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Heart rhythm disorders are a leading contributor to morbidity and mortality in the industrial-
ized world. Treatment and prevention of cardiac rhythm disorders remains difficult because the
electrical signal that controls the heart rhythm is determined by complex, multi-scale biological
processes. Data-driven computer simulation is a promising tool for facilitating a better under-
standing of cardiac electrical properties. Conducting detailed, large-scale simulations of the
cardiac electrical activity presents several challenges: the heart has a complicated 3D geometry,
conduction of the electrical wave is anisotropic, and cardiac tissue is made up of cells with het-
erogeneous electrical properties. Our group has developed a software platform for conducting
massively parallel simulations of wave propagation in cardiac tissue. The code is being used in
an on-going study to connect drug-induced modifications of molecular properties of heart cells
to changes in tissue properties that might lead to a rhythm disorder. The platform uses a finite
difference method for modelling the propagation of electrical waves in cardiac tissue using the
cable equation with homogeneous Neumann boundary conditions. We use a novel algorithm
which is based on the phase field method for handling the boundary conditions in complicated
geometries. To map grid points within the spatial domain to compute nodes, an optimization
process is used to balance the trade-offs between load balancing and increased overhead for
communication. The performance of the code has been studied by simulating wave propaga-
tion in an anatomically realistic model of the left and right ventricles of a rabbit heart on Blue
Gene partitions of up to 4,096 processors. Based on these results, the Blue Gene architecture
seems particularly suited for cardiac simulation, and offers a promising platform for rapidly
exploring cardiac electrical wave dynamics in large spatial domains.

1 Introduction

The primary motivation for developing a detailed 3D model of the electrical activity of the
heart is to create a tool that can be used to help identify the underlying electrical mecha-
nisms for dangerous ventricular arrhythmias and to determine the effects of interventions,
such as drugs, that may prevent or exacerbate these arrhythmias. High-performance com-
puting systems such as the Blue Gene are a promising resource for conducting the large-
scale simulations required for elucidating how molecular modifications to heart cells might
lead to dangerous alterations to electrical wave propagation in the heart.

Our group has developed a software platform for conducting massively parallel simu-
lations of wave propagation in cardiac tissue. The motivation for this work is discussed in
Section 2. The mathematical framework that the platform uses is described in Section 3.
Next, several aspects of the code are outlined in Section 4, including methods for paral-
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lelization. Finally, the performance of the code on up to 4096 processors is studied in
Section 5.

2 Motivation

The electrical signal that controls the mechanical activity of the heart originates in the
sinus node. This signal travels down a specialized conduction system and then propagates
through the ventricles, the main pumping chambers of the heart. At the cellular level, the
electrical signal is a steep rise and then gradual fall in the cellular membrane potential
called the action potential (AP). This electrical activity is manifest on the surface of the
body in the form of the electrocardiogram (ECG). The QT interval, the time between the
”QRS” complex and the ”T” wave in the ECG, roughly corresponds to the period of time
between the upstroke of the AP and re-polarization.

Heart rhythm disorders, or arrhythmias, refer to a disruption of the normal electrical
signal. Catastrophic rhythm disturbances of the heart are a leading cause of death in many
developed countries. For example, one type of rhythm disorder called ventricular fibrilla-
tion results in about 350K deaths per year in the US alone. In addition, cardiac electrical
activity can be unintentionally disrupted by drugs. Unfortunately this problem does not
only occur in compounds designed to treat the heart; it can happen in any therapeutic area.
Through a number of studies scientists have identified a link between drugs that block cer-
tain ion currents (particularly IKr, the rapid component of the delayed rectifier potassium
current), that prolong the QT interval in the ECG, and a deadly type of arrhythmia called
Torsades de Pointes. Yet, it remains difficult to determine what specific modifications in
the function of these proteins can lead to the initiation of a complex and life-threatening
cardiac electrical disturbance. For example, some IKr inhibitors are widely prescribed and
safely used. Thus, the mechanism by which a modification in the functional properties of
one or more ion channels might lead to the induction of a dangerous ventricular arrhythmia
is still poorly understood.

3 Mathematical Framework

A standard model1 for the dynamics of the membrane potential, V (measured in mV), in
cardiac tissue is given by the continuous cable equation:

∂V

∂t
= ∇ ·D∇V − 1

Cmem

∑
Iion (3.1)

Cmem is the membrane capacitance (measured in pF/cm2), which is usually taken to be 1,
Iion is the sum of all ionic currents (measured in pA/cm2),∇ is the 3D gradient operator,
and D is the effective diffusion coefficient (measured in cm2/s), which is in general a 3x3
matrix to allow for anisotropic coupling between cells. The equations for the ionic currents
are ordinary differential equations (ODEs) and contain the details of the AP models. For
isolated tissue, the current flow must be 0 in directions normal to the tissue boundary. This
zero-flux condition is represented by the condition n · (D∇V ) = 0, where n is the unit
vector normal to the heart surface, which implies that in the absence of the Iion term,
voltage is conserved. Fenton, et al2 provide a method of deriving D from knowledge of
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the fibre direction at each point in the heart. The phase field method3 can be used to deal
with irregular geometries characteristic of cardiac anatomy. In this method φ is a smooth
function so that the region of interest (the ventricle), R, is given by R = φ > 0 so that
φ = 0 outside of R and φ = 1 on a large portion of R. The region 0 < φ < 1 is called the
transition layer and should be thought of as a thin layer on the inside of the boundary of R.
Then the modified equation is

φ
∂V

∂t
= ∇ · (φD∇V )− φ 1

Cmem

∑
Iion. (3.2)

It can be shown that voltage is conserved in the limit as the transition layer width tends
to 0. However, there are still some delicate issues in terms of implementation. In order to
recover exactly the voltage conservation property of the cable equation with homogeneous
Neumann conditions, we developed a finite-difference algorithm4 by first discretizing the
phase-field modified cable equation on a regular grid, then taking a limit as the width of
the phase field tends to 0. This is discussed further in the next section.

4 Overview of the Software

The platform uses a finite difference method for modelling the propagation of electrical
waves in cardiac tissue using the cable equation (a reaction-diffusion type partial differen-
tial equation, or PDE) with homogeneous Neumann boundary conditions. We use a novel
algorithm that is based on a limiting case of the phase field method for handling the bound-
ary conditions in complicated geometries. To map grid points within the spatial domain
to compute nodes, an optimization process is used to balance the trade-offs between load
balancing and increased overhead for communication. The code is written in C++, and
uses several standard libraries, including SUNDIALS, MPI, BOOST, BLAS/LAPACK,
and SUPERLU.

4.1 Numerical Methods

Our software uses a novel finite difference scheme for evaluating∇·(φD∇V ) on a regular
grid in 2 or 3D4. The scheme is obtained as a limiting case of the phase field method using
a sharp transition layer given by φ = 1 in R and φ = 0 outside of R. As a result, this
scheme gives exact voltage conservation over the cells in R. This scheme is motivated by
the formula for summation by parts that is the analog of integration by parts5. We assume
that the problem lies on a regular grid containing a bounded region of interest, R, with
grid points p = (x1, x2, x3) (the 2D case will be obtained simply by ignoring the third
dimension). The grid space in the ith coordinate is ∆xi, and ei represents the vector that
is ∆xi in the ith coordinate and 0 in the other coordinates. Given a function f on the grid
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and using Vt(p) to denote the change in V (p) during a single time step, define:

∆if(p) =
f(p+ ei)− f(p)

∆xi
(4.1)

∆̄if(p) =
f(p+ ei)− f(p− ei)

2∆xi
(4.2)

∆i
jf(p) =

{
∆if(p) if i = j
1
2 (∆̄jf(p) + ∆̄jf(p+ ei)) if i 6= j

(4.3)

∆ijf(p) =

{
∆i∆if(p− ei) if i = j

∆̄i∆̄jf(p) if i 6= j.
(4.4)

Given this definition, we propose that the discrete analog of the spatial part of the modified
equation cable equation is:

φ(p)Vt(p) =
3∑

i,j=1

[
φ(p)

2
(∆iDij(p)∆i

jV (p) + ∆iDij(p− ei)∆i
jV (p− ei))

+
Dij(p)

2
(∆iφ(p)∆i

jV (p) + ∆iφ(p− ei)∆i
jV (p− ei))

+ φ(p)Dij(p)∆ijV (p))].

(4.5)

By taking a limit as the phase field width tends to 0, we obtain what we call the sharp
interface limit. In this case, either φ(p) = 0 or φ(p) = 1. When φ(p) = 1, the expression
above defines Vt(p) as a weighted sum of the values of V at the neighbors of p. When
φ(p) = 0, the expression is interpreted by multiplying both sides by φ(p) and requiring
that the remaining sum on the right be 0. In this case, the first and third lines drop out due
to φ(p) = 0, so we are left with an equation determined by setting the remaining part of the
sum to 0. This gives a system of linear equations corresponding to the Neumann boundary
conditions. Solving this system, which need be done only once for a given (nonmoving)
boundary, produces a scheme that gives exact voltage conservation (up to roundoff error).
This allows simulation of complex geometries without the need to include a transition layer
that may introduce numerical artifacts. Employing this algorithm has several additional
advantages. First, the implementation of this method is straightforward. Second, it enables
the use of a simple finite difference scheme on a regular cubic grid without the need for
a finite element representation or for additional computation of boundary values. This
ensures that the complexity of the numerical scheme does not increase substantially and
also facilitates parallelization of the code. Moreover, the outer layer of the ventricle, known
as the epicardial layer, may be on the order of 1 mm. Since cell heterogeneity plays an
important role in arrhythmias6, an accurate representation of tissue requires reducing or
eliminating the transition layer. Additionally, from a computational point of view, a wider
transition layer is very costly. In a model of rabbit ventricles, with a grid spacing of 0.25
mm, the phase field method with a transition layer of 4 grid points requires 742,790 copies
of the ionic model, versus 470,196 for the method described here, a reduction of nearly
40 percent. The bulk of simulation time is devoted to the ionic terms, so this corresponds
roughly to the same reduction in simulation time. Third, an important benefit of choosing
this method over the use of finite elements is that the 3D code is essentially the same for
all geometries considered, so that only the input file containing the anatomic structure and
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Figure 1. Visualization of the spreading activation wave front from a simulation of wave propagation in a model
of the rabbit left and right ventricles using the Fox et al AP model.

conductivity tensor changes from one geometry to the next, thereby avoiding the complex
and time-consuming task of 3D mesh generation. Each grid point in the 3D model can
be assigned a different ionic model, thus allowing the specification of the locations of
epicardial, endocardial, and M cells. This flexibility also allows the effect of variations in
the distribution of these cell types on global wave propagation to be studied.

To integrate the discretized cable equation, we use one of two methods. The simplest
method, and that used in the scaling study below, is operator splitting. For this method we
solve the ionic term for a fixed time interval using CVODE and then solve the diffusion
term using the Euler method. More recently we have investigated the method of lines,
which performs significantly better (2 to 10 times speed up depending on the problem). For
this method we produce a coupled system of ODEs, then integrate with the stiff solver in
the SUNDIALS package (from the CVODE subset of http://acts.nersc.gov/sundials/ using
backwards differentiation). Each grid point corresponds to a separate set of equations
given by the ionic terms plus the terms from spatial coupling as described above. We
use Krylov subspace preconditioning with a diagonal approximation to the Jacobian. To
define the fibre directions at boundary points, we start with fibre directions at points in R,
then determine the fibre direction at p in the boundary, B(R), by taking an average of the
directions of nearest neighbors. In the simplified case described above, we then project
this onto the nearest coordinate axis (or select one axis in the case of a tie). Figure 1 shows
an example of wave propagation in a model of the rabbit ventricle using the sharp interface
method.

4.2 Parallelization

We use MPI for parallelization of the code. Parallelization of the 3D simulation requires al-
most exclusively nearest neighbour communication between compute nodes. Specifically,
each node is assigned a portion of the 3D spatial domain, and the nodes pass information
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about the boundary of the domain to nodes that are responsible for neighboring domains.
In order to create simulations to match experimental canine ventricular wedge preparations
(these preparations are typically 2×1.5×1 to 3×2×1.5 cm3 in size), 192,000 to 576,000
grid points will be required. On the other hand, a typical human heart has dimensions on
the order of 10 cm, so directly simulating wave propagation in the human ventricle, a pri-
mary goal of electrophysiological modelling, requires 10 to 100 million grid points. Since
the bulk of computation time is used on evaluation of the ionic terms and local integration
and since communication between grid points is nearest neighbour in form and minimal in
size, this problem is well suited to a parallel implementation using a large number of pro-
cessors. Nevertheless, there are many interesting problems about how best to distribute the
cells to the processors to maximize speed; improving load balancing for a large number of
processors is an ongoing project. Load balancing is a particularly important issue to con-
sider when using spatial domains that are anatomically realistic. In this case, because the
problem is defined on a regular grid, only a portion of the grid nodes correspond to active
tissue; the rest are empty space. For example, an anatomical model of a rabbit ventricular
wedge uses a grid that is 119× 109× 11, so there are 142,681 nodes, but only 42,457 are
active. All 142,681 are assigned to tasks, so some tasks get more active nodes than others.
To map nodes to tasks, an optimization process is used to balance the trade-offs between
load balancing and increased overhead for communication.

To limit the complexity of the message-passing scheme, we consider the tissue as em-
bedded in a larger rectangular domain (a fictitious domain in the language of numerical
PDE) and subdivide this rectangular domain into a product grid. This results in a col-
lection of disjoint boxes which together cover the fictitious domain. E.g., if the fictitious
domain has dimensions 110 by 150 by 120, the product domain might consist of boxes of
size 10 by 5 by 6. A single processor may be assigned more than one box in the resulting
decomposition. In the current implementation of the algorithm, the size of the boxes in the
product grid is the same for all the boxes and is chosen using an optimization algorithm
in order to distribute the number of active nodes nearly evenly among all the processors
while at the same time limiting the amount of message passing that is required among
processors. In particular, the boxes are assigned to processors in such a way that nearest
neighbour boxes are assigned to nearest neighbour processors in order to take advantage
of the torus topology of the communications network. In most cases of interest, this algo-
rithm distributes the active nodes to within 1 percent of the optimal distribution. Moreover,
given the data to determine the active nodes and the size of the network, the optimization
algorithm can be run in advance of the simulation to produce the correct division of labour.
Further improvements in this algorithm are possible.

5 Parallel Performance

We have carried out a number of simulations on the Blue Gene/L system to illustrate the
parallel performance of the cardiac simulation application. We simulated wave propaga-
tion in a 3D model of the rabbit ventricular anatomy8 using the Fox et al AP model7.
We conducted two different comparisons. First, we compared performance between two
different sized spatial domains using the same number of compute nodes (32 nodes, 64
processors). We compared the time to simulate 10 msec of wave propagation in the full
rabbit ventricle versus a wedge of the ventricle. The results are shown in the table be-
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low. The improved performance of the code on the rabbit ventricle is likely explained by

Tissue Total grid pts. Active % diff. from opt. Run time (sec) % int.
wedge 142,000 42,000 13 80 67
ventricle 2,846,000 470,000 3 659 93

looking at the column ”% diff. from opt.”. This quantity measures the percent difference
between the optimal number of spatial grid points assigned to each compute node and the
actual number of grid points assigned to the ”most loaded” compute node. Ideally, each
compute node would be responsible for an identical number of spatial grid points. How-
ever, the task assignment process must strike a balance between achieving optimal division
of labour and minimizing communication time. Most likely, the simple explanation as to
why the full ventricle has a more homogeneous load is the fact that it has more nodes
than the wedge so percent differences will be smaller. In addition, it may be that specific
geometrical features play a role.

The second comparison is a strong scaling performance example. We compared sim-
ulation times using the same anatomy as a function of number of processors for 10 msec
of wave propagation. The table below shows results for the full rabbit ventricle. Figure 2

Nproc Run time (sec) Ideal (sec) % int. Speed up Ideal speed up
32 1203 1203 93 32 32
64 620 602 93 62.08 64
128 316 301 88 121.92 128
256 166 150 85 232 256
512 87 75 82 442.56 512
1024 49 38 77 785.6 1024
4096 18 9 54 2138.56 4096

shows how the time to solution as a function of processor number compares to an ideal
scaling. The performance of the code is quite good for the partition sizes studied here.

6 Concluding Remarks

To conclude, large scale resources like Blue Gene allow researchers to explore qualita-
tively different problems. For the example application described above, conducting a
dose-response simulation of the effect of a compound on a 3D canine ventricle at a va-
riety of pacing frequencies would require many months of simulation time on a standard
computer cluster, but with Blue Gene one could conduct several such simulations in a day.
Thus, using the software described in this study on Blue Gene is a promising platform for
conducting multi-scale biomedical simulations.
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Figure 2. Run time as a function of processor number. The diamond points are from scaling runs on the Blue
Gene/L system, and the solid line is the ideal run time assuming perfect scaling.
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