
John von Neumann Institute for Computing

Simulations of QCD in the Era of
Sustained Tflop/s Computing

Thomas Streuer, Hinnerk Stüben

published in

Parallel Computing: Architectures, Algorithms and Applications ,
C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 535-542, 2007.
Reprinted in: Advances in Parallel Computing, Volume 15,
ISSN 0927-5452, ISBN 978-1-58603-796-3 (IOS Press), 2008.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35010335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Simulations of QCD in the Era of Sustained
Tflop/s Computing

Thomas Streuer1 and Hinnerk Stüben2

1 Department of Physics and Astronomy
University of Kentucky, Lexington, KY, USA

E-mail: thomas.streuer@desy.de
2 Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

Takustr. 7, 14195 Berlin, Germany
E-mail: stueben@zib.de

The latest machine generation installed at supercomputer centres in Germany offers a peak
performance in the tens of Tflop/s range. We study performance and scaling of our quantum
chromodynamics simulation programme BQCD that we obtained on two of these machines, an
IBM Blue Gene/L and an SGI Altix 4700. We compare the performance of Fortran/MPI code
with assembler code. The latter allows to exploit concurrency at more levels, in particular in
overlapping communication and computation as well as prefetching data from main memory.

1 Introduction

The first computer delivering a performance of more than 1 Tflop/s peak as well as in
the Linpack benchmark appeared on the Top500 list in June 19971. For German QCDa

researchers it has taken until the installation of the current generation of supercomputers at
national centres until a sustained Tflop/s was available in everyday runs of their simulation
programmes.

In this paper we report on how the sustained performance was obtained on these ma-
chines. There are two machines, the IBM BlueGene/L at NIC/ZAM Jülich and the SGI
Altix 4700 at LRZ Garching/Munich. Both started user operation in 2006. The Blue-
Gene/L has 16.384 CPUs (cores) and offers a peak performance of 45 Tflop/s. The Altix
4700 originally had 4096 cores delivering 26 Tflop/s peak. It was upgraded in 2007 to
9726 cores delivering 62 Tflop/s peak. The performance figures we present were measured
on the upgraded system.

It is well known that the performance of QCD programmes can be significantly im-
proved by using low level programming techniques like programming in assembler. In
general compilers are not able to generate most efficient code for the multiplication of
small complex matrices which is the typical operation in computational QCD (see Sec-
tion 2), even if all data needed for the computations is in the data cache (see Table 2). In
assembler one can in addition exploit concurrency at more levels. At one level there are
low level communication calls on the BlueGene, by which one can achieve that commu-
nication and computation overlap. Another level is prefetching data from main memory,
which will be important on the Altixb.

aQuantum chromodynamics (QCD) is the theory of strongly interacting elementary particles.
bOn the Altix there are two potential methods for overlapping communication and computation. (a) Since mem-

535



As will be explained in Section 2 simulations of QCD are communication intensive.
Therefore overlapping communication and computation is an important issue. On systems
with larger SMP-nodes one can overlap communication and computation by combining
OpenMP and MPI2. The nodes of the machines we consider are too small nodes for this
high level programming technique to work efficiently.

2 Computational QCD

The starting point of QCD is an infinite-dimensional integral. To deal with the theory on
the computer space-time continuum is replaced by a four-dimensional regular finite lattice
with (anti-) periodic boundary conditions. After this discretisation the integral is finite-
dimensional but rather high-dimensional.

The standard algorithm employed today in simulations of QCD is Hybrid Monte Carlo3

(HMC). HMC programmes have a pronounced kernel, which is an iterative solver of a large
system of linear equations. In BQCD we use the standard conjugate gradient (cg) solver.
Depending on the physical parameters 80 % or up to more than 95 % of the execution time
is spent in the solver. The dominant operation in the solver is the matrix times vector mul-
tiplication. In the context of QCD the matrix involved is called fermion matrix. This paper
is about optimising one part of fermions matrix multiplication which is the multiplication
of a vector ψ with the hopping matrix D: φ(i) =

∑n
j=1D(i, j)ψ(j), where n is the lattice

volume. The hopping matrix is large and sparse. The entries in row i are the nearest neigh-
bours of entry i of the vector ψ (for an illustration see Fig. 1). The entries of the hopping
matrix are 3× 3 complex matrices and for Wilson fermion, which are used in BQCD, the
entries of the vectors are 4 × 3 complex matrices or with internal indices s, s′ = 1, 2, 3, 4
and c, c′ = 1, 2, 3 spelled out

φsc(i) =

4X
µ=1

»
(1 + γµ)ss′U

†
µ,cc′(i− µ̂)ψs′c′(i− µ̂) + (1− γµ)ss′Uµ,cc′(i)ψs′c′(i+ µ̂)

–
. (2.1)

U† denotes hermitian conjugation. The γ-matrices

γ1 =

0BB@
0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

1CCA , γ2 =

0BB@
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

1CCA , γ3 =

0BB@
0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0

1CCA , γ4 =

0BB@
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

1CCA

lead to different access patterns to the entries of ψ. No floating point operations are needed
in their multiplications.

A static performance analysis of the hopping matrix multiplication yields that the ratio
of floating point multiplications to floating point additions is about 85 % which gives the
maximal theoretical performance on processors with fused multiply-adds. Per memory
access 13 floating point operations have to be performed on the average.

QCD programmes are parallelised by decomposing the lattice into regular domains.
The domains become relatively small. For example, the size of a CPU local domain is

ory is shared between all nodes, it is possible to exchange data simply by using loads or stores (via so-called
shmem pointers), combined with prefetches as needed in order to hide latency. We have tried this promising
method in assembler and in Fortran/C/MPI (without explicit prefetching). In both cases performance decreased.
(b) One could try to employ hyper-threading where one would use on thread per core for computation and a sec-
ond thread for communication. In principle there should be no hardware bottlenecks. However, hyper-threading
is switched off on the machine we were using.

536



ss
s

s

s
s �

��
�

��
@@

@@

r rsc i+ 1̂i− 1̂

i+ 2̂

i− 2̂

i+ 3̂

i− 3̂

i+ 4̂

i− 4̂

-

6

�
��*

@@I x

y

z

t

c ss -�
U†

µ(i− µ̂) Uµ(i)

ψ(i) ψ(i+ µ̂)ψ(i− µ̂)

Figure 1. Nearest neighbour stencil underlying the hopping matrix D. The central point is i. On the righthand
side the corresponding Cartesian coordinate system and the variables appearing in Eq. (2.1) are indicated for one
dimension. U is called the gauge field which is defined on the links of the lattice. The field ψ is defined on the
lattice sites.

83 × 4 = 2048 lattice sites when putting a 323 × 64 lattice (a typical size used in today’s
simulations) on 1024 CPUs. The size of the surface of this local volume is 2560 sites, i.e.
the surface to volume ratio is 1.25. Here is the challenge of QCD programmes. In every
iteration of the solver data of the size of the input vector ψ has to be communicated to
neighbouring processes.

The basic optimisation is to calculate the projections (1±γµ)ψ(j) before the communi-
cation. Due to the symmetries of the projections the amount of data to be transfered can be
halved. Even with this optimisation, the problem is communication intensive. Very good
communication hardware is needed and overlapping communication and computation is
desired to scale QCD programmes to large numbers of processes.

3 QCD on the IBM BlueGene/L

3.1 Hardware

The IBM BlueGene/L is a massively parallel computer. The topology of the network con-
necting the compute nodes is a three-dimensional torus. Each compute nodes has links to
its six nearest neighbours. The hardware bandwidth per link is 175 MByte/s. The network
latency is4:

One way Latency = (2.81 + .0993×Manhattan Distance) µs

In addition to the torus network which is used for point-to-point communication there is a
tree network for collective communications.

A BlueGene/L compute chip5 contains two standard PowerPC 440 cores running at a
clock speed of 700 MHz. Each core has a double hummer floating point unit6 (FPU) which
operates as a vector processor on a set of 2 × 32 registers. Besides pure vector arithmetic
operations, there is a set of instructions which operates differently on both registers as it
is needed for performing complex arithmetic. Since each FPU can perform one vector-
multiply-add operation per clock cycle, the peak performance of the chip is 5.6 Gflop/s.

537



Each compute node contains 512 MByte of main memory. Each core has a 32 kByte
L1 data cache. There is a 4 MByte L3 cache on the chip which is shared between the two
cores. Coherency between the L1 caches of the two cores is not enforced by hardware, so
software has to take care of it. To facilitate data exchange between the two cores, each chip
contains 1 kByte of static ram (SRAM) which is not cached.

The torus network is accessed from the chips through a set of memory-mapped FIFOs.
There are 6 injection FIFOs and 12 reception FIFOs on each chip7. Data can be written
to or read from these FIFOs using some of the double-hummer load/store instructions. We
used this feature in our code. We made no special use of the independent tree network.

The BlueGene/L operating systems supports two modes of operation: (a) communica-
tion coprocessor mode, where one of the cores is dedicated to communication, while the
other does the computational work, and (b) virtual node mode, where both cores perform
both communication and computation operations. We always run our programs in virtual
node mode.

3.2 Assembler Kernel

The y-, z-, and t-directions of the lattice are decomposed in such a way that the decompo-
sition matches the physical torus network exactly. The x-direction is split between the two
cores of a node. Since the L1 caches are not coherent, communication in the x-dimension
cannot be done via shared memory in the most straightforward way. Instead, we use the
1 kByte SRAM for communication between the two CPUs.

Ideally communication and computation should overlap. In a QCD programme on
the BlueGene/L this can only be achieved by programming in assembler. For the float-
ing pointing operations and communication double-hummer instructions are used. In the
course of the computation, each node needs to receive part of the data from the boundary
of its neighbouring nodes, and likewise it has to send part of the data from its boundary to
neighbouring nodes. In order to hide communication latency, the assembler kernel always
looks ahead a few iterations and sends data that will be needed by a remote node. Data is
sent in packets of 96 bytes (plus 32 bytes for header and padding), which is the size of a
projected spinor (1± γµ)ψ(j) in double precision. When a CPU needs data from another
node, it polls the respective reception FIFO until a data packet arrives. Since each node
sends data packets in the same order in which they are needed on the receiving side, it is not
necessary to do any reordering of the packets or to store them temporarily. For comparison
with a similar implementation see Reference8.

3.3 Performance Results

In scaling tests the performance of the cg-kernel was measured. For performance mea-
surements the code was instrumented with timer calls and for the kernel all floating point
operations were counted manually.

In order to get good performance it is important that the lattice fits the physical torus
of the machine. In the assignment of MPI process ranks the four torus directions have to
be permuted. On the BlueGene/L this can be accomplished by setting the environment
variable BGLMPI MAPPING appropriately. The settings of that variable were TXYZ on 1,
2, and 4 racks and TYZX on 8 racks.

538



implementation: Fortran/MPI lattice: 483 × 96

#racks Mflop/s per core overall Tflop/s speed-up efficiency
1 280 0.57 1.00 1.00
2 292 1.20 2.09 1.04
4 309 2.53 4.41 1.10
8 325 5.32 9.29 1.16

implementation: Fortran/MPI lattice: 324 × 64

#racks Mflop/s per core overall Tflop/s speed-up efficiency
1 337 0.69 1.00 1.00
2 321 1.32 1.91 0.95
4 280 2.30 3.33 0.83
8 222 3.65 5.28 0.66

implementation: assembler lattice: 323 × 64

#racks Mflop/s per core overall Tflop/s speed-up efficiency
1 535 1.10 1.00 1.00
2 537 2.20 2.01 1.00
8 491 8.05 7.34 0.92

Table 1. Performance of the conjugate gradient kernel on the BlueGene/L for two implementations and two
lattices.

Figure 2. Scaling of the conjugate gradient kernel of BQCD on the BlueGene/L for the Fortran 90/MPI version
(left) and for the assembler version (right). The dotted lines indicate linear scaling.

Performance results are given in Table 1. In Fig. 2 results are shown on double logarith-
mic plots. One can see from the table and the plots that the Fortran/MPI version exposes
super-linear scaling on the 483 × 96 lattice. Even the 323 × 64 lattice scales quite well
given the fact that the lattice volumes per core become tiny (down to 16× 23). The scaling
of the assembler version is excellent. For the same tiny local lattices the scaling is consid-
erably better than for the Fortran/MPI version. This means that in the assembler version
computation and communication really overlap.

539



4 QCD on the SGI Altix 4700

4.1 Hardware

The SGI Altix 4700 is a scalable ccNUMA parallel computer, i.e. its memory is physically
distributed but logically shared and the memory is kept coherent automatically by the hard-
ware. For the programmer (or a programme) all of the machine’s memory is visible to all
nodes, i.e. there is a global address space.

The compute nodes of the Altix 4700 consist of 256 dual core processors. One pro-
cessor is reserved for the operating system, 255 processors can be used for computation.
Inside a node processors are connected via the fat tree NUMAlink 4 network with a the-
oretical bandwidth of 6.4 GB/s per link. The nodes are connected via a two-dimensional
torus type of network. However, the network is not homogeneous, which a priori makes it
difficult to scale our problem to very large numbers of cores. The machine at LRZ has the
following bisection bandwidths per processor9:

intra-node 2× 0.8 GByte/s.
any two ’vertical’ nodes 2× 0.4 GByte/s.
four nodes (shortest path) 2× 0.2 GByte/s.
total system 2× 0.1 GByte/s.

The processors of the Altix 4700 are Intel Itanium2 Montecito Dual Core CPUs, clocked at
1.6 GHz. Each core contains two floating point units, each of which is capable of perform-
ing one multiply-add operation per cycle, leading to a peak performance of 6.4 Gflop/s per
core (12.8 Gflop/s per processor).

There are three levels of cache, but only two of them (L2 and L3) are used for floating
point data. The L3 cache has a size of 9 MByte and a maximum bandwidth of 32 bytes/cy-
cle, which is enough to feed the floating point units even for memory-intensive operations.
The bandwidth to main memory is substantially lower.

4.2 Assembler Kernel

Because the memory bandwidth is so much lower than the L3 cache bandwidth, it is im-
portant that we partition our problem in such a way that we can keep the fields which we
need during the conjugate gradient iterations in the L3 cache, so that in principle no access
to local memory is required. From Table 2 one can see that lattices up to about 84 sites fit

lattice #cores Fortran [Mflop/s] assembler [Mflop/s]
44 1 3529 4784
64 1 3653 4813
84 1 3245 4465
104 1 1434 3256
124 1 1329 2878
144 1 1103 2766
164 1 1063 2879

Table 2. Performance of the hopping matrix multiplication on a single core on the Altix 4700.

540



weak scaling for local 84 lattices

lattice #cores Fortran [Mflop/s] assembler [Mflop/s]
84 1 2553 3655
164 16 1477 2235
244 81 1273 1978
324 256 1251 1750

323 × 64 512 1195 1619
403 × 64 1000 1156 1485

strong scaling for the 323 × 64 lattice

lattice #cores Fortran [Mflop/s] assembler [Mflop/s]
323 × 64 512 1195 1619
323 × 64 1024 1395 1409
323 × 64 2048 996 841

Table 3. Scaling on the Altix 4700 for the conjugate gradient solver. Performance figures are in Mflop/s per core.

into the L3 cache. When staying inside the L3 cache assembler code is roughly a factor of
1.3 faster. Outside the L3 cache the assembler is faster up to a factor of 2.7. The reason
for this speed-up is prefetching. Prefetching is important in the parallel version even if the
local lattice would fit into the cache, because data that stems form remote processes will
not be in the cache but rather in main memory.

4.3 Performance Results

Performance results are given in Table 3 and plotted in Fig. 3. Weak scaling results are
shown on the left hand side of Fig. 3. From the weak scaling we see that parallel perfor-
mance is dominated by data communication overhead. When going from one core to the

Figure 3. Weak (left) and strong scaling (right) of the conjugate gradient solver. The dotted line in the strong
scaling plot indicates linear scaling.

541



general case of 34 = 81 cores (on a single node) performance drops by a factor of about
two and continues to decrease slowly when increasing the number of cores further.

Strong scaling results are shown on the right hand side of Fig. 3. The Fortran code
scales super-linearly when going from 512 to 1024 cores which is clearly an effect of
the large L3 cache. Remarkably, Fortran outperforms the assembler on 2048 cores. This
indicates that the MPI calls, that are handled in the assembler part, lead in this case to an
inefficient communication pattern.

Note that 1024 and 2048 cores do not fit into two or four nodes respectively. For a
production run a ’sweet spot’ had been searched and filling two nodes with local 84 lattices
was chosen. The overall lattice size was 403× 64 which was put onto 53× 8 = 1000 cores.
The average overall performance sustained was 1.485 Tflop/s which is 23 % of the peak
performance.

5 Summary

Using lower level programming techniques improves the performance of QCD pro-
grammes significantly. The speed-up that can be achieved in comparison to programming
in Fortran/MPI is a factor of 1.3–2.0.

We found that our code scales up to the whole Blue Gene/L in Jülich. The highest
performance measured was 8.05 Tflop/s on the whole machine. In production typically one
rack (2048 cores) is used on which a performance 1.1 Tflop/s or 19 % of peak is sustained.
The high performance and scaling could be obtained by using double hummer instructions
and techniques to overlap communication and computation.

On the Altix 4700 the large L3 data cache helps a lot to boost performance. Due to
the hierarchical nature of the communication network performance measurement depend
to some degree on the placement of programmes. In production an average sustained
performance of 1.485 Tflop/s or 23 % of peak is achieved when using 1000 cores.

Acknowledgements. The performance measurements were done on the BlueGene/L at
NIC/ZAM Jülich at the BlueGene Scaling Workshop, Jülich, 3–5 December 2006 and on
the Altix 4700 at LRZ Garching/Munich. T.S. is supported by a Feodor-Lynen Fellowship.

References

1. www.top500.org

2. G. Schierholz and H. Stüben, Optimizing the Hybrid Monte Carlo Algorithm on the
Hitachi SR8000, in: S. Wagner, W. Hanke, A. Bode and F. Durst (eds.), High Perfor-
mance Computing in Science and Engineering, (2004).

3. S. Duane, A. Kennedy, B. Pendleton, D. Roweth, Phys. Lett. B, 195, 216–222, (1987).
4. Unfolding the IBM eServer Blue Gene Solution, IBM Redbook, ibm.com/redbooks.
5. A. A. Bright et al., IBM J. Res. & Dev., 49, 277–287, (2005).
6. C. D. Wait et al., IBM J. Res. & Dev., 49, 249–254, (2005).
7. N. R. Adiga et al., IBM J. Res. & Dev., 49, 265–276, (2005).
8. P. Vranas et al., Proceedings of the ACM/IEEE SC2006 Conference on High Perfor-

mance Computing and Networking, Tampa, Florida, USA, November 2006.
9. www.lrz-muenchen.de/services/compute/hlrb/batch/batch.html

542


