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Parallel programming languages/libraries including OpenMP, MPI, and UPC are either in the
process of defining or have already established standard performance profiling interfaces. The
OpenMP Architecture Review Board (ARB) recently sanctioned an interface specification for
profiling/tracing tools that defines a protocol for two-way communications and control between
the OpenMP runtime library and performance tools, known as the collector API. Reference
implementations of the collector are sparse and are primarily closed-source. We provide a
description of our efforts towards a full implementation of an open-source performance mon-
itoring tool for OpenMP based on the collector API. This efforta evaluates the collector’s ap-
proach to performance measurement, assesses what is necessary to implement a performance
tool based on the collector interface, and also provides information useful to performance tool
developers interested in interfacing with the collector for performance measurements.

1 Introduction

Many scientific computing applications are written using parallel programming lan-
guages/libraries. Examples include applications in mechanical engineering, neuroscience,
biology, and other domains1–3. Software tools, such as integrated development envi-
ronments (IDEs), performance tools, and debugging tools are needed that can support
and facilitate the development and tuning of these applications. Parallel programming
libraries/languages such as OpenMP4, MPI5, and UPC6 are in the process of drafting
or have already standardized/sanctioned a performance monitoring interface7–10. Perfor-
mance tools must be able to present performance information in a form that captures the
user model of the parallel language/library and a performance monitoring interface enables
this. The task of relating performance data in terms of the user model can be challenging
for some languages. In the case of OpenMP, the compiler translates OpenMP directives
inserted into the source code into more explicitly multi-threaded code using the OpenMP
runtime library. Measuring the performance of an OpenMP application is complicated

aThis work is supported by the National Science Foundation under grant No. 0444468, 0444319, and 0444407.
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by this translation process, resulting in performance data collected in terms of the imple-
mentation model of OpenMP. Performance tool interfaces have emerged for OpenMP to
provide a portable solution to implementing tools to support presentation of performance
data in the user model of the language10, 9.

The performance monitoring API for OpenMP, known as the collector interface, is an
event based interface requiring bi-directional communications between the OpenMP run-
time library and performance tools11. The OpenMP Architecture Review Board (ARB)
recently sanctioned the collector interface specifications. Reference implementations to
support development of the collector are sparse. The only known closed-source prototype
implementation of the collector is provided by the Sun Studio Performance Tools10. To the
best of our knowledge, there are currently no open-source implementations of the collector
API. Our goal is to provide such a reference implementation for the research community.
We have designed and implemented an API that leverages the OpenMP runtime library
to support performance monitoring of OpenMP applications. Our performance monitor-
ing system consists of an OpenMP runtime library, a low-level performance collector that
captures hardware performance counters, and a compiler to support mapping performance
back to the source level.

In the remainder sections of this paper, we provide a more implementation focused
discussion of the OpenMP collector API, detail our own experiences in implementing and
evaluating a performance monitoring system that leverages the OpenMP runtime library,
present a performance case study to demonstrate the usefulness of our performance moni-
toring system, and finally end with our conclusions from this study.

2 The Collector Runtime API for OpenMP

The collector interface specifies a protocol for communication between the OpenMP run-
time library and performance tools. A prior proposal for a performance tool interface for
OpenMP, known as POMP9, was not approved by the committee. POMP is an interface
that enables performance tools to detect OpenMP events. POMP supports measurements
of OpenMP constructs and OpenMP API calls. The advantages of POMP includes the
following: the interface does not constrain the implementation of OpenMP compilers or
runtime systems, it is compatible with other performance monitoring interfaces such as
PMPI, and it permits multiple instrumentation methods (e.g. source, compiler, or run-
time). Unfortunately, if the compiler is unaware of these instrumentation routines, they
can interfere with static compiler analysis and optimizations, which affects the accuracy of
gathered performance data.

In contrast, the collector interface is independent of the compiler since it resides and is
implemented inside the OpenMP runtime. The primary advantage of the collector interface
is that the application source code remains unmodified since instrumentation is not required
at the source or compiler level. Consequently, data collection will interfere much less with
compiler analysis/optimizations and a more accurate picture of the performance of the
application is possible. The design also allows for the collector and OpenMP runtime
to evolve independently. However, overheads must be carefully controlled from both the
side of the OpenMP runtime and from collecting the measured data in order to obtain the
most accurate results. A second drawback is that the interface provides little support for
distinguishing between different loops inside a parallel region and corresponding barrier
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regions. Given these drawbacks, much additional software support and efficient algorithms
are required to properly address these concerns.

2.1 Rendezvous Between OpenMP Runtime and Collector

The OpenMP runtime and collector communicate via the collector interface. The collector
initiates communications and also makes queries to the OpenMP runtime via the collector
interface. The collector interface consists of a single routine that takes the following form:
int omp collector api (void *arg). The arg parameter is a pointer to a byte array contain-
ing one or more requests. For example, the collector can request that the OpenMP runtime
notifies it when a specific event occurs. The input parameters sent in this case would in-
clude the name of the event and the callback routine to be invoked from inside the OpenMP
runtime when this specific event occurs. Figure 1 depicts this request more precisely along
with other requests that can be made by the collector. The collector may make requests for
the current state of the OpenMP runtime, the current/parent parallel region ID (PRID), and
to pause/resume generation of events.

Figure 1. Example of sequence of requests made by collector to OpenMP runtime.

2.2 Performance Tool Support

Performance tools may use the collector interface to support performance measurements
of OpenMP codes. The performance tool typically queries the OpenMP runtime for infor-
mation (e.g. event notifications, thread state, etc), records performance information, and
captures the runtime call stack. The call stack that is captured at runtime is based on the
implementation model of OpenMP since the translated code includes calls to the OpenMP
runtime library. Performance data should be presented in the user model of OpenMP since
the OpenMP specification is written in terms of the user model. Using the support pro-
vided by the OpenMP runtime and realizing the support required on the tools side, the user
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model call stack can be reconstructed from the implementation model call stack for each
thread.

There are certain expectations that must be met by supporting system and auxiliary
user-level software to allow the approach we describe to provide the most accurate per-
formance feedback. At the lowest level, the operating system should maintain the perfor-
mance data of interest in a manner such that the data is virtualized on a per-thread basis
(that is, it must be possible to extract performance measurements isolated to a single thread,
not across an entire process, group, or the entire system). The optimal situation is one in
which the underlying thread model is “one-to-one”, where every user level thread is bound
to a single kernel thread. In this case, the kernel can maintain the required virtualized per-
formance data as part of the overall thread context and return this data as-is in response to
a query from a performance tool. Similarly, it must be possible to retrieve at runtime the
call stack associated with a single thread in an efficient manner.

2.3 Support Inside the OpenMP Runtime

The OpenMP runtime is primarily responsible for implementation of the collector inter-
face. Performance tools may make several requests to the OpenMP runtime library via the
collector interface. To satisfy these requests, the OpenMP runtime library needs to imple-
ment support to (1) initiate/pause/resume/stop event generation, (2) respond to queries for
the ID of the current/parent parallel region, and (3) respond to queries for the current state
of the calling thread.

The collector initiates interactions with the OpenMP runtime by making a request to the
OpenMP runtime to create and initiate the data structures required to store the state of each
thread and also to track the current/parent parallel region ID. Updates and accesses to these
data structures by each of the threads must be properly managed to minimize overhead.

When the collector makes a request for notification of a specified event (s), the OpenMP
runtime will activate monitoring for this event inside its environment. The collector may
also make requests to pause, resume, or stop event generation. To make a request for no-
tification of a specific event, the collector passes along the name of the event to monitor
as well as a callback routine to be invoked by the OpenMP runtime to notify the collec-
tor each time the event occurs. Examples of events include fork, join, entry/exit into a
barrier, entry/exit into a master region, entry/exit into an idle state, and several others.
The collector interface specification requires that the OpenMP runtime provide support for
generating the fork event and specifies support for the other events as optional to support
tracing. Some issues to consider regarding implementing this functionality includes the
overhead associated with activating/inactivating event generation and overheads from in-
voking the call back routine. These overheads should be minimized in order to obtain the
most accurate performance measurements.

3 Building a Performance Tool Inside the OpenMP Runtime

The process of building a performance tool based on the collector interface consists of a
series of steps. We first select the software components that will form the infrastructure for
our tool. Second, we assess whether any changes or extensions are needed in order for the
software components to communicate with one another to perform the specified tasks of
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the end tool. Third, we build a prototype tool to assess the overheads associated with data
collection and to also evaluate the accuracy of the generated data for performance tuning.
Finally, we move forward to build the end tool.

3.1 Software Components

The set of software components needed to implement a performance profiling tool based on
the collector API includes a compiler’s OpenMP runtime library, a performance monitoring
interface for OpenMP, and a performance collection tool. We use the OpenUH12 compiler’s
OpenMP runtime library and PerfSuite’s13 measurement libraries as the collector for our
profiling tool. Extensions are needed for both the OpenMP runtime library and the collector
in order to realize our final prototype tool. The software components that we employ in
this development effort are open-source and freely available to the research community.

To support building a prototype performance tool based on the collector interface, we
designed a performance monitoring interface for OpenMP, called PerfOMP14. PerfOMP
was designed to monitor the runtime execution behavior of an OpenMP application with
the help of the OpenMP runtime library. The current PerfOMP event based interface in-
cludes support for monitoring fork, join, loop, and barrier regions. Each interface routine
takes only a few parameters including the thread number, thread count, and parallel region
ID. PerfOMP maps OpenMP events with identifiers such as the thread number and parallel
region number. PerfOMP supports the development of performance profiling and tracing
tools for OpenMP applications in a manner that is transparent to the user.

3.2 Instrumentation

The compiler translates OpenMP directives with the help of its OpenMP runtime library.
An example of this transformation process in the OpenUH compiler is shown in Fig. 2a
and Fig. 2b. Figure 2c shows an example of PerfOMP instrumentation points inside the
OpenMP runtime library of OpenUH. Figure 2c shows instrumentation points inside the
ompc fork operation that captures the following events: fork, join, parallel begin/end for
the master thread, and the implicit barrier entry/exit for the master thread. To capture
events for the slave threads requires instrumentation of a separate routine in the runtime li-
brary. The entire instrumentation of the OpenMP runtime library of the OpenUH compiler
required minimal programming effort. This instrumentation enables collecting measure-
ments of several events including the overall runtime of the OpenMP library, of individual
parallel regions and several events inside a parallel region for each thread.

3.3 Mapping Back to Source

Mapping the performance data back to the source code was accomplished with the help
of the OpenUH compiler. Modifications were made in the OpenMP translation by the
OpenUH compiler so that it dumps to an XML file source level information. Each parallel
region is identified by a unique ID. Unique IDs can also be generated for other parallel
constructs. This required changes in the OpenMP compiler translation phase to add an ad-
ditional integer parameter variable to the fork operation to hold and pass along the parallel
region ID to the OpenMP runtime. A map file containing the source level mappings is
generated for each program file and is created statically at compile time.
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F90 P a r a l l e l Region
−−−−−−−−−−−−−−−−−−−−

program t e s t

. . .

! omp p a r a l l e l do
do i =0 ,N, 1

a ( i ) =b ( i )∗c ( i )
enddo

. . .

end program

(a)

Compi le r T r a n s l a t e d OpenMP Code
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

program t e s t
. . .
ompc fork ( o m p d o t e s t 1 , . . . )
. . . .

!∗∗ T r a n s l a t e d P a r a l l e l Region
s u b r o u t i n e

. . .
!∗∗ S i g n i f i e s b e g i n n i n g o f a loop
o m p c s t a t i c i n i t 4 ( . . . )
. . .
!∗∗ Determine upper and lower work bounds
do l o c a l i = do lo wer 0 , do up pe r 0 , 1

A( l o c a l i ) = B( l o c a l i )∗C 0 ( l o c a l i )
enddo
!∗∗ S i g n i f i e s end o f loop
o m p c s t a t i c f i n i ( . . . )
. . .
re turn

end s u b r o u t i n e

. . .
end program

(b)

OpenMP Runtime L i b r a r y R o u t i n e Using PerfOMP
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

void ompc fork ( . . . ) {

/ / L i b r a r y i n i t i a l i z a t i o n
p e r f o m p p a r a l l e l f o r k ( th read num , id ,

n t h r e a d s ) ;

/ / Thread team i n i t i a l i z a t i o n s
p e r f o m p p a r a l l e l b e g i n ( th read num , i d ) ;

/ / e x e c u t e m i c r o t a s k f o r ma s t e r t h r e a d
m i c r o s t a s k ( 0 , f r a m e p o i n t e r ) ;

p e r f o m p p a r a l l e l e n d ( th read num , i d ) ;

p e r f o m p b a r r i e r e n t e r ( th read num , i d ) ;

o m p c l e v e l b a r r i e r ( 0 ) ;

p e r f o m p b a r r i e r e x i t ( th read num , i d ) ;

p e r f o m p p a r a l l e l j o i n ( th read num , i d ) ;

} / / end o m p c f o r k

(c)

Figure 2. (a) OpenMP parallel region in Fortran. (b) Compiler translation of the piece of OpenMP code from
part (a). (c) A PerfOMP instrumented OpenMP runtime library routine.

As an alternative approach to support mapping back to source, we have extended Perf-
Suite’s library routines to also return the runtime call stack. The advantage of obtaining
the source level mappings via the compiler is that we can get a direct mapping between the
performance data and the compiler’s representation of the program. This will enable the
compiler to more easily utilize the generated data to improve its optimizations. Although
this mapping is not context sensitive in that it does not distinguish between different call-
ing contexts of a parallel region. Gathering source level mappings at runtime using the
call stack will allow us to distinguish the different calling contexts and this additional ca-
pability motivates our use of runtime stack information gathered through PerfSuite. A
performance tool should be able to reconstruct the user model call stack using the retrieved
implementation model call stack. The extensions being made to PerfSuite will provide
a parameter variable allowing the caller to specify the number of stack frames to skip or
ignore to facilitate this reconstruction. To control the overheads associated with retrieving
large stack frames, PerfSuite will also provide a parameter for specifying the maximum
number of instruction pointers to retrieve. These extensions to PerfSuite will be used in
our implementation of a performance tool based on the collector interface.

4 Experimental Results

To demonstrate the usefulness of the data gathered from our prototype measurement
system, we present a case study where we analyze the performance of GenIDLEST1.
GenIDLEST uses a multiblock structured-unstructured grid topology to solve the time-
dependent Navier-Stokes and energy equations. We use its 45rib input data set. All the
experiments were performed on an SGI Altix 3700 distributed shared memory system and
using eight threads. The OpenMP version of GenIDLEST is compiled with the OpenUH
compiler with optimization level 3 and OpenMP enabled.
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4.1 Case Study: Bottleneck Analysis of GenIDLEST

Several different methodologies exist for utilizing performance hardware counters for per-
formance analysis. We apply the methodology for detecting bottlenecks using the Itanium
2 performance counters as described by Jarp15. This technique applies a drill down ap-
proach, where the user starts counting the most general events and drills down to more fine
grained events. Applying this measurement technique, GenIDLEST shows an estimated
8% of additional overheads when we activate performance measurements with PerfOMP
for all OpenMP parallel regions in the code.

First, we measure the percentage of stall cycles and find that stall cycles account for
∼70% of the total cycles. The data also shows that the parallel region inside the diff coeff
subroutine is taking up about 20% of the execution time and spending about 3.34% of time
waiting inside the barrier at the end of a parallel region. We collect additional performance
counters for the diff coeff subroutine to identify and resolve the bottleneck for that region
of code.

The performance data for the parallel region inside diff coeff shows ∼35% data cache
stalls, ∼23% instruction miss stalls, and ∼28% of the stalls are occurring in the floating
point unit (FLP). Relating the memory counters to the stall cycles, we found that ∼60% of
the memory stalls result from L2 hits and ∼38% from L3 misses.

We apply transformations to the parallel region inside diff coeff to better utilize the
memory hierarchy. We apply modifications of variable scope from shared to private to
this subroutine. Privatizing the data should relieve the bottlenecks associated with remote
memory accesses since privatization ensures that each thread will have its own private local
copy of the data.

After privatization of the data in the diff coeff subroutine, we observe a ∼25% im-
provement in overall runtime of GenIDLEST. The parallel region inside the diff coeff
subroutine now only takes up ∼5.5% of the execution time compared to the previous es-
timated 20%. Furthermore, the wait time spent inside the barrier region also significantly
improved by a factor of 10X. Performance counting data from the parallel region inside
diff coeff also shows a significant drop in stall cycles (∼80-90% decrease).

5 Conclusions and Future Work

An implementation-focused discussion of the OpenMP ARB sanctioned collector interface
is presented to support tool developers interested in implementing support for the collector
API. We describe the necessary software components and extensions for implementing a
performance tool based on the collector API. A prototype performance profiling tool that
emulates the functionality of a tool based on the collector API is also presented and shown
to generate useful and accurate performance data for performance tuning purposes.

Building on top of the current software infrastructure we have laid out, plans are cur-
rently underway to provide a full implementation of an open-source performance tool
based on the collector interface. The remaining tasks include finalizing the extensions
being made to PerfSuite that enable runtime call stack access, implementing the collector
interface inside the OpenMP runtime library of OpenUH, and designing/implementing ef-
ficient algorithms for mitigating overheads that can incur both inside the OpenMP runtime
library and from the collector. Our goal is to encourage more compiler developers to im-
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plement this support inside their respective OpenMP runtime libraries, thereby enabling
more performance tool support for OpenMP users.

References

1. D. K. Tafti, GenIDLEST - A Scalable Parallel Computational Tool for Simulating
Complex Turbulent Flows, in: Proc. ASME Fluids Engineering Division, (2001).

2. H. Markram, Biology—The blue brain project, in: SC ’06: Proc. 2006 ACM/IEEE
conference on Supercomputing, p. 53, (ACM Press, NY, 2006).

3. C. Chen and B. Schmidt, An adaptive grid implementation of DNA sequence align-
ment, Future Gener. Comput. Syst., 21, 988–1003, (2005).

4. L. Dagum and R. Menon, OpenMP: an industry-standard API for shared-memory
programming, IEEE Comput. Sci. Eng., 5, 46–55, (1998).

5. Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,
Tech. Rep. UT-CS-94-230, (1994).

6. T. El-Ghazawi, W. Carlson, T. Sterling and K. Yelick, UPC: Distributed Shared Mem-
ory Programming, (John Wiley & Sons, 2005).

7. M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Dongarra, MPI: The Complete
Reference, (MIT Press, Cambridge, Mass., 1996).

8. H. Su, D. Bonachea, A. Leko, H. Sherburne, M. Billingsley III and A. George, GASP!
A standardized performance analysis tool interface for global address space program-
ming models, Tech. Rep. LBNL-61659, Lawrence Berkeley National Lab, (2006).

9. B. Mohr, A. Malony, H. C. Hoppe, F. Schlimbach, G. Haab, J. Hoeflinger and S. Shah,
A performance monitoring interface for OpenMP, in: Proc. 4th European Workshop
on OpenMP, (2002).

10. G. Jost, O. Mazurov and D. an Mey, Adding new dimensions to performance analysis
through user-defined objects, in: IWOMP, (2006).

11. M. Itzkowitz, O. Mazurov, N. Copty and Y. Lin, White paper: an OpenMP runtime
API for profiling, Tech. Rep., Sun Microsystems, (2007).

12. C. Liao, O. Hernandez, B. Chapman, W. Chen and W. Zheng, OpenUH: an opti-
mizing, portable OpenMP compiler, in: 12th Workshop on Compilers for Parallel
Computers, (2006).

13. R. Kufrin, PerfSuite: an accessible, open source performance analysis environment
for Linux, in: 6th International Conference on Linux Clusters: The HPC Revolution
2005, (2005).

14. V. Bui, Perfomp: A runtime performance/event monitoring interface for OpenMP,
Master’s thesis, University of Houston, Houston, TX, USA, (2007).

15. S. Jarp, A Methodology for using the Itanium-2 Performance Counters for Bottleneck
Analysis, Tech. Rep., HP Labs, (2002).

580


