why the change happened. The explanation may be
as simple as the fact that the input problem doubled in size, but without that contextual
knowledge, no analysis tool could be expected to come to any conclusions about the cause
of the performance change without resulting to speculation.

As we discussed our enhancements to PerfExplorer, we will consider two analysis
cases: 1) we have collected parallel performance data from multiple experiments, and we
wish to compare their performance, or 2) we have collected performance data from one
experiment, and would like to compare the performance between processes or threads of
execution. Like other tools, PerfExplorer can provide the means for an analyst to deter-
mine which execution is the “best” and which is the “worst”, and can even help the analyst
investigate further into which regions of code are most affected, and due to which met-

630



Scripting InterfaceGUI

PerfExplorer Component Interfaces

Analysis Components Data Components

R Weka

PerfDMF
Analysis

Results

Expert

Rules

Metadata

ProvenanceData Mining Inference Engine

Performance 

Data

Figure 1. The redesigned PerfExplorer components.

Data Components Analysis Components

DBMS

(PerfDMF)

Data

Persistence

Inference Engine

Statistical Analysis

Provenance

Expert

Knowledge

Metadata

Performance

Data

Data Mining

Analysis

Results

Figure 2. PerfExplorer components and their interactions.

rics. However, there is no explicit process control, nor is there higher-level reasoning or
analysis of the performance result to explain what caused the performance differences. In
addition, process control is required in order to perform repeated analysis procedures or
non-interactive analysis automation. In order to perform this type of meta-analysis, several
components are necessary to meet the desired goals.

Figure 1 shows the PerfExplorer components, and Fig. 2 shows the interaction be-
tween components in the new PerfExplorer design. The performance data and accompa-
nying metadata are stored in the PerfDMF database. Performance data is used as input for
statistical analysis and data mining operations, as was the case in the original version of
PerfExplorer. The new design adds the ability to make all intermediate analysis data persis-
tent, not just the final summarization. Expert knowledge is incorporated into the analysis,
and these new inputs allow for higher-level analysis. An inference engine is also added
to combine the performance data, analysis results, expert knowledge and execution meta-
data into a performance characterization. The provenance of the analysis result is stored
with the result, along with all intermediary data, using object persistence. The whole pro-

631



cess is contained within a process control framework, which provides user control over the
performance characterization process.

2.1 Process Control
One of the key aspects of the new PerfExplorer design is the requirement for process con-
trol. While user interfaces and data visualization are useful for interactive data exploration,
the user will need the ability to control the analysis process as a discrete set of operations.
In order to synthesize analysis results, expert knowledge and metadata into higher-level
meta-analysis process, PerfExplorer needs an extension mechanism for creating higher-
order analysis procedures. One way of doing this is through a scripting interface, such as
Jythona. With such an interface, the analysis process is under the control of the analyst,
who is able to reliably produce the characterization with minimal effort. This new scripting
support was used to generate the results in Section 3.2.

2.2 Collecting and Integrating Metadata
Performance instrumentation and measurement tools such as TAU5 collect context meta-
data along with the application performance data. This metadata potentially contains in-
formation relating to useful analysis input such as the build environment, runtime envi-
ronment, configuration settings, input and output data, and hardware configuration. Meta-
data examples which are automatically collected by the profiling provided by TAU include
fields such as processor speed, node hostname, and cache size. It should be easy to see
how fields such as CPU MHz, Cache Size or Memory Size would be useful in explaining
the differences between executions. By integrating these fields into the analysis process,
the analysis framework can reason about potential causes for performance failures. This
new metadata support was used to generate the results in Section 3.1.

2.3 Inference Engine
Because the needs of the meta-analysis are dynamic, why should a performance analysis
tool hard-code the complex rules that guide the decision making process of a performance
analyst? Is it even possible to translate the subtleties of analysis reasoning to source code?
In order to provide the type of higher-level reasoning and meta-analysis we require in our
design, we have integrated a JSR-94b compliant rule engine, JBoss Rulesc. The strategic
selection of an inference engine and processing rules allows another method of flexible
control of the process, and also provides the possibility of developing a domain specific
language to express the analysis.

2.4 Provenance and Data Persistence
In order to rationalize analysis decisions, any explanation needs to include the data prove-
nance, or the full chain of evidence and handling from raw data to synthesized analysis
result. The new design will include the ability to make all intermediate analysis data per-
sistent, not just the final summarization. The provenance of the analysis result is stored
with the results and all intermediary data, using object persistenced. Any scientific en-
deavour is considered to be of “good provenance” when it is adequately documented in

aJython: http://www.jython.org/
bJava Rule Engine API: http://jcp.org/en/jsr/detail?id=94
cJBoss Rules: http://www.jboss.com/products/rules
dRelational Persistence for Java and .NET: http://www.hibernate.org/

632



ranks 

0-113 ranks 

3200-3313

MPI_Wait()

Figure 3. S3D cluster analysis. The figure on the left shows the difference in (averaged mean) execution be-
haviour between the two clusters of processes. The figure on the right shows a virtual topology of the MPI
processes, showing the locations of the clustered processes. The lighter processes ran on XT3 nodes, and the
darker processes ran on XT4 nodes.

order to allow reproducibility. For parallel performance analysis, this includes all raw
data, analysis methods and parameters, intermediate results, and inferred conclusions.

3 Analysis Examples
3.1 S3D
S3D6 is a multi-institution collaborative effort with the goal of creating a terascale parallel
implementation of a turbulent reacting flow solver. S3D uses direct numerical simula-
tion (DNS) to model combustion science which produces high-fidelity observations of the
micro-physics found in turbulent reacting flows as well as the reduced model descriptions
needed in macro-scale simulations of engineering-level systems. The examples described
here were run on the hybrid Cray XT3/XT4 system at Oak Ridge National Laboratory
(ORNL).

During scalability tests of S3D with TAU, it was observed that as the number of pro-
cessors exceeded 1728, the amount of time spent in communication began to grow signif-
icantly, and MPI Wait() in particular composed a significant portion of the overall run
time (approximately 20%). By clustering the performance data in PerfExplorer, it was then
observed that there were two natural clusters in the data. The first cluster consisted of a
majority of the processes, and these nodes spent less time in main computation loops, but
a long time in MPI Wait(). The other cluster of processes spent slightly more time in
main computation loops, and far less time in MPI Wait().

By adding Cray-specific TAU METADATA() instrumentation calls, we were able to
determine the names of the nodes on which the processes ran. In the case of a 6400 pro-
cess run, as shown in Fig. 3, there were again two clusters, with 228 processes in one
cluster having very low MPI Wait() times (about 40 seconds), and the remainder of the
processes in one cluster having very high MPI Wait() times (over 400 seconds). The

633



metadata collected, manually correlated with information about the hardware characteris-
tics of each node, identified the slower nodes as XT3 nodes, and the faster nodes as XT4
nodes. There are two primary differences between the XT3 and XT4 partitions. The XT3
nodes have slower DDR-400 memory (5986 MB/s) than the XT4 nodes’ DDR2-667 mem-
ory (7147 MB/s), and the XT3 partition has a slower interconnection network (1109 MB/s
v. 2022 MB/s). Because the application is memory intensive, the slower memory mod-
ules have a greater effect on the overall runtime, causing the XT3 nodes to take longer to
process, and subsequently causing the XT4 nodes to spend more time in MPI Wait().

Running S3D on an XT4-only configuration yielded roughly a 12% time to solution
reduction over the hybrid configuration, primarily by reducing MPI Wait() times from
an average of 390 seconds down to 104 seconds. If this application is to be run on a het-
erogeneous configuration of this machine or any other, load balancing should be integrated
which takes into consideration the computational capacity of each respective processor.
The use of metadata will also be important for this optimization.

3.2 GTC

The Gyrokinetic Toroidal Code (GTC) is a particle-in-cell physics simulation which has
the primary goal of modelling the turbulence between particles in the high energy plasma
of a fusion reactor. Scalability studies of the original large-scale parallel implementation
of GTC (there are now a small number of parallel implementations, as the development
has fragmented) show that the application scales very well - in fact, it scales at a better
than linear rate. However, discussions with the application developers revealed that it had
been observed that the application gradually slows down as it executes7 - each successive
iteration of the simulation takes more time that the previous iteration.

In order to measure this behaviour, the application was auto-instrumented with TAU,
and manual instrumentation was added to the main iteration loop to capture dynamic phase
information. The application was executed on 64 processors of the Cray XT3/XT4 system
at ORNL for 100 iterations, and the performance data was loaded into PerfExplorer. A
PerfExplorer analysis script was constructed in order to examine the dynamic phases in the
execution. The script was used to load the performance data, extract the dynamic phases
from the profile, calculate derived metrics (i.e. cache hit ratios, FLOPS), calculate basic
statistics for each phases, and graph the resulting data as a time series showing average,
minimum and maximum values for each iteration.

As shown in Fig. 4, over a 100 iteration simulation, each successive iteration takes
slightly more time than the previous iteration. Over the course of the test simulation, the
last iteration takes nearly one second longer than the first iteration. As a minor observation,
every fourth iteration results in a significant increase in execution time. Hardware counters
revealed that the L2 (and to a lesser extent, L1) cache hit-to-access ratio decreases from
0.92 to 0.86. Subsequently, the GFLOPS per processor rate decreases from 1.120 to 0.979.
Further analysis of the two main routines in the iterations, CHARGEI and PUSHI, show
that the decrease in execution is limited to these two routines. In the CHARGEI routine,
each particle in a region of the physical subdomain applies a charge to up to four cells, and
in the PUSHI routines, the particle locations are updated by the respective cells after the
forces are calculated. The increase in time every fourth iteration was discovered to be due
to a diagnostic call, which happens every ndiag iterations, an input parameter captured
as metadata.

634



(a) (b)

(c) (d)

Figure 4. GTC phase analysis. (a) shows the increase in runtime for each successive iteration, over 100 iterations.
(b) shows the decrease in L2 hit ratio, from 0.92 to 0.86, and (c) shows the decrease in GFLOPS from 1.120 to
0.979. (d) shows the larger trend when GTC is run for 5000 iterations, each data point representing an aggregation
of 100 iterations.

Discussions with other performance analysis experts on the project revealed that the
CHARGEI and PUSHI routines have good spatial locality when referencing the particles,
however over time, they have poor temporal locality when referencing the grid cells. As a
result, access to the grid cells becomes random over time. Further analysis is necessary to
determine whether the expense of re-ordering the particles at the beginning of an iteration
could be amortized over a number of iterations, and whether this added cost would yield
a benefit in the execution time. While it appears that the performance degradation levels
out after roughly 30 iterations, it should be pointed out that a full run of this simulation
is at least 10,000 iterations, and as the 5,000 iteration execution shows in Fig. 4 (d), the
performance continues to degrade. Assuming a 10,000 iteration execution would take an
estimated 20 hours to complete on the Cray XT3/XT4, potentially 2.5 hours of computation
time per processor could be saved by improving the cache hit ratios. Further analysis is
ongoing.

4 Future Work and Concluding Remarks
In this paper, we have discussed the new design of PerfExplorer, including components
for scripting, metadata encoding, expert rules, provenance and data persistence. In our
examples, we have discussed how features such as metadata encoding and scripting aid
in the analysis process. However, we have significant work to do in extending the capa-
bilities of PerfExplorer. While the rudimentary metadata support in PerfExplorer allows

635



for some manual correlation between contextual information and performance results, so-
phisticated analysis rules to interpret the results with respect to the contextual information
would aid us in our long term goal of a performance tool which would summarize perfor-
mance results and link them back to the actual causes, which are essentially the context
metadata relating to the application, platform, algorithm, and known related parallel per-
formance problems. Encoding this knowledge in some form that our performance tool can
use would be instrumental in developing new analysis techniques that capture more infor-
mation about the experiment than simply the raw performance data. While full automation
may prove difficult, we feel that a useful amount of automatic performance correlation is
possible.

Acknowledgements
The research was funded by the Department of Energy, Office of Science under grant
DE-FG02-05ER25680 and DE-FG02-07ER25826, and the National Science Foundation,
High-End Computing program under grant NSF CCF 0444475. The authors would like to
thank PERI, SciDAC, ORNL, NERSC and RENCI for including us in the PERI SciDAC
project, and a special thanks to John Mellor-Crummey for a better understanding of the
locality issues in GTC.

References

1. Kevin A. Huck and Allen D. Malony, PerfExplorer: a performance data mining
framework for large-scale parallel computing, in: Conference on High Performance
Networking and Computing (SC’05), Washington, DC, USA, IEEE, (2005).

2. K. Huck, A. Malony, R. Bell and A. Morris, Design and implementation of a parallel
performance data management framework, in: Proc. International Conference on
Parallel Computing, 2005 (ICPP2005), pp. 473–482, (2005).

3. The R Foundation for Statistical Computing, R Project for Statistical Computing,
(2007). http://www.r-project.org

4. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques, 2nd Ed., (Morgan Kaufmann, San Francisco, 2005).
http://www.cs.waikato.ac.nz/ ml/weka/

5. S. Shende and A. D. Malony, The TAU parallel performance system, International
Journal of High Performance Computing Applications, 20, 287–331, (2006).

6. J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes, S. Klasky,
W. K. Liao, K. L. Ma, J. Mellor-Crummy, N. Podhorski, R. Sankaran, S. Shende and
C. S. Yoo, Terascale Direct Numerical Simulations of Turbulent Combustion Using
S3D, Institute of Physics Journal, (in press, 2007).

7. N. Wichmann, M. Adams and S. Ethier, New advances in the gyrokinetic toroidal
code and their impact on performance on the Cray XT series, in: Cray Users Group,
(2007).

636


